
Technology for a better society 1

Best Practices and

the Limits of Reproducible Research

Reproducible Science and

Modern Scientific Software Development
13th eVITA Winter School in eScience sponsored by

Dr. Holms Hotel, Geilo, Norway

January 20-25, 2013

Dr. André R. Brodtkorb,

Research Scientist

SINTEF ICT, Dept. of Appl. Math.

Technology for a better society

• Why not to share code

• Best practices for reproducible research

• Limits of reproducibility

2

Outline

Technology for a better society

This talk should equip you with:

• Reasons why you should try to be reproducible and share your

code

• A check-point list of best practices to consider

• An overview of some situations in which it is difficult to get

reproducible results

3

Technology for a better society

• A list that would have been better presented by

Randy Leveque

• Imagine a world in which mathematical papers

contain the same amount of information as

computational papers have today:

• Papers contain lemmas, theorems, corollaries

• No proofs are required or expected

• Then some people start demanding proofs to be published.

 What would people say?

4

Top ten list of why not to share code [1]

[1] from Top Ten Reasons to Not Share Your Code, Randall J. Leveque, 2012

http://jarrodmillman.com/talks/siam2011/ms148/leveque.pdf

Professor Randy Leveque,

University of Washington

http://jarrodmillman.com/talks/siam2011/ms148/leveque.pdf
http://jarrodmillman.com/talks/siam2011/ms148/leveque.pdf

Technology for a better society

1. The proof is too ugly to show anyone else.

• It's a waste of time to clean up the proof: it's very specific and

not worth while to clean up

• My time is better spent

publishing a new theorem

5

Top ten list of why not to share code

This is (terrible)

code with lines up-to

499 characters long…

Technology for a better society

2. I didn't work out all the details.

• It applies for the examples I use in the paper, that's enough

• It won't really work for all corner cases, but that's not important

3. I didn't actually create the proof myself, my student did.

• And the student went into industry so I don't really have it anyway

• But he was a good student, and I'm pretty sure it's correct

6

Top ten list of why not to share code

Technology for a better society

4. Giving the proof to my competitors would be unfair to me.

• If I give out my proof, anyone can do further research

• I should be the one to get papers out of this: after all, it's my proof

5. The proof is valuable intellectual property.

• I would be stupid to give it away:

I might be able to commercialize it some time in the future

7

Top ten list of why not to share code

Technology for a better society

6. Including proofs would make the paper much longer.

• Journals wouldn't want to publish it, and who would want to

read it?

7. Referees would never agree to check proofs.

• It's already difficult to get reviewers and reviews on time

8

Top ten list of why not to share code

Technology for a better society

8. The proof uses sophisticated hardware/software that most

readers and referees don't have.

• If they can't execute the proof, why should they care to get it?

9. My proof relies on other unpublished (proprietary) proofs.

• It doesn't really help that they have my proof, they don't know if

the dependencies are correct anyway

9

Top ten list of why not to share code

Technology for a better society

10. Readers who have access to my proof will want user support.

• And I really don't want to be pestered by people actually using

my work

10

Top ten list of why not to share code

Technology for a better society

• Are computer codes fundamentally

different from mathematical

proofs?

11

Technology for a better society

12

Why you should share your code anyway

“An article about computational result is advertising, not

scholarship. The actual scholarship is the full software

environment, code and data, that produced the result.”

--Jon Claerbout [1]

[1] WaveLab and Reproducible research, J. B. Buckheit and D. L. Donoho, 1995

Personally I think people get hung up too much on the fact

that it's hard to insure others can run the code,

and should focus more on providing a full record

of the research methodology.

-- Randy Leveque [2]

[2] Top Ten Reasons to Not Share Your Code, Randy Leveque, 2012

Technology for a better society 13

Best Practices

Technology for a better society

1. Write programs for people, not computers

• If a code is easy to read, it is easier to check if it is doing what it should

• Human memory is extremely limited: "a program should not require its readers to hold

more than a handful of facts in memory at once"

• Human effort is limited: "all aspects of software development should be broken down

into tasks roughly an hour long"

14

Best Practices Countdown [1]

[1] Best Practices for Scientific Computing,

Greg Wilson et al., 2012, arXiv:1210.0530

Bad:

def rect_area(x1, y1, x2, y2):

Good:

def rect_area(point1, point2):

Technology for a better society

2. Automate repetitive tasks

• even the most careful researcher will lose focus while doing this and make mistakes.

• "use a build tool to automate the scientific workflows"

15

Best Practices Countdown

Technology for a better society

3. Use the computer to record history

• Data and source code provenance should automatically be stored

"history" in Matlab or the Linux command-line, "doskey /history" on windows command

line, IPython

• Automatically record versions of software and data, and parameters used to produce

results (see also point 2)

4. Make incremental changes

• Do not plan for months or years of development: Plan for one week or so, partitioned

into small tasks (which can be solved using one hour long sessions at a time)

16

Best Practices Countdown

Technology for a better society

5. Use version control

• Learn how to see the difference (diff) between two versions of the software, and how to

revert changes

• Learn how to use version control for collaboration

• "everything that has been created manually should be put in version control"

• Use meta-data to describe binary data

6. Don't repeat yourself

• "every piece of data must have a single authoritative representation in the system"

• "code should be modularized rather than copied and pasted"

• "re-use code instead of rewriting it" (matrix inversion, etc.)

17

Best Practices Countdown

Technology for a better society

7. Plan for mistakes (1/2)

• "add assertions to programs to check their operation"

• Assertions are "executable documentation, i.e., they explain the program as well as

checking its behaviour"

18

Best Practices Countdown

def bradford_transfer(grid, point, smoothing):

 assert grid.contains(point),

 ’Point is not located in grid’

 assert grid.is_local_maximum(point),

 ’Point is not a local maximum in grid’

 assert len(smoothing) > FILTER_LENGTH,

 ’Not enough smoothing parameters’

 ...do calculations...

 assert 0.0 < result <= 1.0,

 ’Bradford transfer value out of legal range’

 return result

Technology for a better society

7. Plan for mistakes (2/2)

• Use automated testing

• Regression testing => has something changed

• Verification testing => does the code produce known correct/analytical solutions?

• Use an interactive debugger instead of print-statements

8. Optimize software only after it works correctly

• When it works, use a profiler to find out what the bottleneck is

• Software developers write the same amount of code independently of the language:

"write code in the highest-level language possible"

19

Best Practices Countdown

Technology for a better society

9. Document design and purpose, not mechanics.

• Code should be written for humans and not require any documentation by itself:

"document interfaces and reasons, not implementations"

• Remove unreadable code: "refactor code instead of explaining how it works"

10. Collaborate.

• Make others read your code: "code reviews are the most cost-effective way of finding

bugs in code"

• "use pair programming when bringing someone new up to speed and when tackling

particularly tricky problems"

• Collaborators can interpret results in completely different ways

20

Best Practices Countdown

Technology for a better society

21

"Research suggests that the time cost of

implementing these kinds of tools and approaches

 in scientific computing is almost immediately

offset by the gains in productivity of

the programmers involved"

Technology for a better society

11. Take notes

• Use an issue tracker, blog, wiki or physical lab notebook for notes and ideas

• Ideas come up all the time, and are written on post-its etc. and easily forgotten.

12. Keep it simple, stupid

• Design your code and work flow so "anyone" can repair it using standard tools

• If it's extremely complicated,

does it really have to be?

• Simplicity in design is a virtue

22

Best practices overload

Technology for a better society

13. Write statements on reproducibility [1]

• At the end of papers you publish, write if and how the results

are reproducible. Especially if you are unable to publish code:

write why!

23

Best practices overflow

[1] Reproducibility PI Manifesto, Lorena A. Barba,

http://faculty.washington.edu/rjl/icerm2012/Lightning/Barba_Manifesto.pdf

http://faculty.washington.edu/rjl/icerm2012/Lightning/Barba_Manifesto.pdf
http://faculty.washington.edu/rjl/icerm2012/Lightning/Barba_Manifesto.pdf
http://faculty.washington.edu/rjl/icerm2012/Lightning/Barba_Manifesto.pdf

Technology for a better society 24

Limits of reproducible research

Technology for a better society

25

Definitions of reproducible research

Reproducible Research [1]

[1]Reproducibility in Computational and Experimental Mathematics, Workshop report, 2012

Reviewed

Research

Replicable

Research

Open

Research

Auditable

Research

Confirmable

Research

Technology for a better society

Reviewed Research:

The descriptions of the research methods have been

independently assessed and the results judged

credible. (This includes both traditional peer review

and community review, and does not necessarily

imply reproducibility.)

Replicable Research:

Tools are made available that would allow one to

duplicate the results of the research, for example by

running the authors' code to produce the plots shown

in the publication. (Here tools might be limited in scope,

e.g., only essential data or executables, and might only

be made available to referees or only upon request.)

26

Reviewed

Research

Replicable

Research

Technology for a better society

Confirmable Research:

The main conclusions of the research can be obtained

independently without the use of software provided by the

author. (But using the complete description of algorithms and

methodology provided in the publication and any supplementary

materials.)

Auditable Research:

Sufficient records (including data and software) have been

archived so that the research can be defended later if

necessary. The archive might be private, as with traditional

laboratory notebooks.

27

Auditable

Research

Confirmable

Research

Technology for a better society

Open Research: Well-documented and fully open

tools are publicly available (e.g., all data and open

source software) that would allow one to (a) fully

audit the computational procedure, (b) duplicate the

results of the research, and (c) extend the results or

apply the method to new problems.

28

Open

Research

Saint Graal de la légende du Roi Arthur et des

Chevaliers de la Table Ronde, Alfred W Pollard, 1917

Technology for a better society

• The limits of reproducible research depends on the type of

reproducible research we are discussing

• What hinders

• "Private reproducibility"?

• "Public reproducibility"?

• "Turn-key reproducibility"?

• "Interactive reproducibility"?

29

The limits of reproducible research

Technology for a better society

Supercomputer simulations

• Requires special hardware

• Rerunning experiments not always feasible

• Changing number of nodes changes the domain decomposition,

which affects the answer…

• Parallel computing is terribly

irreproducible

• High performance computing

often comes at the expense

of reproducibility

30

Problems in reproducibility

Argonne National Laboratory, IBM Blue Gene P, CC-BY-SA 2.0

Technology for a better society

Graphics Processing Units

• GPUs are extremely parallel processors with all the pitfalls of

parallel computing

• GPUs change rapidly, and I can't get a five year old GPU anymore

• Programming languages and tools change extremely fast

• A different floating point model than many

CPUs (more accurate)

31

Problems in reproducibility

Technology for a better society

Legal concerns

• Patent laws

• Export limitations

• Intellectual property

rights

• Licenses

• Research performed at

commercial institutions

• …

32

Problems in reproducibility

Censored slide from Bill Rider, "What does it take to do reproducible

computational science? What stands in our way?", ICERM 2012.

Technology for a better society

Visualization

• Many visualization tools

are used interactively,

and therefore hard to

use reproducibly

33

Problems in reproducibility

Technology for a better society

Data archiving

• We have version control for

text-like documents

• We have very little for

managing data sets

• Data sets must have

meta-data which is manually

entered

34

Problems in reproducibility

Archives, Archivo-FSP, CC-BY-SA 3.0

Technology for a better society

Software licenses

• Difficult to combine with virtual machines &

the cloud

Old software

• My software only run under AIX / Windows NT / … and I can't get

hold of hardware that it will install under…

• My software relies on a specific behavior only found in GCC v. 2.81

• My software requires a commercial compiler which only runs on

Windows NT / AIX / …

35

Problems in reproducibility

Technology for a better society

Floating point

• Floating point is like chess:

it takes minutes to learn, and

a lifetime to master

(or, at least it's quite complex

for such a simple definition)

36

Problems in reproducibility

A game of Othello, Paul 012, CC-BY-SA 3.0

Technology for a better society

• Computational codes are a lot like mathematical proofs and we

should aim at publishing whenever possible

• The essence of the best practices is: "Be methodical, be thorough,

be honest".

• Different situations have different requirements to disclosure and

reproducibility

• It can be difficult to be reproducible in some situations.

37

Summary

Technology for a better society

• Randy Leveque, Top Ten Reasons to Not Share Your Code (and why

you should anyway), Randy Leveque, 2012,

http://faculty.washington.edu/rjl/pubs/topten/

• Reproducibility in Computational and Experimental Mathematics,

Workshop report, 2012 [to appear]

• Best Practices for Scientific Computing

Greg Wilson, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong, Matt

Davis, Richard T. Guy, Steven H. D. Haddock, Katy Huff, Ian M.

Mitchell, Mark Plumbley, Ben Waugh, Ethan P. White, Paul Wilson

(Submitted on 1 Oct 2012 (v1), last revised 29 Nov 2012 (this

version, v3)) http://arxiv.org/abs/1210.0530

38

Further Reading

http://faculty.washington.edu/rjl/pubs/topten/
http://faculty.washington.edu/rjl/pubs/topten/
http://arxiv.org/abs/1210.0530
http://arxiv.org/abs/1210.0530

