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Understanding the concepts of randomness 

and probability: Does it make a difference?  

 In the Bayesian approach to statistics, a crucially important 

distinction is made between variables/quantities depending on 

whether their true values are known or unknown (to me, or to 

you, as an observer). 

 

 In the Bayesian usage/semantics, the epithet “random”, as 

in  ”random variable”, means that ”the exact value of this 

variable is not known”.  



Understanding the concepts of randomness 

and probability: Does it make a difference? 

 Stated briefly:  In Bayesian inference                                                                                                   

”random” = ”uncertain to me (or to you) as an observer”  

 

 Correct understanding of the semantics that are used is 

important – and it helps you to avoid obvious 

misunderstandings!  

 



Understanding the concepts of randomness 

and probability: Does it make a difference? 

 For example:                            

     - ”An event (in the future) is random (to me) if I am uncertain 

about whether it will occur or not”.                                                                            

- ”An event (in the past) is random (to me) if I am uncertain 

about whether it has occurred or not”. 

 

 ”Randomness” does not require ”variabilty”, e.g. in 

measurements over time or in samples drawn from a 

population.    

 



Understanding the concepts of randomness 

and probability: Does it make a difference? 

 Even unique events, statements, or quantities can be ”random”: 

The number of balls in this box now is ”random” to (any of) you.  

 

  It may not be ”random” for me (because I put the balls into the 

box before this lecture, and I might remember …).   

 

 



Understanding the concepts of randomness 

and probability: Does it make a difference? 

 The characterization of the concept of a parameter that is found in 

many textbooks of statistics, as being something that is ’fixed but 

unknown’, would for a Bayesian – by definition - mean that it is a 

random variable! 

 

 Data, on the other hand, after their values have been observed, 

are no longer ”random”. 

 

 The dichotomy (population) parameters vs. random variables, 

which is fundamental in classical / frequentist statistical modeling 

and inference, has lost its significance in the Bayesian approach.                                                                             

 

 



Understanding the concepts of randomness 

and probability: Does it make a difference?  

 Probability = degree of uncertainty, expressed as my / your 

subjective assessment, based on the available information. 

 

 All probabilities are conditional. To make this aspect explicit in 

the notation we write systematically P( . | I ), where I  is the  

information on which the assessment is based. Usually, 

however, the role of I  is left implicit, and I is dropped from the 

probability expressions. (Not here …!)  



Understanding the concepts of randomness 

and probability: Does it make a difference? 

 Note: In probability calculus it is customary to define conditional 

probabilities as ratios of ’absolute’ probabilities, via the formula              

P(B |A) = P(A B )/P(A). Within the Bayesian framework, such 

’absolute’ probabilites do not exist.  

 

 But the same formula, in the form of the ’chain multiplication 

rule’ P( A B | I ) = P( A | I ) P( B | A, I ) still holds! 



Understanding the concepts of randomness 

and probability: Does it make a difference?  

  

“There are no unknown probabilities in a Bayesian 

analysis, only unknown - and therefore random - 

quantities for which you have a probability based on 

your background information” (O'Hagan 1995). 

 



Understanding the concepts of randomness 

and probability: Does it make a difference? 

 Note here the wording                                                         

’probability for …’, not ’probability of …’  

 

 This corresponds to an understanding, where probabilities are not  

quantities which have an objective existence in the physical world 

(as would be, for example, the case if they were identified with 

observable frequencies).  

   



Understanding the concepts of randomness 

and probability: Does it make a difference? 

 Probability does not exist ! (Bruno de Finetti, 1906-1985)  

 

 Projection fallacy ! (Edwin T Jaynes, 1922 – 1998) 

 

 (Convey the idea that probability is an expression of an observer's 

view of the world, and as such it has no existence of its own). 
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Bayesian probability:  P State of the World:  q 

P(q | your information I) Probability is in your head 



Two ways to look at things – and it is not always 

easy to switch from one to the other 



Obvious reservation … 

 This view of the concept of probability applies in the macroscopic 

scale, and does not say anything about the role of probability in 

describing quantum phenomena. 

 

 Still OK for me, and perhaps for you as well … 



Understanding the concepts of randomness 

and probability: Does it make a difference? 

 Understanding the meaning of the concept of probability, in the 

above sense, is crucial for Bayesian statistics. 

 

 This is because: All Bayesian statistics involves in practice is 

actually evaluating  such probabilities!  



Simple motivation for Bayesian inference: 

   

 Use probability as a description of your uncertainty about things 

which you don’t know – such as values of parameters or of future 

observables – instead of things which you do know – such as the 

data you have. 



Understanding the concepts of randomness 

and probability: Does it make a difference? 

 ’Ordinary’ probability calculus (based on Kolmogorov’s axioms) 

applies without change, apart from that the usual definition of 

conditional probability P(A |B) = P(A B )/P(B) becomes ’the chain 

multiplication rule’                                                                                                

P( A B | I ) = P( A | I ) P( B | A, I ) = P( B | I ) P( A | B, I ). 

 

 Expressed in terms of probability densities, this becomes                

p( x, y| I ) = p( x | I ) p( y | x, I ) = p( y | I ) p( x | y, I ). 

 



 

It is unanimously agreed that statistics depends somehow on 

probability. But, as to what probability is and how it is connected 

with statistics, there has seldom been such complete disagreement 

and breakdown of communication since the Tower of Babel.        (L 

J Savage 1972). 

  

•           Controversy between statistical paradigms 



 Simple example: Balls in a box  

 Suppose there are N ’similar’ balls (of the same size, made of the 

same material, …) in a box. 

 

 Suppose further that K of these balls are white and the remaining 

N – K are yellow. 

 

 Shake the contents of the box thoroughly. Then draw – blindfolded 

– one ball from the box and check its colour!  



Balls in a box (cont’d) 

 This is the background information I, which is given for an 

assessment of the probability for  P(’the colour is white’ |I ). 

 

 What is your answer?  



 Balls in a box (cont’d)  

 Each of the N balls is as likely to be drawn as any other 

(exchangeability), and K of such draws will lead to the outcome 

’white’ (additivity). Answer: K / N. 

 

 Note that K and N are here assumed to be known values, 

provided by I, and hence ’non-random’.  

 

 We can write   

       P(’the colour is white’|I ) = P(’the colour is white’| K, N ) = K / N. 



Balls in a box (cont’d):  

 Shaking the contents … being blindfolded: no idea of how the balls in 

the box are arranged when one is chosen. 

 

 If the person drawing a ball were allowed to look into the box and check 

the colours of the individual balls, ’randomness’ in the experiment 

would disappear. 

 

 ”What is the probability that the present Pope is Chinese?” (Stephen 

Hawking, in ”The Grand Design”, 2010) 



   Balls in a box (cont’d): conditional independence    

 Balls in a box (cont’d): Consider then a sequence of such draws, 

such that the ball that was drawn is put back into the box, and the 

contents of the box are shaken thoroughly.  

 

 Because of the thorough mixing, any information about the 

positions of the previously drawn balls is lost. Memorizing the 

earlier results does not help beyond what we know already: N 

balls, out of which K are white.  

 

 Hence, denoting by Xi  the color of the ith draw, we get the crucially 

important conditional independence property                                 

P( Xi | X1, X2, …, Xi-1, I ) = P( Xi | I ).  



 Balls in a box (cont’d): conditional independence  

  Balls in a box (cont’d): Hence, for any i ≥1,                                                                                           

P(X1, X2, …, Xi | I )                                                                           

= P(X1| I ) P(X2 |X1, I ) … P(Xi | X1, X2, …, Xi-1, I )             chain rule                            

= P(X1| I ) P(X2 | I ) … P(Xi | I )                conditional independence                                                 

= P(X1| K, N ) P(X2 | K, N ) … P(Xi | K, N )                                       

= (K/N)#{white balls in i draws} [1 - (K/N)]#{yellow balls in i draws} .  

 

 Old result, as if there were no difference to the ’classical’ concept 

of probability based on symmetry. 



Balls in a box (cont’d): from parameters to data  

 Indeed: The variables N and K, whose values are here taken  to 

be contained in the background information I, could be called 

’parameters’ of the distribution of each Xi .   

 



Balls in a box (cont’d): number of white balls 

not known 

 However: Consider now a situation in which the value of N is fixed 

by I, but the value of K is not. (Otherwise the experiment is as 

before: the ball that was drawn is put back into the box, and the 

contents of the box are shaken thoroughly.) 

 

 This makes K, whose value is ’fixed but unknown’, a random 

variable in a Bayesian problem fromulation.  

 

 Assigning numerical values to P(K = k | I ), 1 ≤ k ≤ N, will then 

correspond to my (or your) uncertainty (’degree of belief’) about 

the correctness of each of the events {K = k }.   



Balls in a box (cont’d): distinguishing between 

physical and logical independence 

 According to the ’law of total probability’ therefore, for     any i ≥1,   

                    P( Xi | I ) = E( P( Xi | K, I ) | I )   

                                  = ∑k P(K = k | I ) P( Xi | K = k, I ).  

 

 But now these probabilities cannot be multiplied to give probability 

P(X1, X2, …, Xi | I ) ! 

 

 The chain multiplication rule still holds (it holds always!),  but 

conditional independence is lost: 

          P(Xi | I, X1, X2, …, Xi-1 ) ≠ P(Xi | I ) , i ≥1.  .  



Balls in a box (cont’d): distinguishing between 

physical and logical independence 

 The consecutive draws from the box are still – to a good 

approximation – physically independent of each other, but not 

logically independent.  

 

 The outcome of any {X1, X2, …, Xj-1 } will contain information on 

likely values of K, and will thereby – if observed - influence what 

values should be assigned to the probabilities for {Xj is ’white’} and 

{Xj is ’yellow’}.     

 



Balls in a box (cont’d): considering joint distribution 

 Instead, we get the following                                                          

P(X1, X2, …, Xi | I )                                                                            

= E( P(X1, X2, …, Xi | K, I ) | I )                                                         

= ∑k P(K = k | I ) P(X1, X2, …, Xi | K = k, I )                                                            

= ∑k P(K = k | I ) {(k/N)#{white balls in i draws} [1 - (k/N)]#{yellow balls in i draws}}, 

where we have used, inside the sum, the previously derived result 

for P(X1, X2, …, Xi | K, I ), i.e., corresponding to the situation in 

which the value of K is known.   

 

 Technically, this is ’mixing’ according (or taking and expectation 

with respect ) to the ’prior’ probabilities {P(K = k | I ): 1 ≤ k ≤ N}.  



Balls in a box (cont’d): considering joint 

distribution 

 Remember this result when we later consider ’exchangeability’ 

and deFinetti’s representation theorem! 



Probabilistic inference: from observed data to 

unknown parameters 

 Intuitively obvious: By keeping track on the observed values of 

X1, X2, …, Xi, i ≥ 1, we can learn something about the unknown 

correct value of K.   

 

 New question: If we can in this way learn something about the 

unknown correct value of K, is there some systematic way in 

which this could be done?  

 



Probabilistic inference: from observed data to 

unknown parameters 

 It could be thought of as providing an example of reversing the 

direction of the reasoning from the usual ’from parameters to 

observations’, to ’from observations to parameters’. 

 

 Such ’inverse probability’ would be a form of Statistical Inference.  

 

 And yes, there is such a systematic way: Bayes’ formula! 

 



Balls in a box (cont’d): from observed data to 

unknown parameters  

 The task is to evaluate conditional probabilities of events {K = k}, 

given the observations (data) X1, X2, …, Xi , i.e. probabilities of the 

form P(K = k | X1, X2, …, Xi , I ).  

 By applying the chain multiplication rule twice, in both directions, 

we get the identity                                                                                          

P(K = k, X1, X2, …, Xi  | I )                                                                

= P(K = k | I ) P(X1, X2, …, Xi | K = k, I )              chain rule one way                                         

= P(X1, X2, …, Xi | I ) P(K = k | X1, X2, …, Xi , I ), …and another way                             

so that                                                                                           

P(K = k | X1, X2, …, Xi , I )                                                                

= P(K = k | I ) P(X1, X2, …, Xi | K = k, I ) [P(X1, X2, …, Xi | I )]
-1.  



Balls in a box (cont’d): Bayes’ formula 

 This is Bayes’ formula.  

 

 By writing ( X1, X2, …, Xi  ) = ’data’, it can be stated simply as      

P(K = k | data, I )  

           = P(K = k | I ) P(data | K = k, I ) [P(data | I )]
-1 

                α P(K = k | I ) P(data | K = k, I ),                                                

where ’α’ means proportionality in k.   



Balls in a box (cont’d): Bayes’ formula 

 The value of the  constant factor P(data | I ) in the denominator of 

Bayes’ formula can be obtained ’afterwards’ by a simple 

summation, over the values of k, of the terms                             

P(K = k | I ) P(data | K = k, I ) appearing in the numerator. 



Bayes’ formula 

 Using the terminology 

        P(K = k | I ) = ’prior’   

        P(data | K = k , I ) = ’likelihood’ 

        P(K = k | data, I ) = ’posterior’,       

    we can write Bayes’ formula simply as 

     

    ’posterior’ α ’prior’ x ’likelihood’ 

      



Bayes’ formula 

 Stated in words: By using the information contained in the data, 

as provided by the corresponding likelihood, the distribution 

expressing (prior) uncertainty about the true value of K has been 

updated into a corresponding  posterior distribution. 

 

 Thus Bayesian statistical inference can be viewed as forming a 

framework, based on probability calculus, for learning from data. 

 

 This aspect has recived considerable attention in the Artificial 

Intelligence and Machine Learning communities, and the 

corresponding recent literature. 



Balls in a box (cont’d): Bayesian inference and 

prediction 

 An interesting aspect in the Bayesian statistical framework is its 

direct way of leading to probabilistic predictions of future 

observations.  

 

 Considering the ’Balls in the box’ –example, we might be 

interested in direct evaluation of predictive probabilities of the form 

P(Xi +1| X1, X2, …, Xi , I ).  

 

 There is a ’closed form solution’ for this problem! 



Balls in a box (cont’d): Bayesian inference and 

prediction 

 Writing again ( X1, X2, …, Xi  ) = ’data’, we get                                 

P(Xi +1  is ’white’| data, I )                                                                                

= E(P(Xi +1 is ’white’| K, data, I ) | data, I ) by (un)conditioning                                                                      

= E(P(Xi +1 is ’white’ | K, I ) | data, I )         conditional independence      

= (K / N | data, I )                                                                               

= E(K | data, I ) / N .  

 

 In other words, the evaluation P(Xi +1 is ’white’| K, I ) = K / N, which 

applies when the value of K is known, is replaced in the prediction 

by  (posterior expectation of K)/N . 



Extensions: continuous variables, multivariate 

distributions … 

 The probabilistic structure of the ’Balls in a box’ –example remains 

valid in important extensions. 

 

 When considering continuous variables, the point-masses 

appearing of the discrete distributions are changed into probability 

density functions, and the sums appearing in the formulas will be 

replaced by corresponding integrals (in the parameter space). 

 

 In the multivariate case (vector parameters) possible redundant 

parameter coordinates are ’integrated out’ from the joint posterior 

distribution. (Compare this with how nuisance parameters are 

handled in frequentist inference by maximization, profile likelihood, 

etc.)  

 

 



Practical implementation 

 Determining the posterior in a closed analytic form is possible in 

some special cases. 

 

 They are restricted to situations in which the prior and the 

likelihood belong to so-called conjugate distribution families:  the 

posterior belongs to the same class of distributions as the prior, 

but with parameter values updated from data.  

 

 In general, numerical methods leading to approximate solutions 

are needed (e.g. WinBUGS/OpenBUGS for Monte Carlo 

approximation). 
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Finding answers to practical problems … 

 The Bayesian approach can be used for finding direct answers to 

questions such as: ”Given the existing background knowledge and 

the evidence provided by the data, what is the probability that 

Treatment 1 is better than Treatment 2?” 

 

 The answer is often given by evaluating a posterior probability of 

the form P(θ1 > θ2 | data, I), where θ1 and θ2 represent systematic 

treatment effects, and the data have been collected from an 

experiment designed and carried out for such a purpose.  

 

 The probability is computed by an integration of the posterior 

density over the set {(θ1, θ2): θ1 > θ2}. 



Finding answers to practical problems … 

 The same device can also be used for computing posterior 

probabilities for ’null hypotheses’, of the form P(θ = θ0| data, I).  

 

 This is what many people – erroneously – believe the (frequentist) 

p-values to be. (Thus they are being ’Bayesians’ – because they 

assign probabilities to parameter values - but do not usually   

themselves realize this.)  

 

 Likewise, one can consider posterior probabilities of the form     

P(c1 < θ < c2 | data, I), where the constants c1 and c2 may – or may 

not – be computed from the observed data values. Again, this is 

how many people (incorrectly) interpret the meaning of their 

computed (frequentist) confidence intervals. 



Finding answers to practical problems … 

 Answers formulated in terms of probabilities assigned to model 

parameters can be difficult to understand. This is because the 

meaning of such parameters is often quite abstract. 

 

 Therefore it may be a good idea to summarize the results from the 

statistical analysis in predictive distributions of the form             

P(Xi +1 ε A| X1, X2, …, Xi , I ), where X1, X2, …, Xi    are considered 

as ’data’ and Xi +1 is a (perhaps only hypothetical) future response 

variable that was to be predicted.  

 

 Think about weather prediction!  



Finding answers to practical problems … 

 The computation of predictive probabilities involves an integration 

with respect to the posterior. In practice this requires numerical 

Monte Carlo simulations, which however can be carried out jointly 

with the estimation of the model parameters (’data augmentation’).  



Notes on statistical modeling 

 The ’Balls in a box’ -example had the advantage that 

the’parameter’ K had an obvious concrete meaning.  

 

 Therefore also the prior and posterior probabilities assigned for 

different alternatives {K = k} could be understood in an intuitive 

way.  



Notes on statistical modeling 

 The situation is rather different if we think of commonly used 

parametric distributions such as, for example, the normal 

distribution N(μ, σ2), where the interpretation of the parameters μ 

and σ2 is provided by a reference to an infinite population. 

 

 Such populations do not exist in reality, so we really cannot 

sample from them! 

 

 

 



Notes on statistical modeling 

  

 Neither do statistical models ’generate data’ (except in computer 

simulations)!  

 

 Rather, models are rough descriptions of the considered 

problems, formulated in the technical terms offered by probability 

calculus, which then allow for an inductive way of learning from 

data. 

 

 Here is another way of looking at the situation … 



Exchangeability and de Finetti’s representation 

theorem 

 In frequentist statistical inference it is common to assume that the 

observations made from different individuals are ’independent and 

identically distributed’, abbreviated as i.i.d. 

 

   ’Identically distributed’, for a Bayesian, means that his / her prior 

knowledge (before making an observation) is the same on all 

individuals. (This can also be a convention which is made for the 

sake of modeling.) 



Exchangeability and de Finetti’s representation 

theorem 

  Recall from before: the observations may well be physically 

independent, but not logically independent - as otherwise there 

would not be any possibility of learning across the individuals. 

Statistics would be impossible! 

 

 



Exchangeability and de Finetti’s representation 

theorem 

 This status of information is in Bayesian inference expressed by 

the following exchangeability postulate: the joint probability P(X1, 

X2, …, Xi  | I ) remains the same for all permutations of the 

varables (X1, X2, …, Xi ). 

 

 Clearly then P(Xi  | I ) = P(Xi  | I ) for i ≠ j, but it does not say that, 

for example,  P( Xi , Xj  | I ) = P( Xj | I ) P( Xj  | I ).  

 

 Think about shaking a drawing pin in a glass jar: Let X1= 1 if the 

pin lands ’on its back’, and X1 = 0 if it lands ’sideways’. Repeat the 

experiment i times! Would you say that the sequence X1, X2, …, Xi 

is exchangeable? 



Exchangeability and de Finetti’s representation 

theorem 

 Think about shaking a drawing pin in a glass jar: Let X1= 1 if the 

pin lands ’on its back’, and X1 = 0 if it lands ’sideways’. Repeat the 

experiment i times! Would you say that the sequence X1, X2, …, Xi 

is exchangeable? 

 

 Yes! And, in principle, the experiment could be carried out any 

number of times, a situation called ’infinite exchangeability’.  

 

 



Exchangeability and de Finetti’s representation 

theorem 

  

 A frequentist statistical model for describing this situation would 

be: ’i.i.d. Bernoulli experiments, with an unknown probability θ for 

success’. 



Exchangeability and de Finetti’s representation 

theorem 

 The Bayesian counterpart of this is the integral expression:    

 

  P(X1, X2, …, Xi  | I )  

    = ∫ θ#{times lands on its back in i trials} (1 - θ)#{times lands sideways in i trials} p(θ) dθ.  

 

 This result, due to de Finetti, looks like we had assumed independent 

Bernoulli trials with θ = ’probability of success’, and had then taken an 

expectation with respect to a density p(θ).  

 



Exchangeability and de Finetti’s representation 

theorem 

 Formally, it corresponds exactly to the result                                   

P(X1, X2, …, Xi | I )                                                                                                                                         

= ∑k P(K = k | I ) {(k/N)#{white balls in i draws} [1 - (k/N)]#{yellow balls in i draws}}, 

which we had derived in the ’Balls in a box’ -example, by first 

specifying probabilities P(’the colour is white’| K, I ) = K / N and 

then assuming conditional independence given K.  

 

 It is important to note that, if the ’infinite exchangeability’ property 

is postulated, then the ’prior’ p(θ), and the probabilities P(K = k | I ) 

in the ’Balls in a box’ -example, are uniquely determined by the 

joint distributions P(X1, X2, …, Xi | I ), i ≥ 1. Looking from this 

perspective, the existence of a prior – a red herring for many 

frequentists - should not be a problem. 



Notes on statistical modeling 

 The choice of the statistical model, i.e., of both the prior P(θ|I) 

and the likelihood P(X| θ, I), is a decision which is based on the 

considered problem context, and often in practice also on 

convenience or convention. 

 

 As such, it is subject to debate! Models are probabilistic 

expressions arising from your background knowledge and the 

scientific assumptions that you make. 

 

 Different assumptions naturally lead to different results. 

 

 You should explain your choices! (The rest is just probability 

calculus, often combined with approximate numerical evaluation of 

the probabilities). 

 

 

 

 



"All models are wrong but some are useful” 

George Box (1919-2013) 

  

•            
•              Notes on statistical modeling  



Take home points … 

 Bayesian methods seem to be natural and useful particularly in 

areas where frequency interpretation of probability seems artificial. 

 

 They offer greater flexibility in the modeling, in part, because of 

the possibility to incorporate existing prior knowledge into the 

model in an explicit way, but also because of the less stringent 

requirements for parameter identifiability. 

 

 An additional bonus is that the methods are firmly anchored in the 

principles and rules of probability calculus.  



Take home points … 

 Bayesian statistics is fun … try it out! 

 

 But remember: A Bayesian model is a formal expression of your 

thoughts. So you need to think carefully …  

 

 A wonderful book: 

    Sharon Bertsch McGrayne: ”The Theory that Would Not Die”, 

    Yale University Press 2011  

 


