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Commentaries are informative essays dealing with viewpoints of statis- involve longer discussions of background, issues, and perspectives. All 
tical practice, statistical education, and other topics considered to be commentaries will be refereed for their merit and compatibility with these 
of general interest to the broad readership of The American Statistician. criteria. 
Commentaries are similar in spirit to Letters to the Editor, but they 

The Many Faces of Logistic Regression 
DAVID STRAUSS* 

Logistic regression has found wide acceptance as a model 
for the dependence of a binary response variable on a 
vector of explanatory variables. It can also be used, 
however, as a maximization algorithm for fitting a va- 
riety of other parametric models. The easy availability 
of logistic regression in standard packages is a major 
advantage; further, the regression diagnostics routinely 
supplied are frequently useful, even though the model 
being fitted is not logistic. 

In some cases the objective function maximized is a 
likelihood, but the method seems to arise especially 
often in the maximization of a so-called pseudolikeli- 
hood. Applications include models from choice theory, 
spatial modeling, random graph theory, and educa- 
tional testing. 

KEY WORDS: Maximum likelihood; Pseudolikeli- 
hood estimation. 

1. INTRODUCTION 

Suppose we have a binary variable Y and want to 
model its dependence on a vector x of p explanatory 
variables by 

E(Y) = P(Y = 1) = g(13'x), (1.1) 

where ,3 is a p vector of parameters. A common choice 
for g(t) is 

g(t) = exp(t)/{1 + exp(t)}, (1.2) 

the inverse of the standard logistic distribution function. 
In this case (1.1) can be written 

logit {P(Y = lIx)} = P'x, (1.3) 

where logit(t) log {t/(1 - t)}. Equation (1.3) is a 
logistic regression model. 

The applications of logistic regression to be discussed 
here differ from the above, in that a parametric model 
of some sort is specified and is to be fitted by maxi- 

mization of an objective function. The latter may be 
the likelihood function, or in some cases a so-called 
pseudolikelihood (to be defined shortly). In a surprising 
variety of problems the maximization is formally equiv- 
alent to maximum likelihood for a suitably defined lo- 
gistic regression model. The wide availability of com- 
puter packages to implement the latter is a major 
advantage. Moreover, even though the real model being 
fitted is not logistic, in most cases at least some of the 
regression diagnostics supplied by the package will be 
useful in assessment of the fit. 

Some of the work on these topics is currently un- 
published, and what is available is specialized to par- 
ticular models and is scattered in the literature. The 
aim of this article is to give a unified account of appli- 
cations in a variety of situations, to show some common 
features, and to increase awareness of these rather use- 
ful ideas. 

In all the examples to be considered, formal maxi- 
mum likelihood estimation for the logistic regression, 
assuming independent cases, is appropriate (even if the 
outcomes are in fact not independent). Implementation 
in computer packages is most commonly performed by 
iteratively reweighted least squares (McCullagh and 
Nelder 1983, sec. 2.5). Other fitting methods for logistic 
regression (such as the computationally simpler mini- 
mum x2 procedure) will not be exactly equivalent to 
maximization of the relevant objective function. 

The next section gives some examples of how logistic 
regression may be used to implement maximum likeli- 
hood for other models. Section 3 summarizes the pseudo- 
likelihood method and gives examples of how logistic 
regression can be used to maximize the pseudolikelihood. 

2. MAXIMUM LIKELIHOOD BY LOGISTIC 
REGRESSION 

2.1 Bradley-Terry Model 

Our first example of parameter estimation by logistic 
regression is the well-known Bradley-Terry model for 
paired comparisons. In different settings the pairs of 
"stimuli" being compared might be psychophysical, such 
as sounds or lights of different intensities, consumer 
items, such as cars or soft drinks, or competing athletes. 

*David Strauss is Professor, Department of Statistics, University 
of California at Riverside, Riverside, CA 92521. The author thanks 
Paul Holland for some helpful discussions and the referees and an 
associate editor for suggesting some substantial improvements to the 
article. 
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It is assumed that each comparison will result in a unique 
choice of one stimulus over the other. This might cor- 
respond to a judgment that one sound is the louder of 
the two, that one car is preferred to the other, or that 
one team beats the other. The various paired compar- 
isons are assumed to be made independently. See Brad- 
ley (1985) for a summary, and Davidson and Farquhar 
(1976) for an extensive bibliography. 

According to the Bradley-Terry model, for each of 
the p stimuli there is a parameter mi such that 

P(i>j) = il(,mi + a), 1 ' i,j'p, (2.1) 

where i > j means that stimulus i is chosen over j. A 
side condition, such as Xvi = 1, is evidently required. 
For the model to be identifiable it is also assumed that 
the pairs being compared are properly "connected," so 
that there is at least one sequence of comparisons link- 
ing any two stimuli in the set. 

Currently, perhaps the most common way of fitting 
the model involves a rather ingenious use of loglinear 
modeling (see Fienberg 1977, p. 150 for the details). 
This method has the desirable features of providing 
standard errors of estimates and goodness-of-fit tests. 
An alternative approach, and one that shares these fea- 
tures, is to note that (2.1) can be written 

P(i > j) = expit(J3i - 13). (2.2) 

Here 8i = log ri and expit is a convenient notation for 
the inverse of the logit function: expit(t) = exp(t)/{1 + 
exp(t)}. Equivalently, 

logit {P(i > j)} = - pi' (2.3) 

-= x'9, 

where = (131,...,13p)andxk = 1 if k = i, -1 if 
k = j, and 0 otherwise. The likelihood function is the 
product of expression (2.2) over all paired comparisons; 
its maximization is thus equivalent to a maximum like- 
lihood solution for the logistic regression model (2.3). 
Here the dummy p vector x serves as the explanatory 
variable, or "data," in the regression. As in (2.1), a 
side condition on the ,3's, such as 13,i = 0, is required. 
The logistic regression should be constrained to have 
no intercept; this is an option in all major packages. 

An example of this is the analysis of 1987 American 
League baseball wins and losses, given by Agresti (1990, 
p. 371). He also shows how to fit and test an extension 
to the model that includes a parameter for the home 
team advantage. In addition, the residual diagnostics 
provided by the logistic regression program allow easy 
identification of any pairs of teams whose scores against 
each other are poorly predicted by the model. 

2.2 Luce's Choice Model 

The Bradley-Terry model can be written in the fol- 
lowing way: there are parameters 1Ti such that when a 
set Sr of two stimuli is presented, the chance that stim- 
ulus i is selected is given by 

the sum being taken over j in Sr. A natural generali- 
zation of the model is to the case where (2.4) holds for 
sets Sr of any size. This is (almost) equivalent to the 
Choice Axiom of Luce (1959), which essentially states 
that the ratio of the choice probabilities of two stimuli 
is independent of alternatives in the choice set. Luce's 
model (2.4) is the point of departure for much of the 
probabilistic choice theory developed by mathematical 
psychologists; for a summary see, for example, Strauss 
(1985). 

In numerical applications of the choice model (Luce 
1977), a common procedure is maximum likelihood im- 
plemented by a general-purpose maximization routine. 
Apart from the typical problems of maximization in 
high-dimensional parameter spaces, this approach will 
supply few if any of the desired diagnostics statistics. 
Instead, however, the problem may be cast into the 
form of a polytomous logistic regression, as follows. 

Suppose that the response variable for the ith com- 
parison, yi, is categorical, with values indexed by k = 
1, . . . , c. The polytomous logistic regression model is 
(Fienberg 1977, sec. 6.5) 

P(yi 
= k) = exp(y'yx )) exp(y'yxi). (2.5) 

m 

The parameters here are the p vectors Yk, k = 1, . 
c. One choice of side condition to ensure identifiability 
is to set yl = 0. To express the Luce model (2.4) in 
this form, take c = p and let xi again be the dummy p 
vector whose ith component is 1 and the others 0. One 
also needs to be able to restrict the sum in (2.5) to the 
specified choice sets Sr; the polytomous logistic regres- 
sion program in SYSTAT is one that allows this option. 

2.3 Heterogeneous Poisson Process 

This is a stochastic process that generates events 
(points) in time or in a spatial region of arbitrary di- 
mension. It may be characterized by two properties 
(Diggle 1983, p. 52): 

1. The numbers of events in disjoint regions are inde- 
pendent. 

2. The probability of an event in a small region of 
area c, located at x, is given by 

cA(x) + o(c), (2.6) 

where A(x) is the intensity function of the process. The 
ordinary (homogeneous) Poisson process arises if A(x) 
is a constant. In many cases, however, it may be de- 
sirable to model a dependence of the intensity function 
on a vector of covariates z(x). For example, the events 
may be the occurrence of trees in a spatial region. The 
covariates {z1(x)} might then include soil quality, water 
availability, and so forth, as well as the coordinates of 
x so as to model a polynomial trend surface. 

Since the intensity A(x) is constrained to be non- 
negative, a natural model for the dependence is 

A(x) = exp$|'z(x)}, (2.7) 
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where ,B is a vector of unknown parameters. This model 
(in a temporal context) has previously been considered 
by Mathers (1984) and many others. Mathers's method 
of analysis approximates the distributions of the number 
of events in various subregions, these being Poisson 
with means equal to the integral of (2.6) over their 
subregions, followed by maximization of the likelihood 
function. 

A simpler estimation method begins by placing a fine 
grid over the region, with cells of size c, say. Let yi be 
1 if the ith cell contains an event and zero otherwise, 
and let zi be the vector of covariates for the ith cell. 
According to (2.6) and (2.7), 

logit {P(Y1 = 1)} = ln c + 'zi (2.8) 

apart from an error of magnitude o(c). Further, the Y, 
are independent. Thus, apart from the error o(c), max- 
imum likelihood estimation of 1 is accomplished by a 
logistic regression of the y's on the z's. If one component 
of z is a dummy variable then the (ln c) term in (2.8) 
should be subtracted from the corresponding parameter 
estimate; otherwise the regression should be forced to 
have an intercept of ln c. 

The choice of c is discussed briefly in Section 3.3; the 
issue is that if c is too large, the error term o(c) becomes 
serious, while if it is very small, the number of cells 
becomes large and the analysis expensive. 

3. LOGISTIC REGRESSION FOR 
MAXIMIZATION OF PSEUDOLIKELIHOOD 

3.1 Pseudolikelihood Estimation 

Let u = (u1, . .. , ui) have a likelihood function L 
indexed by a (possibly vector) parameter 0. It some- 
times happens that maximum likelihood estimation of 
0 is difficult because L involves a complicated normal- 
izing function of 0. For this reason (or for others, as 
we shall see) it may be advantageous to replace L by 
a pseudolikelihood function, a term and idea originating 
with Besag (1975) (see also Lindsay 1988). The con- 
struction is as follows. 

Choose suitable functions v1, v2, . . . of u; in appli- 
cations the v's may consist of one or more components 
of u, sums of components, and so on. Form conditional 
density functions fij(vilvj), assuming these to exist, and 
take the product of a collection of such densities. (Un- 
conditional densities are allowed: one of the v's may 
be set to a constant.) The choice of terms in the product 
is a matter of convenience; we shall see examples shortly. 
Note that any normalizing constant in the likelihood 
cancels out in the conditional densities. Given a random 
sample u(k), k = 1, 2, . . . , from the distribution, one 
defines a pseudolikelihood (PL) for the data as any 
quantity of the form 

PL =lI uLuiivsk)v(k)i (3.1) 

By maximizing (3.1) one obtains a maximum pseudo- 
likelihood estimator (MPE). Under regularity condi- 
tions the MPE can be shown to be consistent and asymp- 

totically normally distributed, with asymptotic variance 
given by certain information-type quantities (see Ar- 
nold and Strauss 1991b). In general the MPE will not 
be a function of minimal sufficient statistics, and thus 
will not be fully efficient; but the inefficiency will often 
be slight, and compensated by dramatic computational 
simplifications. 

In a considerable number of cases, maximization of 
the pseudolikelihood function can be conveniently im- 
plemented by a logistic regression. One instance, that 
of a network or graph model with Markovian depen- 
dence, is discussed in detail in a recent article (Strauss 
and Ikeda 1990). The balance of this section describes 
three other applications. 

3.2 Lattice Models 

This case appears to be the first where pseudolike- 
lihood idea was used. The simplest form of lattice model 
is the celebrated Ising model (Ising 1925) of statistical 
mechanics, currently enjoying some statistical promi- 
nence as a prior distribution in work on image enhance- 
ment (Besag 1986). The model specifies a joint distri- 
bution for a rectangular array of binary variables yi1. 
The sites (i, j) and (k, 1) are said to be neighbors if either 
i = k and I - 11 = 1 or j = l and Ji - kl = 1. Let S 
be >2yi>, the number of sites with value 1, and let nil 
be the sum of Ykl over the four neighboring sites of (i, 
j). Write N = (112)llni. According to the Ising model, 
the probability of a realization y of the set of lattice 
variables {yi1} is given by 

P(y) = {1/Z(a, X3)} exp(aS + ,BN). (3.2) 

The parameter X3 measures the intensity of the inter- 
action; when ,3 is zero the yij are Bernoulli with prob- 
ability expit(a), while positive values of ,3 promote clus- 
tering of like values of the yi1. For example, the odds 
on the event yij = 1 increase by exp(,3) for a unit in- 
crease in nij. The normalizing constant Z(a, ,3), known 
as the partition function, is notoriously intractable and 
the source of much anguish in statistical mechanics. 
Note, on the other hand, the simple form taken by the 
conditional probabilities: 

P(yij = 11 all the other y's) = expit(a + f3nij). (3.3) 

This led Besag (1975, 1977) to define a pseudolikeli- 
hood as the product of (3.3) over all i, j and to estimate 
a, ,3 by its maximization. The consistency of this MPE 
does not follow from the result quoted in Section 3.1, 
but has been proved by Geman and Graffigne (1987). 

Since, from (3.3), 

logit {P(yij = 11 all other y's)} = a + fnij, (3.4) 

it follows as before that the MPE is obtained by a formal 
maximum likelihood estimation of the logistic regres- 
sion model. The data entries are simply the "response 
variables" y11 and the "predictor variables" (1, ni1); a 
and ,l3 are then the unknown parameters in the linear 
regression. Odencrantz (1988) presented one of the 
first applications of this idea. Exact calculation of the 
efficiency of the estimator seems not feasible, but sim- 
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ulation studies by Odencrantz (1988) and Ripley (pri- 
vate communication) suggest that the MPE loses little 
efficiency, compared to the maximum likelihood esti- 
mator, provided f is below the so-called critical point. 
Above that value the MPE may perform notably worse 
than the maximum likelihood estimator. [This last im- 
plication may be unimportant in statistical applications, 
since for large lattices with /3 above the critical point 
the realizations will contain infinite patches of zeroes 
and similar patches of ones. See Pickard (1987) for a 
discussion of critical phenomena in a statistical context. ] 

Estimation by linear logistic regression is easily adapted 
to various generalizations of the Ising model. For ex- 
ample, a term ymij may be added to the right side of 
(3.4), where min is the sum of Ykl over the four "diag- 
onally adjacent" neighbors of (i, j), and -y is the cor- 
responding intensity parameter. That is, 

logit {P(yij = lall other y's) 

= a + f3ni + ymin. (3.5) 

It is also easy to define generalizations of (3.2) to the 
colored lattice, where the y's are now c-valued poly- 
tomous variables (Strauss 1977). Such models may be 
appropriate for arrays of plants of differing species or 
with various possible states of health; see also Section 
3.3. Particular patterns of interaction between different 
colors are expressible through constraints on the pa- 
rameter matrix in a polytomous logistic regression. 

As an illustration, Figure 1 gives data from Bartlett 
(1971) on the presence or absence of the plant Carex 
arenaria over a spatial region divided into a 24 x 24 
lattice. Visual inspection, or some simple analyses, in- 
dicates clustering of the plants, and it may be of interest 
to fit some dependence models. A stepwise logistic 
regression (BMDP's PLR program) was used, with two 
predictor variables, the nij's and the mij's. The cells on 
the boundary of the lattice were excluded, as the pre- 
dictor variables are undefined for them. 

Table 1 gives various (pseudo)likelihood statistics that 
may help one assess the models. The first row corre- 
sponds to a model where the yij's are independent, with 
pij = P(Yij = 1) equal to a constant. Since each of the 
two regressor variables ranges from 0 to 4, there are 5 
x 5 = 25 possible distinct patterns of covariates, of 
which 23 actually occur here. The saturated alternative 
model estimates each of the 23 pij's by the observed 
proportion. Thus the deviance, or goodness-of-fit x2 

..111.11111... 1 .. 1 ... 11.-1. 

. 1 .1 . . 1 . 111 . .1 

.1 1.111. 1 1 1. 1 1.i 

.1. .. ... 1 . .. 1.. 11.. 1. 
* . ."1.. . . .1 . . . . . 

1 .1 . 1 . 1 . 1 

Figure 1. 24 . 24 Grid of PresencelAbsence of the Plant Carex 
Arenaria. (From Bartlett 1971.) 

statistic, 66.06, has 23 - 1 = 22 df. [Note that for this 
comparison we have a genuine likelihood ratio, so the 
usual x2 test is valid; in the other cases we are dealing 
with pseudolikelihoods, and the x2 reference values 
should only be used as a rough guide. An additional 
caveat applies to the nominal p values in Table 2: Of 
the 46 cells (0 or 1 response for each of 23 distinct 
covariate patterns), 21 have observed frequencies less 
than 5. For the comparison of a given pair of models, 
a more conservative treatment would be as follows: 
First pool all cells where the expected frequency ac- 
cording to either model is lower than some acceptable 
threshold (e.g., 3 or 5) and then compute the likelihood 
ratio and its p value for the reduced set. (The usual 
additivity property of deviances would then no longer 
apply.)] 

The first variable added is the set {n11}, corresponding 
to the pure Ising model (3.2) or (3.4). The addition of 
a single parameter accounts for about half of the above 
deviance. The fit is still not ideal, as indicated by the 
model's deviance of 34.56 on 21 df relative to the sat- 
urated model. (A valid likelihood ratio test of this is 
not available; a Monte Carlo test, however, has been 
developed by Besag and Clifford 1989.) Addition of the 
"diagonal neighbors" count {mij} seems to make an ap- 
preciable improvement. A rather loose interpretation 
is that the influence of neighboring cells is not fully 

Table 1. Log-Pseudolikelihoods and Their Differences for Some Models of the Data of Table 1 

Deviance, Nominal Deviance 
Log of relative to p value relative to 

(pseudo-) saturated (based on X2 previous Nominal 
Model Parameters fitted likelihood model df for deviance) model df p value 

1. Independence One: the common -296.33 66.06 22 .00 
cell probability 

2. Ising (3.4) Two: a and f8 -280.58 34.56 21 .03 31.50 1 .00 
3. (3.5) Three: a, 8, and e -276.20 25.80 20 .17 8.77 1 .00 
4. Saturated 23: all cell -263.30 

probabilities 
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captured in the four immediately surrounding values. 
One could, of course, go on to include more distant 
neighbors than the diagonally adjacent ones. 

The estimate of the intensity parameter /3, 0.54, is 
the increase in log-odds on occupancy of a cell when 
nil is increased by 1. The estimate, not surprisingly, 
turns out to be intermediate between the two "coding 
method" estimates, 0.48 and 0.59, given by Besag (1972). 
(The coding method, an early example of pseudolike- 
lihood, treats the lattice as a 24 x 24 black-and-white 
chessboard; one maximizes the likelihood of the values 
at the black squares conditional on those at the white 
squares, and then vice versa.) For the model that also 
includes the {mij}, the parameter estimates are 

f3 =.45, y=.31 

A log-odds interpretation for these is similar to the 
above. Just as in ordinary regression, the reduction in 
the coefficient /3 when an additional, positively corre- 
lated, variable is included is to be expected. 

Diagnostics analogous to those mentioned in Section 
2 are again available. They are omitted, as they seem 
not to provide any new insights in this example. 

3.3 Spatial Interaction Models 

Spatial point processes arise in many contexts; ex- 
amples are the patterns of towns on a map, plants in a 
field, or gas molecules in a container. In these examples, 
and many others, the events (points) may be expected 
to "interact"; for example, the presence of a plant at 
a given location is likely to inhibit the presence of other 
plants in its immediate neighborhood (competition ef- 
fects). At somewhat larger separations the plant may 
appear to attract others. An important class of models 
for such patterns of interacting points is that of pair- 
potential models, or Gibbs distributions (Diggle 1983, 
sec. 4.9). The class is unusual among spatial models in 
that an explicit joint distribution can be written down. 

To obtain a Gibbs distribution for points in a (typi- 
cally two-dimensional) domain D, one begins with a 
unit Poisson process on D. That is, the number of points 
n follows a Poisson distribution with mean 1, and given 
n we place the points independently and uniformly in 
D. The sample space fQ is the set of collections x of n 
points in D, for all n 2 0. One then defines a potential 
function U(x) on fl to specify the interactions between 
pairs of points in x. It is usual to take 

U(x) = E u(rij), 

where rij is the distance between the ith and jth points 
in x, and u is a suitable pair-interaction function. The 
simplest nontrivial example is (Strauss 1975) 

u(r) = /3 if r ? 

-O0if r > r0 (3.6) 

where r0 is the interaction range and the interaction 
parameter ,B must be nonpositive. Then U is simply f3 
times the number of r0-close pairs. A Gibbs distribution 

on fl is determined by a "density" function 

f(x) = (1Z) exp{an + U(x)}, (3.7) 

where a is an intensity parameter and Z is again the 
partition function. The functionf(x) specifies how likely 
the configuration x is, relative to the unit Poisson pro- 
cess. The latter corresponds to the case a = 1 and U 

0. Equation (3.6) gives a model of repulsion between 
pairs of ro-close points. 

In general, parameters of (3.7) cannot be estimated 
through maximum likelihood because (as usual) Z is 
intractable. Several estimation procedures (e.g., Ogata 
and Tanemura 1984) have been based on approxima- 
tions to Z, but they are not consistent and tend to 
involve elaborate computations. 

Following Besag (1977) one may place a fine grid over 
the spatial pattern, just as in Section 2.3. The cells Ci of 
the grid have common size c. Let ni be the number of 
points in Ci. If c is taken to be suitably small, P(ni > 1) 
is negligible, and we have a binary lattice model. This 
differs from the Ising model in that each cell has many 
neighbors; nevertheless, the conditional probabilities 
are easily written down. With (3.6), for example, we 
have 
P(ni = ilall other nj's) 

= expit(a + f3AUJ) + o(c) (3.8) 

where AUi is the number of points that are ro-close to 
Ci. Besag's idea was to define a pseudolikelihood as the 
product of (3.8) over all i, and to estimate parameters 
by its maximization. 

Once again, the method can conveniently be imple- 
mented by logistic regression. A number of desirable 
properties, such as convergence of the sequence of es- 
timators as c -- 0, and consistency as both c -- 0 and 
the domain becomes large, can be shown to hold (Clyde 
and Strauss 1991). Their simulation studies suggest again 
that the method is about as good as maximum likeli- 
hood, in the few cases where the latter is feasible, at 
least for parameter values below the critical point (com- 
pare the comments in Section 3.2). Other simulations 
given in the paper deal with the bias corresponding to 
the o(c) term. It appears that the bias is slight provided 
that c is chosen to be small enough that at most a few 
cells contain more than one event. 

The logistic regression applies equally to a wide va- 
riety of models where the quantity AU in (3.8) is linear 
in the parameters. Just as in the lattice case, a natural 
generalization of the model is to the polytomous prob- 
lem (e.g., species of several types, with differing pat- 
terns of interaction); as before, this can be handled with 
a polytomous logistic regression. One may also allow 
the density for a point at a given location in D to depend 
not only on the interactions, but also on exogenous 
variables, or on the local "fertility," exactly as in Sec- 
tion 2.3. One needs only to replace the term an in (3.7) 
by E A(zi), the sum being taken over all n locations 
indexed by the Zi, for a suitably chosen intensity func- 
tion A. Logistic regression still provides a consistent 
estimator of unknown parameters in the A function. 
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The models described in the previous subsections are 
all exponential families involving intractable normal- 
izing constants. We have seen that similar estimation 
methods apply to all three models. The models share 
many other features, such as feasible simulation meth- 
ods and "stability" properties (Strauss 1986). Pseudo- 
likelihood estimation is generally worth consideration 
in exponential families with awkward normalizing con- 
stants (Arnold and Strauss 1991a). 

3.4 Rasch Model 

Our final example comes from the theory of mental 
testing. Suppose a group of subjects attempt to answer 
a set of J items, and let xij be an indicator variable for 
the event that subject i gives the correct answer to item 
j. A widely used model for the distribution of the xij is 
that these variables are independent with 

P(xij = 1) = expit{a(0i - 3)}. (3.9) 

Here Oi represents the ability of the ith subject, Bj the 
difficulty of the jth item, and a is a scale constant that 
may (and will be) set to 1 here. Evidently a side con- 
dition on each of 0 and f8 is required for identifiability. 
Equation (3.9) represents the simplest form of the Rasch 
model. 

By taking logits in (3.9) we obtain a logistic regression 
scheme for maximum likelihood estimation. In practice 
this will generally not be satisfactory, as the number of 
subjects is often very large and the abilities Oi are typ- 
ically regarded as nuisance parameters. We now show 
one way in which the pseudolikelihood approach can 
be used to eliminate the nuisance parameters. 

Take as pseudolikelihood the product 

fl P(X(ijlXij + xik) (3.10) 

which is of the form (3.1). Had we taken j - k instead 
of j < k in (3.10), it would come to the same thing. 
When xij + Xik = 0 or 2, the corresponding conditional 
probability in (3.10) is sure to be 1, and the term may 
be omitted from the product. Hence we only need con- 
sider "discordant" cases in (3.10), that is, triples i, j, k 
where subject i gets one of items j, k right. Now it 
follows from (3.9), with a little algebra, that 

P(Xij = 1 lXij + Xik = 1) = expit(/3k - /3)* (3.11) 

The important point here is that dependence on the 0's 
has been eliminated. Once again, maximization of the 
pseudolikelihood (3.10) can be carried out with a lo- 
gistic regression: for each item pair j, k the "trials" are 
the subjects given discordant answers and the "suc- 
cesses" are the cases where the correctly answered item 
is the jth. As mentioned, a side condition on the 1B's is 
needed, and the constant term in the logistic regression 
should be suppressed. 

The efficiency of the estimator is in general very com- 
plicated algebraically, but an explicit form can be given 
in the simple case where all 0's are equal and there are 
only two items. It can then be shown that the MPE is 

fully efficient iff f81 = 182. In educational testing prac- 
tice, when there are usually many subjects, the loss of 
efficiency may be rather unimportant. 

If this logistic regression scheme looks familiar, it is 
not surprising: we have come all the way back to our 
first example. For a pair of discordant items creates a 
"choice" as to which is correctly answered, and we have 
seen that the probabilities for such choices in the Rasch 
model satisfy the Bradley-Terry model. The pseudo- 
likelihood estimator for the former is equivalent to max- 
imum likelihood applied to the latter. 

4. CONCLUSION 

We have seen that a variety of models, seemingly 
quite unrelated to logistic regression, may- be fitted to 
data with the aid of that technique. Many other appli- 
cations are possible; for example, another pseudoli- 
kelihood estimation scheme for the Rasch model is ob- 
tained if one conditions on the sum of more than two 
item variables. The logistic regression is then polyto- 
mous, and would be expected to be more efficient than 
the method given, at the price of greater complexity. 

When logistic regression is available it has several 
attractive features. To summarize: 

1. It avoids the use of general-purpose maximization 
routines, which sometimes suffer from convergence 
problems. 

2. It can be performed conveniently with familiar 
computer packages. 

3. Just as in standard logistic regression, a large num- 
ber of candidate models can conveniently be compared. 
For a fairly extensive example, from social network 
analysis, see Strauss and Ikeda (1990). 

4. Useful diagnostics are readily available. When the 
quantity maximized is a genuine likelihood, the usual 
likelihood ratios and asymptotic standard errors of pa- 
rameters are directly applicable. Even when a pseu- 
dolikelihood is used, the pseudolikelihood ratios pro- 
vide an informal basis for model selection. Another 
basis, available as an option in many packages, is the 
number of correct classifications of the binary variable, 
based on the fitted regression with an optimal cutpoint 
(as in discriminant analysis). Plots of observed and ex- 
pected proportions may be used to indicate unusual 
cells. 

[Received September 1989. Revised January 1992.] 
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On Generalized Score Tests 
DENNIS D. BOOS* 

Generalizations of Rao's score test are receiving in- 
creased attention, especially in the econometrics and 
biostatistics literature. These generalizations are able 
to account for certain model inadequacies or lack of 
knowledge by use of empirical variance estimates. This 
article shows how the various forms of the generalized 
test statistic arise from Taylor expansion of the esti- 
mating equations. The general estimating equations 
structure unifies a variety of applications and helps sug- 
gest new areas of application. 

KEY WORDS: Composite null hypothesis; Empirical 
variance; Estimating equations; Information sandwich; 
Lagrange multiplier test; Misspecified likelihood; Ob- 
served information; Robust inference. 

1. INTRODUCTION 

Rao (1948) introduced score statistics having the form 

S() TIf S(b), (1) 

where S(O) is the vector of partial derivatives of the log 
likelihood function, 0 is the vector of restricted maxi- 
mum likelihood estimates under Ho. and if is the Fisher 
information of the sample evaluated at 0. These test 
statistics are attractive because they only require com- 
putation of the null estimates 0 and are asymptotically 
equivalent to Wald and likelihood ratio statistics under 
both null and Pitman alternative hypotheses (Serfling 
1980, p. 156). In fact many common tests statistics such 
as the Pearson chi-square are score statistics or are closely 
related. A parallel development of (1) was begun by 
Aitchison and Silvey (1958) under the name "Lagrange 
multiplier statistic," and the econometrics literature uses 
this latter term. Introductions to score and Lagrange 
multiplier tests may be found in Breusch and Pagan 
(1980), Buse (1982), Engle (1984), Hosking (1983), and 
Tarone (1988). 

The purpose of this note is to discuss the use of score 
tests in the general estimating equations situation where 
0 is obtained by solving the vector equation S(O) = 0. 
Estimation methods which give rise to different S(O) 
include maximum likelihood, least squares, robust M- 
estimation, and quasi-likelihood. In analogy with max- 
imum likelihood estimation where S(O) = aQ(O)/aO for 
the log likelihood Q(O), I will call S the "score function" 

*Dennis D. Boos is Professor, Statistics Department, North Car- 
olina State University, Raleigh, NC 27695. The author thanks Ron 
Gallant and Len Stefanski for helpful discussions during the prepa- 
ration of this article. 
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