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Motivation 

• The purpose of this talk is to illustrate the important but often neglected role 

which time and, as a consequence, the use of  modeling based on 

stochastic process formulations, have in the statistical treatment of causal 

problems. 

  

• Another motivation is to provide a demonstration of how the tools offered by 

Bayesian modeling and inference, which likewise seem to have largely been 

ignored in the mainstream statistical literature on causality, can be usefully 

applied in this context.   
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Motivation (2) 

• Causal concepts are best introduced and presented, not as abstract 

theoretical constructs, but as means that would facilitate an improved 

understanding of real world phenomena.  

 

• In line with this, most space in this talk is allotted to considering an 

illustrative example, and introducing conceptual ideas and technical material 

only at the point at which they are needed for making progress.  
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Example: Type of daycare vs. AOM 

(Andreev & A 1998; A & Andreev 2000) 

  
• Problem description: We are concerned with the aetiology of acute middle 

ear infection (acute otitis media, AOM) in small children. 

  

• Earlier investigations have shown that the major risk factors for AOM are 

time-dependent: age, duration of breast-feeding, type of day care, and 

previous AOM history.  

 

• For example, it is generally believed that breast-feeding has a protective 

effect, that the effect size depends on the age of the child, and that it will 

last for some time after breast-feeding has ended. 
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AOM: background 

• Causal question: How does the type of daycare (home care, daycare in a 

family, daycare in a nursery / kindergarten) influence the risk of AOM in 

small children? 

 

• Data: The study was based on a sample of 965 children from Oulu region 

(Finland), born between July 1 1985 and June 30 1986, who were followed-

up for episodes of AOM maximally to the age of 33 months, with mean 

length of follow-up of 20.4 months.  
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AOM: data 

For a child Ci indexed with i (1 ≤ i  ≤ 965), the data contain values of the 
variables  

• dbi      = birth date of Ci 

• dei      = date of end of follow-up of Ci 

• dbfi     = date at which breastfeeding of Ci was stopped  

• dcai    = date at which day care of Ci outside home began 

• tycai   = type of day care of Ci after dcai                     

                   = 1 if in family care,  

                   = 2 if in nursing home/kindergarten       

• tij        = date at which the jth episode of AOM in Ci was diagnosed. 
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AOM: data (2) 

• In each case, the dates dbfi, dcai and tij can be right censored at dei, and the 

value of tycai remains undefined if  dei <  dcai. 

   

• Such data can be interpreted, in an obvious manner, as a realization of a 

suitably defined Marked Point Process (MPP) or of a  corresponding 

multivariate counting process.  

 

• These processes can be considered either separately for each child, or also 

jointly for all children in the data.  
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AOM: ’Real time approach’ 

• In what follows we use calendar time as the basis of all considerations 

relating to effects of time. This is so for two reasons: 

  

• Calendar time may itself represent an important causal factor due to the 

varying environmental infection pressure which may affect at the same time 

all children living in the considered area. 

 

•  All other time readings, including the child’s age, can be determined on the 

basis of calendar time (see below), but not conversely.  
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AOM: Model 

Model and inference: a non-parametric Bayesian intensity / hazard model of the 
form 

 

(1)        λi(t) = Zi f0(t) f1(ai(t), bfi(t)) f2(dci(t), Ii(sm), Ii(si)) Yi(t), 
 

           was assumed for initiating an episode of AOM, where 

•          i = index of a child, t = calendar time, 

•          f0(t)  = baseline factor representing overall infection pressure at time t        

•          Zi     = latent ‘frailty parameter’ representing unobserved individual 

                             susceptibility to repeated occurrences of AOM 

•          ai(t) = (t – dbi
)+ = age at time t, 

•          bfi(t) = (min(t, dbfi) – dbi)
+ = duration of breast feeding until time t,  

•          dci(t) = type of daycare at time t, 

•          Ii(sm)= indicator of parental smoking, 

•          Ii(si)  =  indicator of siblings in the family, 

•          Yi(t) = ‘at risk’ indicator of being included in the follow-up at time t 

•          f1, f2 = non-parametrically specified relative risk functions. 
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AOM: Model (2) 

• The functions f0, f1 and f2 are treated as model parameters,  assumed to 

be common to all children and are ultimately estimated from the data by 

applying some Bayesian non-parametric method. (Details are omitted 

here.)  

 

• Including them in the definition of the AOM-intensity together with a 

multiplicative frailty parameter Zi means that the resulting intensity / 

hazard is here specified relative to histories of the form 

(2)                 Fi(t) = σ{f0, f1, f2, Zi } v ℋi(t), 

         where 

(3)    ℋi(t) = σ{Yi(s), Ii(sm), Ii(si), ai(s), bfi(s), dci(s), Ii(tij ≤ s), j ≥ 1, s ≤ t},          

         is the internal history of child  Ci up to time t, t > dbi, on the level of 

information that is available in the data.   
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AOM: Model (3) 

• Since the values of f0, f1, f2,Zi , Ii(sm) and Ii(si) are all specified by the history 

Fi(t) at time t = dbi at which child Ci  was born, the AOM-intensity relative to 

Fi(t) is a deterministic function of t until the next recorded event time on that 

child in the data. 

 

• At time t = min{dbfi, dcai, dei} the intensity is then instantaneously updated 

to a new value in a way which depends on what particular event of these 

three possibilities happened first.  
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AOM: Model (4) 

• If the first event was that breastfeeding was stopped, this information is 

coded into the definition (1) of λi(t) by fixing, for t > dbfi, the duration bfi(t) of 

breastfeeding at value dbfi – dbi.  

 

• If child Ci was then moved from home to some different type of day care 

during the follow-up, i.e., dcai <  dei, this information is coded into (1) by 

changing, for times t > dcai, the value of the variable dci(t) from 0 

corresponding to home care to either 1 or 2.  After t = dei the intensity λi(t) 

becomes zero. 
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AOM: Model (5) 

• In this simple version, the value of AOM-intensity relative to the histories 
Fi(t) is not being updated at the times tij at which new AOM-infections are 
diagnosed. The reason is that this intensity is already conditional on the 
(latent) susceptibility parameter Zi. 

 

• But the intensity relative to the smaller internal histories ℋi(t) would  jump 
upwards at the times at which new AOM episodes are recorded. Applying 
Bayes’ rule, ”Each new episode is an indication of a higher individual 
susceptibility to AOM”, and this corresponds to a (stochastically) larger 
value of parameter Zi.  

 

• In principle, the model for AOM intensity could be specified directly relative 
to the (ℋi(t))-histories. In practice, this would be very hard because of the 
widely different behavior of the individuals in the data. 
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AOM: Model (6) 

• ‘Packaging’ of several covariates within the same non-parametrically 

specified relative risk function (here f1 and f2) allows for accounting for 

potentially complicated interactions of covariate effects.  

 

• When considering the form of the ‘environmental risk’ component f2(dci(t), 

Ii(sm), Ii(si)) we assumed that, for each value of dci(t), the risk could only be 

increasing (= non-decreasing) in Ii(sm) and Ii(si). No corresponding a priori 

monotonicity property in dci(t) was postulated. 

 

• This is a concrete example of using existing (epidemiological) prior 

information for ’regularizing’ the estimates of non-parametrically specified 

parts in the model. 

 

• For calibration, constraints f1(0, 0) = 1 and f2(0, 0, 0) = 1 were used.  
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AOM: Inference 

 

• The likelihood contribution from the AOM events of child Ci is of the 
standard Poisson form 

                                                      

(4)                    ∏ λi(tij) exp{- ∫ λi(s) ds}. 

                          j   

• Note here that λi(t) = 0 outside the interval (dbi, dei). If there were no AOM 
episodes for child i during the follow-up, we set ∏j λi(tij) = 1.  

 

• In the inferential problem based on a dynamic stochastic process 
formulation one needs to check whether also one or more of the events 
appearing at times dei, dbfi or dcai in the data might  result in non-trivial 
contributions to the overall likelihood.   
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AOM: Inference (2) 

• Starting from dei, it seems reasonable to assume that the times dei of right-

censoring are non-informative for such inference. 

  

• This means that in an MPP model for all the data, considered as a 

realization in calendar time, the Fi(t)-intensities for the right-censoring 

events would not depend on the model parameters f0, f1, f2,Zi of interest. 

  

• Another way of saying the same thing would be: the Fi(t)-intensities for the 
right-censoring events coincide with the corresponding ℋi(t)-intensities. 

This condition is called local independence. 
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AOM: Inference (3) 

• Under this condition, the likelihood contribution due to the right-censoring 

events can be treated as a proportionality constant with respect to these 

parameters, and can therefore be ignored in likelihood-based (including 

Bayesian) inference. Thus there is no need to specify a model for the 

censoring events. (This is standard practice in ‘survival analysis’.) 
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AOM: Inference (4) 

• Analogous conditions are now assumed to hold concerning the likelihood 

contributions coming from observing dates dbfi at which breastfeeding was 

stopped, and dates dcai at which a child was transferred to a new type of 

daycare. 

 

• From the perspective of statistical inference, the events to stop 

breastfeeding or to transfer the child from home to some other type of 

daycare can be treated as being exogenous, or as if they were results of the 

well known ‘do’-conditioning operations of Pearl (1995).   
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AOM: Inference (5) 

• These local independence / non-informativity conditions correspond to the 

kind of reasoning through which a statistician, or an epidemiologist, would 

normally have to go when contemplating about the possible presence of 

confounders in a planned causal analysis of observational data. 

  

• They can be viewed as being dynamic versions of the well known and 

crucially important postulate of ’no unobserved confounders’ (e.g. Robins, 

1986), or of ’strong ignorability’ (Rosenbaum and Rubin, 1983); these 

definitions are based on the concept of counterfactual or potential outcome.  
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AOM: Inference (6) 

• In the large body of causality literature using (static) graphical models the 

corresponding condition is called the backdoor criterion, a term introduced 

by Pearl (1993). 

  

• The concept of local independence was originally introduced in a somewhat 

different context by Schweder (1970), and has been considered later, e.g., 

by Aalen et al. (1980), Didelez (2008), and Arjas (2012). It is closely linked 

to the concept of Granger-causality used in time series analysis.  
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AOM: Inference (7) 

• Making now explicit use of the concept of local independence, we 

summarize the assumptions in the above discussion into:  

 

Assumption A1. For each 1 ≤ i ≤ N,  

     (i) the AOM-intensities, when considered relative to the histories Fi(t), t > 0, 

are  specified by formula (1);   

     (ii) the intensities of the events occurring at times dbi (birth), dei (ending 

follow-up),  dbfi (stopping breastfeeding) and (dcai, tycai) (transferring 

child Ci from home to a different type of day care), when considered 

relative to the histories Fi(t), t > 0, are locally independent from           

σ{f0, f1, f2,Zi}.  
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AOM: Inference (8) 

• Interpretation of A1 (ii): For example, deciding to transfer the child to a 

different type of day care (a ‘treatment assignment’) can depend on the past 

history of the child that is recorded in the data, including earlier episodes of 

AOM, but given that history, is conditionally independent of f0, f1, f2 and Zi.  

 

• Due to the local independence postulate of A1 (ii) we have actually been 

able to avoid the task of providing an explicit specification of models for the 

events at times dbi, dei, dbfi and dcai.  

 

• Up to a proportionality factor not depending on the latent variables f0, f1, 

f2and Zi, the likelihood arising from observing the complete data on child Ci 

retains the simple form (4), which was previously derived to correspond to 

the AOM episode data on that child.   
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AOM: Inference (9) 

• Two more steps are still needed. First, we need to extend the above 

considerations from an individual child CI to all children in the data: 

    

Assumption A2. The pairs (σ{Zi } v ℋi(∞)), 1 ≤ i ≤ N, are conditionally 

independent given the common link functions f0, f1 and f2, with the variables 

Zi following the same distribution. 

 

• When considered together, these assumptions A1 and A2 can be seen as 

postulating an exchangeability property of the children in the data, but only 

as far as it relates to specifying a model for AOM. 
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AOM: Inference (10) 

• Under these assumptions, the overall likelihood becomes a product, over i, 
of expressions (4), then having the form 

 

(5)                   ∏ ∏ λI(tIj) exp{- ∫ λI(s) ds}. 

                         I     j 

• If child CI had no diagnosed AOM infections at all in the data, then we 

interpret the product ∏ λI(tIj) as being equal to 1.   

                                             j 
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AOM: Inference (11) 

• For the proposed Bayesian approach for inference we still need to set up a 
prior for the latent variables in the model. In view of the independence 
assumption A2, it suffices to set up a prior for (f0, f1, f2) and then a prior for 
all Zi given these.  

 

• The specification of such a joint prior is commonly done by postulating a 
product form for it: 

   

(6)              p(f0, f1, f2, Zi; 1 ≤ i ≤ N) = p0(f0) p1(f1) p2(f2) p(φ) Πi  pz(Zi | φ) 

     

     for suitably chosen density functions p0, p1, p2 , p and pz.  

 

• Here the common prior distribution pz of the susceptibility parameters is 
assumed to be dependent on a parameter φ, whose distribution depends 
further on suitably chosen hyper-parameters.   Often a convenient choice 
would be to postulate pz to be either Gamma or log-normal. The assumed 
hierarchical model structure then allows its parameters to be updated from 
the data into a corresponding posterior.  
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AOM: Inference (12) 

• Remark. Although assumption A2, according to which the observed 
individual histories are conditionally independent given the common link 
functions, seems appropriate in the present applied context, a comparable 
assumption may be too restrictive in some other applications.    

 

• The concept of local independence can still be usefully employed, however, 
but then it needs to be considered in an extended form where all events in 
the data are first ordered according to the calendar time in which they 
occurred, thereby forming a ‘large’ multivariate marked point process as the 
superposition of all the individual processes.  

 

• Details of such an extension are omitted in this presentation. 
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AOM: Using predictive probabilities in 

answering causal questions 

• The causal question considered was as follows: How does the type day 

care (home care, day care in a family, or day care in a nursery/kindergarten) 

influence the risk of AOM in small children? 

 

•  More specifically, as an illustration, consider a situation in which the 

parents of a 14 month old daughter would contemplate between such 

alternative choices. For background, suppose the child has had ear 

infections at ages 9 and 13 months, breastfeeding lasted for 3 months, 

there are two siblings, and one parent is a smoker. 

 

• Given this background, what can we say, on the basis of our statistical 

model and the information contained in the data, about future incidences of 

ear infection that this child might experience, provided that a particular day 

care option is chosen?    
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 AOM: Using predictive probabilities in 

answering causal questions (2) 

• A convenient answer can be formulated in terms of corresponding predictive 

distributions of future AOM episodes beyond the time at which type of 

daycare is chosen, by considering the three alternatives    

                      home care / family day care / nursery day care. 

 

• Numerical results can be obtained by making use of MCMC sampling and 

data augmentation, in a single Monte Carlo run.  
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AOM: Using predictive probabilities in 

answering causal questions (3) 

• Table. Individual predictive probabilities of the number of future AOM incidences of a 
child during the age interval (14, 28], under three possible options of day care. 
(Based on the Oulu data, reproduced from Arjas and Andreev 2000).  

 

                                              Type of day care 

                # incidences     home                 family                  nursery 

•                 0                0.247                 0.174                   0.112 

•                 1                0.304                 0.261                   0.203 

•                 2                0.219                 0.227                   0.212 

•                 3                0.122                 0.153                   0.171 

•                 4                0.060                 0.090                   0.119 

•                 5                0.027                 0.048                   0.075 

•                 6                0.012                 0.024                   0.046 

•                 7                0.005                 0.012                   0.027 

•                 8                0.002                 0.006                   0.015 

•                 9                0.001                 0.003                   0.009 

• ·              ≤9               0.999                 0.997                   0.989 
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 AOM: Using predictive probabilities in 

answering causal questions (4) 

  

 

• More generally, it can be concluded that the number of AOM episodes is 
stochastically largest (w.r.t. the predictive distribution) in the case of 
kindergarten / nursery daycare, and smallest in the case of home care.  

 

• Also expected numbers of such episodes, and their differences, can be 

computed with relative ease. 
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Final comments 

• In causality modeling, essential aspects relating to time are often ignored 
(Notable exceptions: Odd Aalen, Vanessa Didelez, Daniel Commenges); 

 

• When using graphical models, also explicit consideration of statistical 
inference is mostly by-passed, by assuming that there is a known joint 
distribution on the graph; 

 

• In particular, Pearl wants to make a sharp distinction between causal 
postulates and statistics, by restricting the role of statistics  (at its best) to 
identification of such a joint distribution.  

 

• This is not how I see these things: In specifying the statistical model, one 
should use all relevant prior knowledge about the problem in question. This 
is actually demanded by the Bayesian approach!  Moreover, probabilities 
are then viewed as quantitative expressions of the information that is 
available, and not as attributes of the considered physical objects or 
systems themselves.  
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Final comments (2) 

• In reporting the findings from an empirical study, a majority of the statistical 

literature dealing explicitly with causality problems is concerned with 

hypothesis testing, relating to the parameters of simple (often simplistic!) 

statistical models. 

 

• Often, however, the main problem is not in establishing that a causal effect 

exists, but rather in acquiring either  

    - an improved understanding of the causal mechanism in question, or 

    - a more refined understanding of different types of response. 

 

• Performing such tasks may require elaborate statistical modelling, capable 

of dealing with different types of uncertainty and with problems arising from 

heterogeneity between individuals.  (An Example: Individual responses to 

different types of HRT (Bhattacharjee & A (2005)). 
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Final comments (3) 

• General formulations in continuous time, in terms of Marked Point Processes 
(MPP’s) are readily available, leading to likelihood expressions of a standard 
(product) form. 

 

• The product is over time, involving conditionings w.r.t. past histories (cf. 
product form in graphical models, where conditioning is on the parental 
nodes). 

 

• Individual and treatment specific potential / counterfactual outcome random 
variables are not needed in the model specification. (They may have a role 
when explaining the meaning of the concept of predictive distribution.) 

 

• In the general MPP framework, the ‘no unmeasured confounders’ postulate 
can be naturally expressed as a local independence condition, without 
referring to the concept of potential/counterfactual outcome.  
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Final comments (4) 
 

 

• Technically the same local independence condition leads to simpler 
likelihood expressions in situations in which some aspects of the past 
history become redundant in the specification of the conditional intensities. 

 

• Use of likelihood–based (or Bayesian) inference allows one to account for 
individual differences between subjects in the modelling, without a need to 
form ‘risk sets’ of exchangeable subjects and then consider corresponding 
estimators.   

 

• Given that sufficient amounts of data are available, nonparametric Bayesian 
modelling (possibly of some suitably constrained form, e.g. assuming 
monotonicity), combined with algorithmic computational methods applying 
MCMC, offers an attractive and flexible alternative for statistical inference. 
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Final comments (5) 

• The results from an empirical study should be preferably reported in the 
form of predictive distributions of the response of interest, with each such 
prediction corresponding to a specific (sequence of) intervention(s) or 
choice(s) of control variables. 

 

• The required numerical computation of the predictive distribution(s) can 
mostly be carried out in a convenient manner by applying the technique of 
data augmentation, in a single run of the MCMC. 

 

• Predictive distributions correspond to expressions obtained by applying the 
‘g-computation algorithm’ of Robins, except that predictive distributions also 
account for the uncertainties in the estimated model parameters. 
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Final comments (6)   

  

 

  
• In studies involving real data the computational challenge can become 

formidable - and even exceed what is feasible in practice. 

 

• Nevertheless, I would view the flexibility, and the relative conceptual 
simplicity, of the present entirely probabilistic framework to be a valuable 
asset in the study of challenging causal problems. 

 

• Stay within the domain of probability calculus as long as you can! This will 
lower your chances of getting stupid answers from your analysis … 
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