
Polynomial chaos expansions: Solutions

Jonathan Feinberg and Simen Tennøe

Kalkulo AS

January 22, 2015

Traveling with constant velocity.

def s(t, v):

return v*t

v = cp.Normal (5,1)

t = np.linspace (0 ,10 ,1000)

P = cp.orth_ttr(5, v)

nodes , weights = cp.generate_quadrature (6, v, rule="G")

samples_u = [s(t, n) for n in nodes.T]

u_hat = cp.fit_quadrature(P, nodes , weights , samples_u)

plot(t, cp.E(u_hat , v))

plot(t, cp.Var(u_hat , v))

Traveling with constant velocity.

Traveling with constant acceleration, classical
Monte Carlo integration.

def s(t, v0 , a):

return v0*t + 0.5*a*t**2

N = 1000

v0 = cp.Uniform (1,2)

a = cp.Beta (2,2)

t = np.linspace (0 ,10 ,1000)

samples_v0 = v0.sample(N)

samples_a = a.sample(N)

distance = np.array ([s(t,v0_ ,a_) for v0_ ,a_ \

in zip(samples_v0.T, samples_a.T)])

E = np.sum(distance ,0)/N

Var = np.sum(distance **2 ,0)/N - E**2

plot(t, E)

plot(t, Var)

Traveling with constant acceleration, classical
Monte Carlo integration.

Traveling with constant acceleration, Quasi-Monte
Carlo using Sobol sequence.

def s(t, v0 , a):

return v0*t + 0.5*a*t**2

N = 1000

v0 = cp.Uniform (1,2)

a = cp.Beta (2,2)

t = np.linspace (0 ,10 ,1000)

samples_v0 = v0.sample(N, "S")

samples_a = a.sample(N, "S")

distance = np.array ([s(t,v0_ ,a_) for v0_ ,a_ \

in zip(samples_v0.T, samples_a.T)])

E = np.sum(distance ,0)/N

Var = np.sum(distance **2 ,0)/N - E**2

plot(t, E)

plot(t, Var)

Traveling with constant acceleration, Quasi-Monte
Carlo using Sobol sequence.

Traveling with constant acceleration,
pseudo-spectral projection with full tensor grid
Gaussian quadrature.

def s(t, v0 , a):

return v0*t + 0.5*a*t**2

v0 = cp.Uniform (1,2)

a = cp.Beta (2,2)

dist = cp.J(v0,a)

t = np.linspace (0 ,10 ,1000)

P = cp.orth_ttr(5, dist)

nodes , weights = cp.generate_quadrature (6, dist , rule="G")

samples_u = [s(t, *n) for n in nodes.T]

u_hat = cp.fit_quadrature(P, nodes , weights , samples_u)

plot(t, cp.E(u_hat , dist))

plot(t, cp.Var(u_hat , dist))

Traveling with constant acceleration,
pseudo-spectral projection with full tensor grid
Gaussian quadrature.

Traveling with constant acceleration,
pseudo-spectral projection with Clenshaw-Curtis and
Smolyak sparse grid.

def s(t, v0 , a):

return v0*t + 0.5*a*t**2

v0 = cp.Uniform (1,2)

a = cp.Beta (2,2)

dist = cp.J(v0,a)

t = np.linspace (0 ,10 ,1000)

P = cp.orth_ttr(M, dist)

nodes , weights = cp.generate_quadrature (6, dist , rule="C" \

, sparse=True)

samples_u = [s(t, *n) for n in nodes.T]

u_hat = cp.fit_quadrature(P, nodes , weights , samples_u)

plot(t, cp.E(u_hat , dist))

plot(t, cp.Var(u_hat , dist))

Traveling with constant acceleration,
pseudo-spectral projection with Clenshaw-Curtis and
Smolyak sparse grid.

Traveling with constant acceleration, point
collocation with random samples and least squares
minimization.

def s(t, v0 , a):

return v0*t + 0.5*a*t**2

v0 = cp.Uniform (1,2)

a = cp.Beta (2,2)

dist = cp.J(v0,a)

t = np.linspace (0 ,10 ,1000)

P = cp.orth_ttr(5, dist)

nodes = dist.sample (2*len(P))

samples_u = [s(t, *n) for n in nodes.T]

u_hat = cp.fit_regression(P, nodes , samples_u , rule="LS")

plot(t, cp.E(u_hat , dist))

plot(t, cp.Var(u_hat , dist))

Traveling with constant acceleration, point
collocation with random samples and least squares
minimization.

Traveling with constant acceleration, point
collocation with Hammersley samples and Tikhonov
regularization.

def s(t, v0 , a):

return v0*t + 0.5*a*t**2

v0 = cp.Uniform (1,2)

a = cp.Beta (2,2)

dist = cp.J(v0,a)

t = np.linspace (0 ,10 ,1000)

P = cp.orth_ttr(5, dist)

nodes = dist.sample (2*len(P), "M")

samples_u = [s(t, *n) for n in nodes.T]

u_hat = cp.fit_regression(P, nodes , samples_u , rule="T")

plot(t, cp.E(u_hat , dist))

plot(t, cp.Var(u_hat , dist))

Traveling with constant acceleration, point
collocation with Hammersley samples and Tikhonov
regularization.

A different differential equation

a = cp.Normal (4,1)

I = cp.Uniform(2, 6)

dist_Q = cp.J(a, I)

dist_R = cp.J(cp.Normal(), cp.Uniform ())

x = np.linspace (0,1 ,100)

P = cp.orth_ttr(2, dist_R)

nodes_R , weights_R = cp.generate_quadrature (3, dist_R)

nodes_Q = dist_Q.inv(dist_R.fwd(nodes_R))

weights_Q = weights_R*dist_Q.pdf(nodes_Q)/ dist_R.pdf(nodes_R)

samples_u = [u(x, *node) for node in nodes_Q.T]

u_hat = cp.fit_quadrature(P, nodes_R , weights_Q , samples_u)

A different differential equation

A different differential equation

a = cp.Normal (4,1)

I = cp.Uniform(2, 6)

dist = cp.J(a, I)

x = np.linspace (0,1 ,100)

P, norm = cp.orth_ttr(5, dist , retall=True)

q0, q1 = cp.variable (2)

P_nk = cp.outer(P, P)

E_ak = cp.E(q0*P, dist)

E_ik = cp.E(q1*P, dist)

E_nk = cp.E(P_nk , dist)

A different differential equation

def f(c_k ,x):

return (c_k + E_ak)*cp.sum(E_nk , -1)/norm

solver = odespy.RK4(f)

c_0 = E_ik/norm

solver.set_initial_condition(c_0)

c_n , x_ = solver.solve(x)

u_hat = cp.sum(P*c_n ,-1)

E = cp.E(u_hat , dist)

Var = cp.Var(u_hat , dist)

plot(x, cp.E(u_hat , dist))

plot(x, cp.Var(u_hat , dist))

A different differential equation

