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Optimal Economic Power Flow

Philipp Gerstner*?, Vincent Heuveline?, Michael Schick?

Goal Optimization problem Physical model of network flows

Op.tlmlze ope.rat|on state qf . AC(X', V1), = X! — Dt — PV
a given electrical power grid
P (V") = (Vi VY
Minimize fuel costs of (V') ke%:(i)pk( e Vi)
conventional power plants ’
while maintaining

network stability

AC(XP, VY =0 Wt
X! injected power at node i, time t D! : power demand at node i, time t
V': voltage at node i, time t L. power flow from node i to k

Solve large-scale nonconvex nonlinear optimization problem with an Interior Point Method (IPM)
Current work: Development of specialized linear solver adopted to the underlying physical model

The main computational effort lies in the solution of the arising Characterization of arising linear systems
linear system | |  Symmetric and indefinite
Mgtrlx dimension is proportlonal to number of nodes in the power . Increasing condition number as IPM evolves
grid and number of time steps. o - | e Sparsity structure corresponds to topography
Typical matrix size for German transmission grid with 3 day time of underlying power grid
horizon: ~1.500.000
Physical grid Partitioned network graph GMRES convergence
= e ~ 1000 nodes Determlne q SL.Jb.dOmalnS of similar * o
= b o ~ 200 power S|ztet. ang minimal number of o
1 . \ plants CUtting eages. : Comiscmars
Jﬂ | j ~ 2500 lines - : \ — T ;
r a0 ] \Matrix size: ~ 13000 :
Sl Py - Final solver tolerance: 1e-10 :
! 0 [ Block Jacobi: > 200 it. |
) o S gf addSchwarz: 101 it.
WS G 3 < addSchwarzCGC: 80 it. 3
”‘7* 3 3 i NN mulSchwarz: 49 it. !
{ NS/ | \ \ mulSchwarzCGC: 39 it.
f’i L o “fﬁ
Locality of variables Overlapping Schwarz methods
Group variables corresponding to Restriction operator for subdomaini | =
same physical node and permute R, : RN — Rmi Conclusions
Newton matrix. i in i . L . e
. ) Solution opgrator f;)r siubdomaln | * Linear systems arising in power grid optimization
B; = R; (R;,AR; )" "R, are well suited for domain decomposition
Additive Schwarz methods
ry =x+ ) . Bi(b— Ax)  Schwarz preconditioners significantly improve

GMRES convergence
e Stable convergence rate, despite increasing
condition number

Ly = Lg  Allows parallelization on distributed memory
Additional coarse grid correction systems

B. = RT(R.ART)"'R,

Multiplicative Schwarz
r; =x;—1 + Bi(b— Az;_1)

Observation B A
Newton matrix has same sparsity Leye _x + Be(b — Az.)
structure as adjacency matrix of Preconditioner

physical grid P:zxw—ux. .

Future work: Take into account uncertainties in input data
Leads to 2-stage stochastic program

Uncertain demand: D! — Dt .
i > Di(w) with X1( X1 w),t > 2

solving

Uncertain renewable
energy: g(X', V') — g(X*, V' w)
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