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Some background, for a start … 

 After a very slow start, causal inference is now becoming a 

recognized field within statistics 

 

 Its development has been much influenced by ideas coming from 

clinical trials (treatment assignment) and epidemiology 

(observational data, confounding) 

 

 No deep philosophical (ontological, epistemological) issues 

relating to the existence / nature of causality in this talk … 

 



Some background … (cont’d) 

 Several statistical frameworks/approaches have been introduced for 

dealing with causality, e.g., using ideas based on 

    - counterfactual random variables (Neyman, Rubin, Robins, …); 

    - graphical models (Pearl, Lauritzen, Dawid, …) 

 

 In spite of their giving probabilistic descriptions and statistical tools for 

considering similar problems, they have remarkably little in common. 

 

 ’Time’ is an intrinsic part of all causal reasoning (in that: ’A cause must 

precede the effect in time’), but this fact is rarely accounted for in the 

statistical modeling of causal problems. 

 

 



Some background … (cont’d) 

 In these more recent developments, also the Bayesian approach 

to inference has been almost completely ignored. 

 

 This is remarkable in view of the fact that the approach of ’inverse 

probability’ – a term used into the 1950’ies – was originally 

motivated as being a method that would provide causal 

explanations to observed facts (e.g., in astronomy). 

 

 Hume vs. Bayes, Laplace, … 



Simple “prototype setting” for causal inference  

 Consider a time-ordered sequence of random variables    

    (U, X, A, Y), providing them with the following interpretations: 

 

 U and X are background variables, with X observed (‘covariate’) 

and U unobserved (‘potential confounder’); 

 

 A is a contemplated causal variable (‘control’, or ‘treatment’), and 

 

 Y is the considered ‘response’ or ‘outcome’ variable.  

 



Simple “prototype setting” for causal inference 

 We say that the unobserved variable U is a ‘potential confounder’ 

if the conditional distribution of the response Y, given (U, X, A), 

depends on U. 

 

 If this is not the case, then (in this setting) we can simply forget 

about U. 



Unconfounded causal inference in 

observational studies  

 The Key Condition, in words: 

  “The rule by which the value of the control variable A has been 

determined in the data is allowed to depend only on what has been 

observed in the past (= X), but must not depend on the variables that 

have not been observed (= U).” 

 

 This condition is automatically satisfied in experimental studies, where 

the choice of A (’treatment assignment’) is under the control of the 

experimenter / statistician. RCT’s are the prime example of this. 

 

     



Unconfounded causal inference in 

observational studies 

 But such a condition is needed in observational studies, to 

guarantee that unconfounded statistical inferences can be drawn 

in those situations. 

 

 This leads to an idea where a direct comparison is made between 

these two types of designs: statistical inferences from data 

collected from an  observational study should be ‘as if’ they would 

have come from an experiment with randomized treatment 

assignment. 



Unconfounded causal inference in 

observational studies 

 This motivates the use of two probability measures in our 

treatment of causality, and a corresponding notation:  

 

    - Pobs is used as a description of the actual observational data;   

 

    - Pex is used as a description of a hypothetical experimental 

setting, where A would be randomized or ‘exogenous’. 

 



In a simple setting, the following Lemma 

(Lindley 2002, A & Parner 2004) formulates this 

idea in a precise manner: 

 Lemma. Consider (U, X, A, Y) under Pobs and Pex . 

    Suppose that  

    (i)   The distribution of (U, X) is the same under Pobs and Pex; 

    (ii)   A is conditionally independent of U, given X, under Pobs;  

    (iii)  The conditional distribution of Y, given (U, X, A), is the same 

under Pobs and Pex . 

    Then the posterior distribution of U, given (X, A), is the same under 

Pobs and Pex, and it does not depend on A. 

 

 Note: (ii) is automatically satisfied for Pex. 



 Proof of the Lemma 

 Proof: (with ‘α’ signifying proportionality in u) 

    pobs(u | x, a)  α  pobs(u, x) pobs(a | u, x)      by chain rule & Bayes 

                        =   pobs(u, x) pobs(a | x)           by (ii) 

                        α  pobs(u, x)                            

                        =  pex(u, x)                             by (i) 

                        =  pex(u | x, a)                        by symmetry.     

       

    That this posterior does not depend on a is immediately seen from 

     this proof.                                                                                 ∎  

 

   

 

                                        



Consequences for statistical modeling 

 Important observation: If Condition (ii): pobs(a | u, x) = pobs(a | x) 

is satisfied, the posterior pobs(u | x, a) does not depend on how  

    pobs(a | x) would be specified (if it were!). 

  

 In likelihood-based (including Bayesian) inference such models for 

treatment a would be viewed as proportionality constants, and can 

therefore be ignored. 

 

 This forms a striking contrast to popular inferential methods based 

on ’inverse probability weighting’ (IPW), which make use of 

estimates of pobs(a | x), calling it ‘propensity score’. 



Consequences for inference and prediction 

 Corollary. Under the conditions of the Lemma,  

    (i)  pobs(u | x, a, y) = pex(u | x, a, y)    ‘posterior dsn, given the data’ 

    (ii) pobs(y | x, a) = pex(y | x, a)             ‘predictive’ dsn for response.  

 

 Proof:  

    (i) pobs(u | x, a, y) α pobs(u | x, a) pobs(y | u, x, a)     by Bayes 

                                = pex(u | x, a) pex(y | u, x, a)        by (iii) & Lemma 

                                α pex(u | x, a, y)                          by Bayes 

 

    (ii)  pobs(y | x, a) = ∫ pobs(u | x, a) pobs(y | u, x, a) du 

                             = ∫ pex(u | x, a) pex(y | u, x, a) du    by (iii) & Lemma 

                             =  pex(y | x, a).                                   ∎    

 



Corollary explained 

   

 “If in an observational study the likelihood  of a contemplated cause (here 

A) does not depend on an unobserved (latent) variable / parameter (here 

U), then observation of A does not change the inferences concerning U”.  

 

 Therefore, when fixing X and A at their observed values and then predicting 

Y (but integrating U  “away” from the conditional joint distribution of Y and 

U, given X and A), it makes no difference whether the value of A was a 

result of  randomization, or merely “observed”.  

 

 



Corollary explained 

 

 Put in a slightly different way: The response Y , given U, X and A, 

can be assumed to behave in the same way regardless of whether 

{A = a} was done or merely seen. 

 

 Can write this as (Pearl, Lindley) 

           p(Y I X; see(A)) = p(Y I X; do(A)). 

 

 Note: The value of A influences the prediction of Y , but has no 

effect on the estimate of U: A may have a ”causal effect, forwards 

in time”, but no “inferential effect, backwards in time”. 

 



Statistical inference: learning from data  

 Suppose that our statistical inferences are based on observational 

data of the form {(Xi , Ai , Yi); i = 1, 2, …, n}, consisting of 

observations on n “exchangeable individuals drawn from Pobs”  

    (cf. de Finetti).   



Statistical inference (2) 

 The corresponding unobserved variables Ui can contain 

characteristics of the considered individuals, and also (population) 

characteristics or structural parameters which are shared by all.  

 

 This can be expressed by writing Ui = (Wi , θ).  

 

 Although not observed, we assume that their values are similarly 

described by Pobs.  

 

 



Statistical inference (3) 

 Then predictions of Y (as in the Lemma) can be determined, 

    in the sense of (Bayesian) posterior predictive distribution given 

such data,  

    for a generic/hypothetical individual with chosen values of 

(baseline) covariate x and control a. 

 

 This enables one to make a comparison of predictions of the form (as 

in the Lemma)  

            p(y | x, a, data)  vs. p(y | x, a’, data) 

    (or corresponding expectations) with each other, where a and a’ are 

two ‘causes’ whose effects are being considered. 

 

 

 

 



Statistical inference (4) 

 

 Here the subscripts have been dropped from pex or pobs because 

they are now, under the assumptions of the Lemma, redundant.  

 

 The ‘do’ notation (of J. Pearl) has been used to emphasize the 

idea of (in observational studies, only hypothetical) interventions 

whose effects are compared. Note also that the predictive 

distributions are calibrated to correspond to the same value of x. 

(However: the value of x is determined before treatment a, not 

after!) 

 



How about connections to longitudinal and 

survival/duration analysis?  

 This simple model structure can be extended in a fairly 

straightforward manner to continuous time and event sequences 

by using the framework of marked point processes (MPP’s).  

 

  



Data modeled as an MPP sample path 

 Suppose that a random number Nτ events occur over the 

considered time interval (0; τ ]. At each event time Tk, covariates 

Xk  are measured and an action, or treatment, Ak follows 

immediately upon this. 

  

 Hence, the recorded data consist of {(Tk , (Xk,Ak)), k = 1, … , Nτ }, 

with 0 = T0  < T1 < T2 < … < TNτ, and finally, of a measured 

response Y . 

 



 Data modeled as an MPP sample path 

  

 As a convention, and without restriction to generality, we can treat 

the considered response/outcome variable it as a marked point, 

identifying it with "the last observed covariate value" XNτ .   

 

 If we have data on n individuals indexed by i = 1, 2, . . . , n, we can 

use a formulation in which the components of     Zk =  (Xk, Ak) are 

vectors with coordinates indexed according to the individuals. 

 

 



Data modeled as an MPP sample path    

 In some designs, e.g. randomized clinical trials, there may not be 

a covariate measurement Xk preceding a corresponding 

assignment Ak to a treatment, say a, in which case we could write 

(Ǿ; a) as the value of (Xk , Ak). 

 

 On the other hand, in some sampling schemes a number of 

repeated covariate measurements are made before there is an 

actual assignment Ak to a treatment, and then we can similarly 

write (x; Ǿ). 



Observed and unobserved (latent) processes 

 The marked point process formalism is also able to accommodate 

latent variables and developments which are potentially relevant for 

describing the causal problem at hand but which were not observed. 

  

 As before, we use the generic notation U for such variables, and 

then make the convention that they can be imbedded, as a sequence 

of additional random marks, into the marked point process. 

  

 Having denoted by Tk  the time of the kth ‘event ‘ in the considered 

MPP, we can extend the earlier notation of ‘marks’ to Zk = (Uk , Xk , 

Ak). Here (Xk , Ak) is observed in the data and Uk is unobserved. 



Setting up a statistical model 

 We now make the convention that the common ‘structural’ model 

parameters θ are imbedded into the latent mark U0 as 

coordinates. Thus our inferences concerning the latent marks Uk , 

k = 0, 1, 2, …, Nτ , will cover also inferences on θ.  

 

 In addition, U0 could contain coordinates describing unobserved 

individual characteristics at the baseline. 

 

 



Setting up a statistical model (2) 

 Setting up a probability for the canonical sample paths of an MPP 

can be  done by applying induction, always moving from a time 

point Tk to the next point at Tk+1 and then considering it jointly with 

the corresponding mark (Uk+1, Xk+1, Ak+1).  

 

 All this involves is sequential application of the chain multiplication 

rule! 

 



Setting up a statistical model (3) 

 In its kth step we consider conditional probabilities of the form 

pobs(Tk+1, Uk+1, Xk+1, Ak+1 | ℱk ), where 

               ℱk = {(Ti , Ui , Xi , Ai ; i = 0, 1, …, k }  

    is the (full) history of the marked point process up to time Tk.  

 

 Denote similarly by  

               ℋk = {(Ti , Xi , Ai ; i = 0, 1, …, k }  

    the observed history of the marked point process up to time Tk. 

  



Unconfounded inference in the MPP setting 

 Definition:  

    We say that a sequence of contemplated causal variables (Ak) in an 

observational study described by sample path ℱNτ = {(Ti , Ui , Xi , Ai );  

    i = 0, 1, …, Nτ } and probability pobs is unconfounded relative to latent 

variables (Uk) if, for each k, Ak and  (Ui)0≤ i≤k  are conditionally 

independent given (ℋk-1, Tk , Xk), that is, 

 

          pobs(Ak | ℱ k-1, Tk , Uk , Xk) = pobs(Ak | ℋk-1 , Tk , Xk);  

                                   

     k = 1, 2, … , Nτ . 



Local independence 

 The postulate of unconfounded inference could be stated as a 

local independence condition in continuous time t, (Schweder, 

1970; Aalen 1987, Didelez, 2008). 

 

 Technically, it says that the local characteristics in the statistical 

modeling of the sequence of treatment assignments are the same, 

regardless of whether they are considered relative to the observed 

histories (ℋt )t>0 or to the ‘full’ histories (ℱt )t>0 (the latter being 

generated, in addition, by the unobserved process (Ut )t>0 ). 



In words … 

 This can be stated in words as follows: 

 

    Provided that the contemplated causal variable in an observational 

study is assumed to satisfy the unconfounded inference / local 

independence condition, it makes no difference when predicting 

a future response whether the value of the causal variable was 

“chosen” or merely “observed”.  

   

 



Toy Example: Hospitals are hazardous places for 

many… 

 Registry data provide ample evidence of the fact that hospitals are 

hazardous places, as most deaths (e.g., in Finland about 80 %) 

have happened in a hospital.  

 

 So, why do we still want to have hospitals?  

 

 



Hospitals … (2) 

Could consider, here dropping the index i referring to an individual: 

 

 ℋk = observed (recorded in the data) individual baseline 

            characteristics and pre-Tk history, including possible 

            hospitalizations and death 

 Ak  = indicator of (possible) hospitalization at time Tk,  

            contemplated causal variable 

 Y   = time of death, response 

 ℱk  = ‘full’ individual pre-Tk history, including status of health  

            (not   recorded in the data) 

 



Hospitals … (3) 

 Unconfounded inference / Local independence in this case would 

mean that  the probability of being taken to hospital would not 

depend on the individual’s health status … which clearly does not 

make sense.  

 

 Thus we cannot convert such information on hospital care and 

deaths the causal claim that “being taken to a hospital is more 

hazardous than not being taken”. 

 



Pobs  and Pex again … 

 Let us now see how this postulate can be used in a context of a 

causal problem, viewing the observed variables (Ak) as “causes".  

 

 Following the same idea as before, we connect the inferences, 

which can be drawn from the 

    observational data and which are described in terms of a 

probability denoted by Pobs, to corresponding statements relative 

to another probability denoted Pex. 



Pobs  and Pex again … (2) 

 To do so in the MPP framework, we link these two probabilities to 

each other by the following requirements:   

          pex(U0, X0) = pobs(U0, X0) 

    and 

         pex(Tk+1, Uk+1, Xk+1 | ℱk ) = pobs(Tk+1, Uk+1, Xk+1 | ℱk ),  

    k = 0, 1, … , Nτ . 



 Main result on inference  

 Theorem Suppose that contemplated causal variables (Ak) are 

unconfounded in the above sense. Then, for each k = 0, 1, …, Nτ : 

    The posterior distributions of the complete history ℱk , given the 

corresponding observed history ℋk, are the same in both schemes, that is, 

             pobs(ℱk | ℋk) = pex(ℱk | ℋk). 

    Here neither of these posterior distributions depends on the latest treatment 

assignment Ak. 

 

 The proof is by a repeated application of our first Lemma, which was 

concerned with (U, X, A, Y), to a sequence of ‘marked points’ in the MPP. 



… and a Corollary concerning prediction 

 The predictive distributions of the next marked point (Tk+1, Uk+1, 

Xk+1), given the corresponding observed history ℋk, are the same 

in both schemes, that is,  

           pobs(Tk+1, Uk+1, Xk+1,  | ℋk ) = pex(Tk+1, Uk+1, Xk+1,  | ℋk ). 

 

 This result extends our earlier Corollary concerning (U, X, A, Y).  



Combining these two for treatment comparison 

 The inferences that were drawn from the data  

              ℋNτ = {(Ti , Xi , Ai ); i = 0, 1, …, Nτ }  

    on the common model parameter θ can then be utilized for predicting 

what will happen to “a generic individual” if he/she is to be given 

some specific sequence of treatments.  

 

 Adding a star (*) to the notation to signify the considered generic 

individual, we would, in a simple case, be interested in predicting 

the response Y* under a given fixed sequence of “forced" 

treatment assignments, say, Ai* = ai*, i = 0, 1, …, k. 



Comparing dynamic treatment regimes 

 More generally, there could be a dynamic treatment regime, say 

A, such that each Ak could be allowed to be a function of the past 

observed history of that individual, consisting of past event times, 

covariate readings and possible earlier treatment assignments. 

 

 More  generally still, such a regime could be randomized, as long 

as the randomization mechanism does not depend on the past 

potential confounder variables Uk .  

 



Predictive distributions for tratment comparison 

 In order to make the role of the role of the regime A explicit in the 

notation, we write pex(A). The considered predictive distribution is be 

denoted by pex(A)(Y* | data).  

 

 The exact specification of this probability will depend on the considered 

assignment mechanism A. 

 

  We can then consider any two such regimes of interest, say A1 and 

A2, and compare the corresponding predictive distributions pex(A1)(Y* | 

data) and pex(A2)(Y* | data) to each other.   

 



Predictive distributions for tratment comparison 

 Note: No conditioning on covariate values X* after baseline is 

allowed here! 

 

 If this were done, such conditioning on variables which are 

intermediate in time between a treatment (the contemplated 

cause) and a response (its effect), could potentially ’grab’ the 

entire statistical explanation to itself. 



Predictive distributions for tratment comparison 

 In practice, the necessary numerical integration can be carried out 

efficiently by Monte Carlo simulation, by applying data 

augmentation alongside the computations that are needed for 

statistical inference. 

 

 Practical illustrations of this general method can be found, e.g., in 

Arjas and Liu (1995), Arjas and Liu (1996), Arjas and Haastrup 

(1996), Arjas and Andreev (2000), and Härkänen et al. (2000). 

 



Example 2: “Home visits” (Didelez 2008; 

sometimes using direct quotations from the 

paper) 

 “Programme to assist elderly by regular home visits, hoped to 

reduce unnecessary hospitalizations, improve quality of life, and 

increase survival time.” 

 

  Simple causal question:  

    “Can more frequent home visits increase the 

     survival time?” 

  

   



Home visits (cont’d) 

 

 Suppose that timing of the home visits is determined externally, 

and in a way that is independent of all remaining processes; 

 

 Therefore ’home visits’, when considered as a treatment, clearly 

satisfy the ’unconfounded inference’ condition. 

 

 

 

  

 



Home visits (cont’d) 

 However, their causal effect on survival, if it exists, is likely to be 

rather small.  

 

 Could the power of the statistical data analysis, for the purpose of 

verifying such a causal claim, be increased by utilizing some 

appropriate covariate data? 

 



Home visits (cont’d) 

 

 “Home visits and hospitalizations are monitored. However, the 

underlying health status of an elderly person may be difficult to 

measure accurately in practice.”  

  

    Question: Can we supplement our measured covariates by data 

on hospitalizations, including them as a part of the observed 

histories (ℋk), and then condition the response of interest 

(survival) on such covariate information?  

    Note: Technically, this would be very easy to do, e.g., in the 

context of the Cox the proportional hazards model. One might 

then try to answer a stated causal hypothesis by considering the 

estimated regression coefficients. 

 



Home visits (cont’d …) 

For considering the causal problem suppose that : For an individual 

still alive at time t, 

 

  initiation or termination of hospital care at time t can depend on 

the past (= up to time t) history of hospitalizations, home visits and 

health status; 

 

  health status at time t can depend on past history of health status 

and hospitalizations, but is locally independent of home visits 

given these two; 



Home visits (cont’d …) 

Hospitalization 
Home 

visits 

Death Health status 

Home 

visits 

Hospitalization 

Death 

Health status 
Hospitalization Home 

visits 

Death Health status 



Home visits (cont’d) 

 There is nothing ‘technically wrong’ in estimating a hazard 

regression model (for survival) which is based on conditioning the 

hazards only on being still alive and on records on past home 

visits and possible hospitalizations as covariates.  

 

 However, when considering the estimated hazards in a such a 

model, observed differences in the estimates arising from 

considering two different schedules for home visits, both 

combined with a shared history of hospitalizations, cannot be 

viewed as representing causal effects of those differences. 

 

 

 



Home visits (cont’d) 

  This is because joint consideration of home visits and 

hospitalizations carries (indirect) information also on unobserved 

health status. 

 

 “Standard methods that just model the intensity for survival with 

time varying covariates for the previous home visits and 

hospitalizations will typically give misleading results due to the 

conditional association between ‘Home visits’ and ‘Death’ given 

‘Hospitalization’.” (Didelez 2008) 

 

 



Home visits (cont’d …) 

 

 In a longitudinal setting, say, when comparing two protocols for home 

visits and studying whether their difference has an effect on survival, it is 

O.K. to collect records on past hospitalizations without adequate records 

on health status and use such information as a covariate for calibrating the 

survival prediction different individuals.  

 

 However, for a causal analysis, such information can only be used at 

baseline, as a part of the observed past history.  

 

 

 

 

 



Home visits (cont’d …) 

 

 

 Hospitalization records should NOT be used as time-dependent 

covariates for conditioning the survival predictions when the protocols 

for home visits are already use! 

 

 This conclusion would be obvious to most epidemiologists working with 

longitudinal data - even without more formal considerations, since such 

such hospitalizations are ”intermediate outcomes” between baseline 

and death. 

 



A modification: removing a causal link 

 What happens if the causal link from ”hospitalization” to ”survival” 

is removed? For this to be realistic, suppose now that a recorded 

history of ”hospitalization” is replaced by recorded activity in a 

”sewing circle”. 

 

 Then it  seems less likely that there would be a direct causal link 

from ”sewing circle” to either ”health status” or ”survival”, and thus 

there is no path from ”home visits” to ”survival”. 

 

 

 



A modification (cont’d) 

 

Dotted arrows indicate removed dependencies 

from previous example   

Sewing circle                            Home visits 

       Death  

 

 

 

Health status 



A modification (cont’d) 

 Question: Is it now OK, in an analysis based on survival/hazard 

regression and aimed at studying the potential causal influence of 

”home visits ” to ”survival”, to condition on a recorded history of 

”sewing circle” participation as a time dependent covariate?  

 



A modification (cont’d) 

 The answer: NO, it’s NOT! 

 

 



A modification (cont’d) 

 The reason is the same as before, with only ’hospitalization’ being 

replaced by ’sewing circle’:  

 

    Joint consideration of ’home visits’ and ’sewing circle’ carries 

information about health status, and such updated information on 

health status influences the predictions of survival. 



Take home points … 

 Unconfounded inference / Local independence is a key condition 

for controlling potential confounding in causal inference from event 

history data. 

 

 Predictive distributions, combined with MPP models and 

Bayesian/likelihood inference, provide a natural  methodology for 

converting such data into intuitively understandable formulations 

of empirical evidence in support of causal claims. 

 

 Introducing additional covariates into a hazard regression model is 

not always helpful in attempts to control confounding – sometimes 

it has the opposite effect! 
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