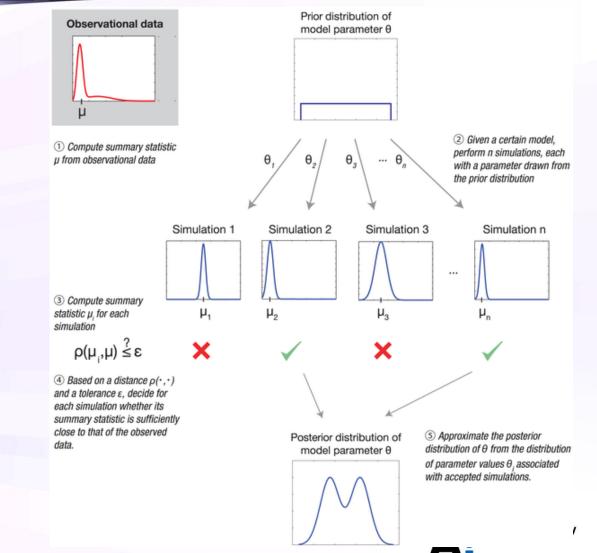
Introduction to ABC with an application to estimating transmission dynamics

Jukka Corander Department of Mathematics and statistics University of Helsinki, Finland

What ABC?

- Approximate Bayesian computation (ABC) is a method to do inference for intractable models
 Intractability means here that likelihood calculation is either too expensive or impossible
- Assumes we can still simulate data from our model
- •The core idea of ABC was introduced in a seminal paper by Tavaré et al. (1997) to do inference for a coalescence model

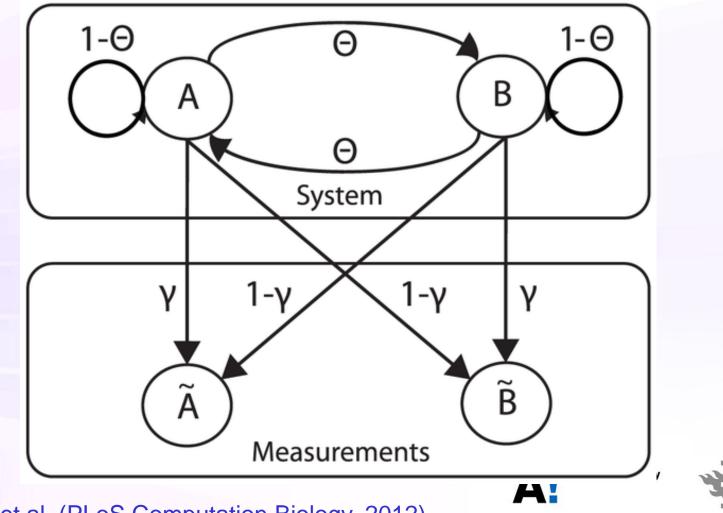
ABC - how does it work?



Sunnåker et al. (PLoS Computation Biology, 2012)

ABC – simple HMM example

Data: AAAABAABBAAAAAABAAAA, summary statistic #switches = 6



UNIVERSITY OF HELSINK

Sunnåker et al. (PLoS Computation Biology, 2012)

Assume prior $P(\theta) \sim U(0,1)$ and simulate data given random draws θ_i , *i*=1,...,*n*

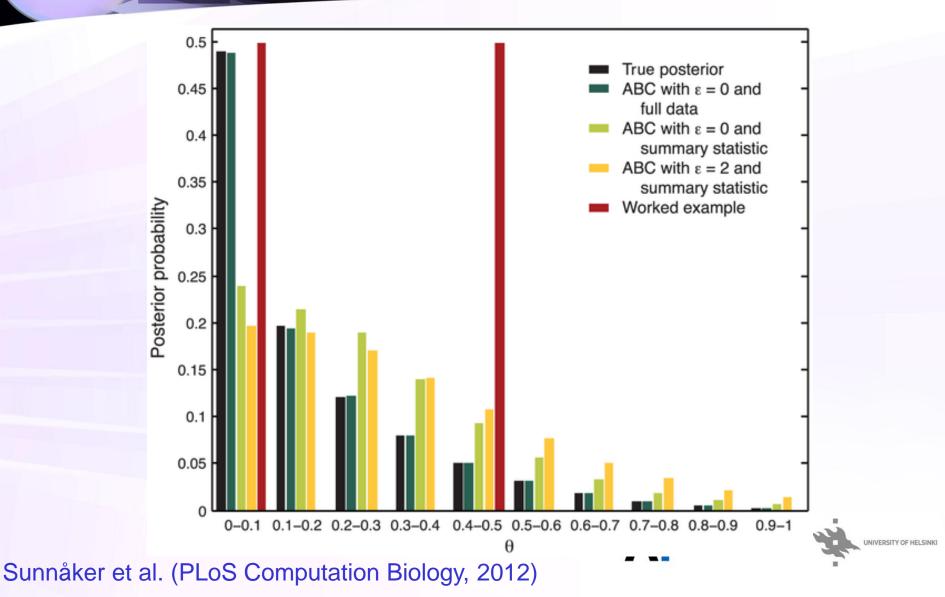
I	θ,	Simulated Datasets (Step 2)	Summary Statistic $\omega_{S^{\prime}}$ (Step 3)	Distance ρ (ω _{S,#} ω _d) (Step 4)	Outcome (Step 4)
1	0.08	AABAAAABAABAAABAAAAA	8	2	accepted
2	0.68	AABBABABAAAABBABABBAB	13	7	rejected
3	0.87	BBBABBABBBBABABBBBBBA	9	3	rejected
4	0.43	AABAAAABBABBBBBBBBB	6	0	accepted
5	0.53	ABBBBBAABBABBABBABBBB	9	3	rejected

ABC – simple HMM example

doi:10.1371/journal.pcbi.1002803.t001

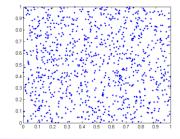
Sunnåker et al. (PLoS Computation Biology, 2012)

A look at inferences

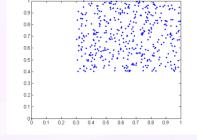


ABC-MCMC

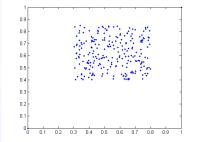
- 1. Sample candidate θ^* from proposal q(., θ) where θ is the current value of the parameter
- 2. Sample new data set using θ* and calculate new summary statistic S* (was S for θ)
- If ρ(S*,S)<ε, go to #4, else discard θ* and go to #1
- 4. Accept θ^* with probability $[\pi(\theta^*)/\pi(\theta)] \cdot [q(\theta,\theta^*)/q(\theta^*,\theta)]$
- 5. Return to #1

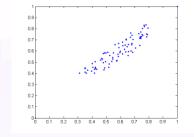


π(θ)



 $P(\theta|\rho(S(\theta),S) < \varepsilon_1)$





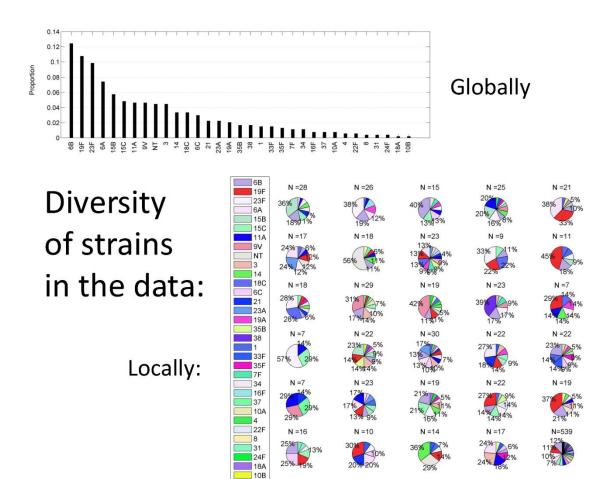
ABC-SMC

ABC recap

In reality more complex sampling algorithms: ABC-MCMC, particle filtering, etc
Necessitates quality controls, predictive checks,...

Formal ABC-based model comparison is an issue (Robert et al. PNAS, 2011), but latest results give more promising insight (Marin et al. JRSS B 2014, http://arxiv.org/abs/1110.4700)
Very intensive research area at the moment!

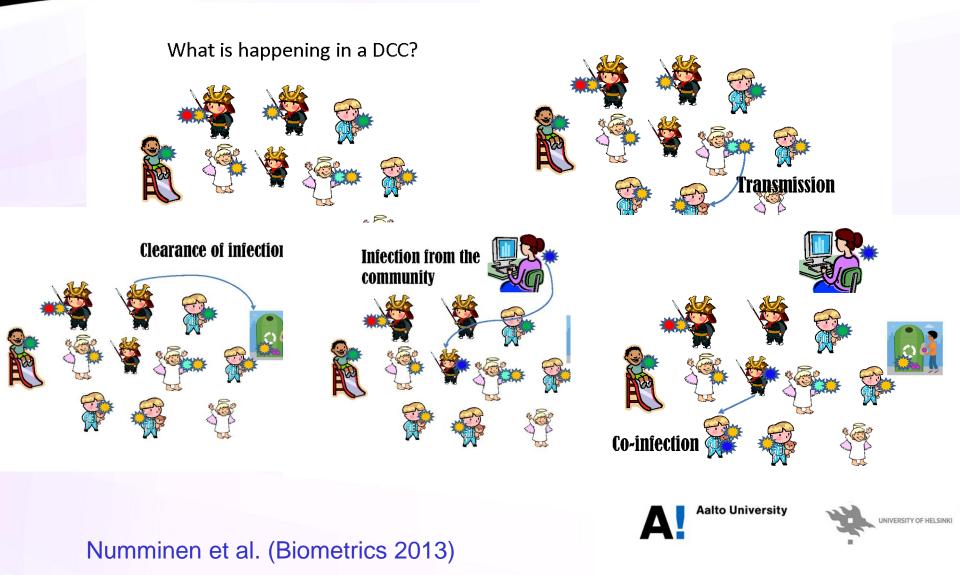
Pneumococcus strain incidences in Oslo DCCs (data sampled once in 2006)



NIVERSITY OF HELSINKI

Numminen et al. (Biometrics 2013)

Stochastic microepidemics in a metapopulation



Stochastic SIS-model for DCC transmissions

- Ingredients for a stochastic soup within a DCC:
- • $I_{ij}(t)$ indicator for kid *i* carrying strain *j* at time *t*
- β rate parameter for transmission from someone in DCC
- •Λ rate parameter for transmission from outside DCC
- θ competition parameter scaling the probability of coinfection
- γ clearance rate parameter, since we have data from single time point only, all other parameters are estimated relative to a fixed clearance rate

Stochastic SIS-model for DCC transmissions

Continuous-time Markov chain with transition probabilities:

$$Pr (I_{is}(t + \delta t) = 1 | I_{is}(t) = 0) = \beta E_s(I(t)) + \Lambda P^s + o(\delta t),$$

if $\sum_{j=1}^{N^s} I_{ij}(t) = 0$

$$Pr (I_{is}(t + \delta t) = 1 | I_{is}(t) = 0) = \theta (\beta E_s(I(t)) + \Lambda P^s) + o(\delta t)),$$

if $\sum_{j=1}^{N^s} I_{ij}(t) > 0$ and $I_{is} = 0.$

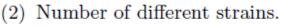
$$Pr (I_{is}(t + \delta t) = 0 | I_{is}(t) = 1) = \gamma + o(\delta t)$$
(2)

Aalto University

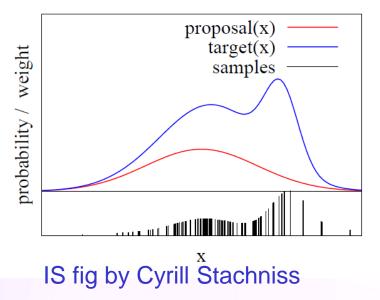
How to do the ABC inference?

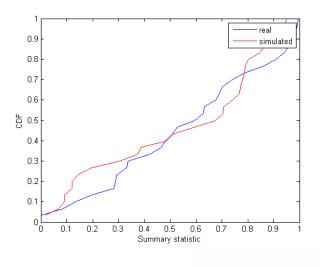
Summaries & discrepancies used in sequential importance sampling

- Shannon index of diversity (Peet, 1974) of the distribution of observed strains.
- $d_k = \int |F^k(x) \hat{F^k}(x)| dx.$



- (3) Prevalence of carriage among the observed individuals.
- (4) Prevalence of multiple infections among the observed individuals.





Some results

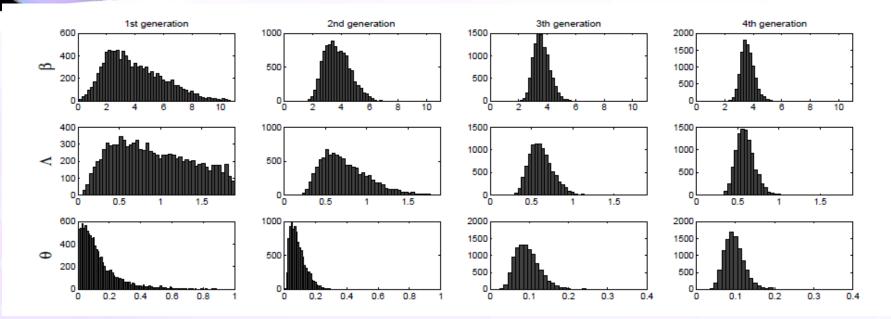


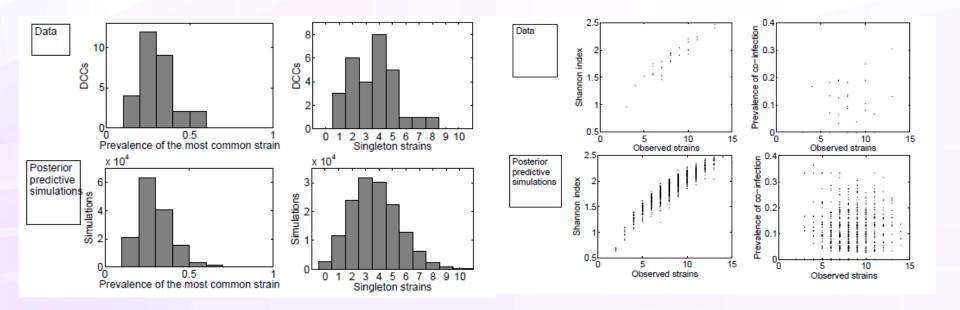
Table 1

Summaries of the posterior distribution of the estimated parameters, with two different simulation times for the transmission model

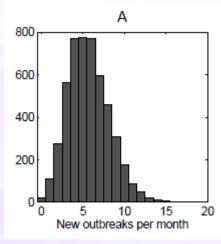
	Mean	Mean	95% CI	95% CI			
	T = 10	T = 20	T = 10	T = 20			
β	3.589	3.594	(2.8157, 4.5785)	(2.8113, 4.5621)			
Λ	0.593	0.584	(0.4017, 0.8359)	(0.3875, 0.8407)			
θ	0.097	0.097	(0.0605, 0.1422)	(0.0604, 0.1427)			

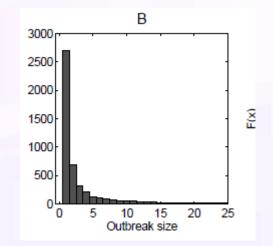
Aalto University

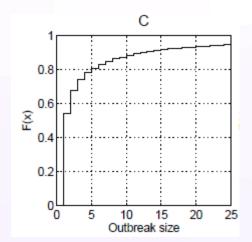
Model validation with 'unused' summaries

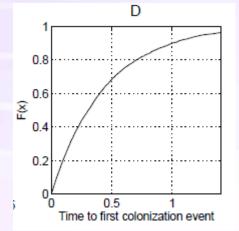


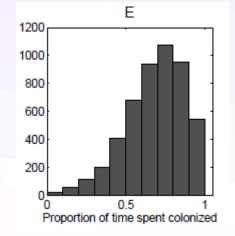
Posterior predictive simulations











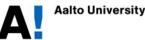
Aalto University

What else with ABC?

- •ABC is particularly attractive for dynamic models with tricky/intractable/expensive likelihood functions
- ABC has grown particularly popular for complex spatio-temporal models in population genetics
 We are currently developing several generic machine learning inspired approaches to solve the key problems in ABC inference: choice of summary statistics, choice of metric to compare synthetic and real summaries, convergence to high likelihood/posterior regions

With great power comes great responsibility! -Uncle Ben

Hence the ABC sword should never be wielded casually



UNIVERSITY OF HELSIN