3b. Re-cap: Valuation & verification

Bringing together...

V&

Basic checks

- Range and limits
 - Realistic values
 - Beware of bias (e.g. the 'ozone hole', 1986)
- Logical consistencies
 - $\max(x) > \min(x)$, etc
 - Inversion
- Maths
 - e.g. Benford's law ("the first digit law"), binominal distribution, Poisson distribution. ...

$$P(d) = \log_{10}(d+1) - \log_{10}(d) = \log_{10}\left(1 + \frac{1}{d}\right).$$

V&V: is the data iid?

- Identically and independently distributed?
- Does the pdf change over time? (data not identically distributed).
- Pr(x = max(X)) = 1/n
- V&V for methods assuming stationarity (return value analysis, analogs)

Number of record-breaking events x(t) > x(t') for all t' < t

Record incidence

Series

Time (years)

Parallel series – *Pr(at least 1 record-breaking event)* (binomial distribution)

Probability of new records

A random variable of rational numbers with independent and identical distribution (iid) has following property:

Pr(n=record) = 1/n

(assuming no ties)

Record-event statistics

New records

Time 25 x 12 monthly precipitation series

The iid-test.

Expected number of record-events

Record length (n) using temporal-spatial subsampling (N=68) simulation

Number of record-events / Expectated number

Checks & tests

- Sample tests
- Special cases
- Consistency
 - Inversion/reversion
 - Full-circle
- Monte-Carlo simulations

Example: Full circle test...

- **Google translate**: English \rightarrow German \rightarrow Norwegian \rightarrow English:
- Input: "Validation and verification can be implemented through a circular path where the end-result is the original input"
- Output: "Validation and verification can be performed through a circular path where the end result is the original input"

Strengths of computers

- Fast,... many iterations
- Random number generators
- Constructed positives.
- Wide range of inputs robustness.
- Creative solutions.

Monte-Carlo simulations

The use of random number generators to test methods and hypotheses. A priori knowledge: randomness – no skill. Digital version of rolling dice.... and roll the dice very many times...

Monte-Carlo simulations...

- Test the null hypothesis
- See if we can get the same results by chance
- Mimic the process without the dependency
- Null-hypothesis: what you can get with noise.
- In addition, input can be data with a given positive result.

Code development – additional tests

• Simulate 'noise' – lack of signal/dependency

Example: CCA

- Canonical correlation analysis (CCA).
- Identify pairs of patterns with the greatest correlation.
- V&V using Monte-Carlo techniques to sample many different combinations

Example: CCA

 Canonical correlation analysis (CCA) → patterns with the highest correlation.

Two data sets

$$Y = \mathcal{G}\mathcal{U}^T,$$
$$X = \mathcal{H}\mathcal{V}^T,$$

clim.pact: 'ABC4ESD()'

Covariance matrices:

$$C_{YY} = YY^T,$$

$$C_{XX} = XX^T,$$
$$C_{YX} = YX^T.$$

$$C = C_{YY}^{-0.5} C_{YX} C_{XX}^{-0.5},$$

Eigenvalue problem (SVD)

$$C = LMR^T$$
.

Invert the problem

Test: CCA reconstruction

Start from the other end and work backwards 'CCA(..., test=TRUE)' [clim.pact]

Test: CCA reconstruction

Other aspects with CCA

- Test the limit
 - CCA is supposed to find patterns which have the greatest possible correlation in terms of the information embedded in the data.
 - Can we find cases with higher correlation?

Examine the limits...

Insert known signal

'testCCA()' [clim.pact]

CCA

Regression

- Analysis of variance (ANOVA)
- P-values, variance (R²), F-ratio, etc.
- Ordinary linear regression (OLR), generalised linear models (GLM; maximum likelihood), factorial regression.
- Univariate, multiple & multivariate.
- Care easy to get astray.

Challenges for V&V

- Time scales for archiving digital information
- System for organising work
 - In-line comments
 - Documentation
 - Testing
- Access & transparency
- Agnotology
- Bias & perception
- Unexpected situations, new data (often a bug)

The CRAN repository

- Never guaranteed a bug-free code
- Sharing methods and data means more testing.
- Building R packages, involves a numper of testing procedures
 - R CMD check package.folder
 - Structure & documentation
- Many users with different data, situations, etc – feedbacks.

Community

- Discussions is an inherent part of science
- Differences are opportunity for progress
 - This is not always perceived like this
 - Defencive attitudes
- Trial and failure are essential concepts and valid strategy
 - Sometimes a scientist needs to be brave
- Social aspects can be difficult
 - 'Office politics', competition, envy, ...

- RealClimate.org
- Comment & discussion
- The value of social input and different views
- Accessibility
- New ideas \rightarrow publications.

Propagating knowledge

- Persuading your colleagues
- Sanity control
- Publication the 'gold standard'
 - Merit & prestige
 - Establish community knowledge
 - Benefit for society
 - Funding & utility
- Acessability: visibility + legitimacy

Keep in mind

- Falsification! Never 100% verification
 - Typical: code fails with new data.
 - Unforeseen situations/possibilities
- Bias and deceptive results expectations
- Dimensional analysis
- Monte-Carlo simulations & test input
- Inversion, reverse, full-circle consistency
- Documentation

Final word

 Practising V&V may open eyes to more. It may be like a curse, as the world may prefer to live with delusions.

V&V Resources

- Further reading:
 - Jolliffe, Ian T., and David B. Stephenson, eds. Forecast Verification: A Practitioner's Guide in Atmospheric Science. Wiley, 2003.
 - Magee, B. Popper. 13th ed. Fontana Modern Masters. London, Britain: Fontana Press, 1973.
 - A. Engel, Verification, Validation, and Testing of Engineered Systems (Wiley Series in Systems Engineering and Management), 2011
- URLs.
 - Facebook page: agnotology

+ references provided on the previous slides