
Lecture 12: 

Formulation of Geometrically Nonlinear FE  
 
Review of Continuum Mechanics  

 In the following the necessary background in the theory of the 
mechanics of continuous media (continuum mechanics) for 
derivation of geometrically nonlinear finite elements is 
presented 

 In continuum mechanics a solid structure is mathematically 
treated as a continuum body being formed by a set of 
material particles  

 The position of all material particles comprising the body at a 
given time t is called the configuration of the body, and 
denoted   

 A sequence of configurations for all times t defines the 
motion of the body 

 In previous lectures we have seen that the motion of a body or 
structure is often represented by a load-displacement diagram, 
starting from an initial, usually undeformed, state at time 

0t , called initial configuration, 0 , to which displacements 

 u  are referred 

 Each individual point on the equilibrium path corresponds to 
an instantaneous actual or current (deformed) configuration, 

n , at time  nt t  
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 The reference configuration, is the configuration to which 
state variables (e.g. strains and stresses) are referred 

 It is important to note that the time t is not necessarily the 
physical time; in this context t should be viewed as a state or 
load parameter or simply a pseudotime   

 Three basic choices need to be made in developing a large 
displacement (deformation) analysis scheme: 

1. The kinematic description; i.e. how the body move and 
how the local deformations and strains are measured 

2. The balance law; i.e. the definition of linear and angular 
momentum and the definition of (conjugate) stresses 

3. The constitutive equations; i.e. an appropriate material 
relation that is objective and defines the stresses in terms of 
strains or rate of strains 



Description of Motion: 

 To describe the deformation of a body requires knowledge of 
the position occupied by the material particles comprising the 
body at all time  

 Two sets of coordinates may be used: 

i)  Material (Lagrangian) coordinates;   X  

ii)  Spatial (Eulerian) coordinates;      ,x x X t  

  x  defines the current coordinates of material particles in 

terms of material coordinates  X , the latter being the initial 

coordinates of the particles at time 0t   

 In the Lagrangian approach, all physical quantities 
(displacements, strains and stresses) are expressed as 
functions of time t  and their initial position  X , in the 

Eulerian approach they are functions of time and their 
current position 

 Although both approaches may be used, the Lagrangian 
approach turns out to be the most attractive in solid and 
structural mechanics problems 

 The Lagrangian description of motion is referred to a fixed 
global, Cartesian coordinate system ( , , )X Y Z   

 In the Lagrangian description displacements of any material 
point in the solid is given by: 

       ( , ) ( , ) x X X u Xt t                 ( , ) ( , ) u X x X Xt t  



Deformation Gradient and Strain Measures: 
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 In order to define the strain we need to know the relative 
motion of two neighbouring particles. Two such particles (P 
and Q) are shown in the Figure above where at time 0t   the 
relative position is  Xd  and at time  nt t  the relative position 

is  xd  

 The deformation gradient  F , describes the mapping 

(deformation) of the infinitesimal material ‘fibre’  Xd , with 

length 0ds , in 0  (the initial configuration) to its new position 

 xd , with length ds , in n  (the current configuration): 

    x F Xd d  
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     I  is the unit tensor and  G  is called the displacement  

     gradient tensor 

 The components of the deformation gradient  F , and the 

displacement gradient tensor  G , thus becomes: 
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 The deformation gradient  F  describes stretches and rigid 

body motion of  the material fibers from 0  to n   

 In contrast to a linear analysis, where we may apply a linear 
strain measure (e.g. the engineering strain), a finite strain 
measure is used to represent local deformations in a large 
deformation nonlinear analysis 

 In large deformation nonlinear analysis, a body may be 
subjected to both large rigid body motion and large 
deformations 

An important feature of a finite strain measure is that it  
     vanish for arbitrary rigid body translations and rotations 
 

 Another property of the finite strain measure is that it must 
reduce to the infinitesimal strains if it is linearized (i.e. when 
the nonlinear strain terms are neglected) 
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 One finite strain measure that has these desired properties is 
the Green strain tensor  G , which is a symmetric tensor 

defining the relationship between the squares of the length of 
the material ‘fibre’ vector  Xd  with length 0ds  in 0  to its 

deformed vector  xd  with length ds  in n : 

    2 2
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T

Gds ds d d  

 Green strain tensor  G  can also be expressed in terms of 

    the deformation gradient  F  through: 
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 The six strain components of the Green strain tensor may be 
expressed in terms of the displacement gradients: 
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 Green strain tensor is symmetric: 

  ,       and   GYX GXY GZY GYZ GXZ GZX         

 If the nonlinear portion (that enclosed in square brackets) is 
neglected, we obtain the infinitesimal strains: 
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 Green strain tensor is often used for problems with large 
displacements but small strains 



 Several other finite strain measures are used in nonlinear 
continuum mechanics, however, they all have to satisfy the 
constraints of finite strain measures:  

 They must predict zero strains for arbitrarily rigid-body 
motions, and  

 They must reduce to the infinitesimal strains if the  
nonlinear terms are neglected 

 For the uniaxial case of a stretched bar that has initial length 

0L  in 0  and length L in n , the Green strain becomes: 
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 Other uniaxial strain measures that are frequently used in 
nonlinear structural and solid mechanics: 
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 Almansi strains are, in contrast to the Green strains that are 
referred to the material coordinates  X , referred to the 

spatial coordinates  x  and used together with an Euler 

description, while logarithmic (also called natural or “true”) 
strains are useful for large strain problems (e.g. metal 
forming) 



 

 When choosing a proper finite strain measure we have to 
judge whether the strain measure predicts a realistic finite 
strain value or not 

 If we want to model large strain deformations, the chosen 
strain measure should tend to   for “full compression” 
and   for “infinite stretching”, otherwise it could become 
difficult to describe a sensible constitutive law 

 In the Figure above that shows the behaviour of the different 
strain measures introduced for large strains, we observe that 



both the Green and the Engineering strains remain finite for 
“infinite” compression, while the Almansi strain predicts a 
finite strain for “infinite” tension 

The only strain measure which is suitable in the entire  
     range is the logarithmic (natural) strain 

 However, if 0.05
L L

L
0

0

-
 the deviation between the finite 

strain measures and the Engineering strain is of the order 
2 - 3% 

Stress Measures: 

 The surface traction  t  is defined as: 

   


f
t

d
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where  fd is the infinitesimal force vector that acts on the  

infinitesimal area element dA in deformed configuration. 

 



 The Cauchy or true stress tensor  σ , energy conjugate to the 

Almansi strain tensor  A , gives the current force per unit 

area in deformed configuration, consequently:  

    ˆt σ n  

    where  n̂  is the unit outward normal to the infinitesimal area 

    element dA in deformed configuration. 

 Multiplying  σ  by the determinant of  F  (  det FJ ) gives 

the Kirchhoff stress tensor  τ  

   τ σJ  

 A stress tensor work conjugate to the Green strain tensor 
 G  must be referred to the initial (undeformed) configuration 

as is the Green strain tensor.  

 It may be shown that the 2nd Piola-Kirchhoff (PK) stress 

tensor  S  that gives the transformed current force  fd  per 

unit undeformed area odA  is work conjugate to  G  and 

related to  σ  through 

      1 S F σ F
T

J  

 While the Cauchy stress tensor  σ  and the Kirchhoff stress 

tensor  τ  are preferable in general NFEA involving large 

deformations, the 2nd PK stress tensor  S  is a good 

approximation when the deformational (strain giving) 
displacement components are small (i.e. large rigid body 
displacements, but small strains). 



 

 

 

 

 

 

 

 

Total and Updated Lagrangian Formulations: 

 In a Total Lagrangian (TL) formulation strain and stress 
measures are referred to the initial (undeformed) 
configuration, 0  

 Alternatively if a known deformed configuration, n , is taken 
as the initial state and continuously updated as the 
calculation proceeds this is called an Updated Lagrangian 
(UL) formulation 

 In a CoRotational (CR) formulation a local reference frame, 

R , is attached to each element and translates and rotates 
with the element as a rigid body. In a CR formulation, the 
total deformation is decomposed into a rigid-body motion, 
which is identical to rigid-body motion of the local reference 
frame, and local deformations (strains and stresses), that are 
measured relative to the local reference frame 



2-node TL Bar Element in 3D Space1  

                                                    n  
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 In the following the key concepts of nonlinear continuum 
mechanics are applied to establish the internal forces  intr  

and tangential stiffness  k t  of a 2-node three dimensional bar 
element based on the Total Lagrangian formulation 

 The 2-node bar element may be used to model truss structures 
as shown in the Figure on the next page 

 It is assumed that the material behaviour is linearly elastic 
with elasticity modulus E , such that we may consider 
geometric nonlinear effects only 

 In the initial configuration 0 , which is the reference 
configuration for the TL formulation, the element has cross 
section area 0A  (assumed constant along the element) and 
length 0L  

 In the current configuration n , the cross section area and 
length become A and L , respectively 

                                 
1 Carlos Felippa, University of Colorado at Boulder: Chapter 14 of lecture notes in ASEN 5107 (NFEM). 



 

Element Kinematics: 

 Assume that the bar remains straight in any configuration 

The coordinates of a generic point  X  located on the  

      longitudinal axis of the reference configuration 0  and  

      the corresponding coordinates  x  in the current  

      configuration n , reads: 
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    where   is the dimensionless isoparametric coordinate that  
    varies from 1 1   at node 1 to 2 1  at node 2, and iN  are  
    the linear shape functions: 
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2
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 The displacement field,  u , is obtained by subtracting the 

two position vectors  X  and  x : 
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Strain Energy: 

 Denoting the axial strain and stress measures by e  and s , 
respectively, with s  being the energy conjugate of e  

 Because of the linear displacement assumptions 

  Strain e  and stress s  become constant over the element 
      length (volume)  

 The axial strain e  is assumed to be zero in 0  and e  in n  

  The stresses in 0  and n  become: 
 

0 0

0

           in 

   in 



 



n

s s

s s Ee
 



 Similarly, the axial forces 0N  in 0  and N  in n  become: 
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 The strain energy density 0U  in 0  is assumed to be zero 
( 0 0e = ), while in n  it becomes: 
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    which is constant over the volume of the element 

 The total strain energy in n , thus becomes:  
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Internal Forces and Tangential Stiffness: 

 The FE equilibrium equations are obtained by making the 
total potential energy 0U  stationary 

  The internal force vector  intr  is obtained as the  

      gradient of  the internal strain energy U  with respect to  
      the nodal displacements  d  
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 It is assumed that the strain measure e  is a function of the 
element lengths 0L  in 0  and L in n  (where 0L  is fixed): 

( )e e L            ( ) ( ) U U e U L  

 The derivatives of  the strain energy 0U  with respect to nodal 

displacements  d  are obtained by the chain rule: 
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 The element length L in n  is defined by: 

2 2 2  X Y ZL L L L  

    where the projected lengths onto the global axes in n  reads: 
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 The partial derivatives of L with respect to the nodal 
displacements  d , thus become: 
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where  L  contains the direction cosines of  the length 

segment L: 

  1
   L

T

X Y ZL L L
L

 

 Hence, the internal force vector  intr may be expressed in 

terms of  the direction cosines contained in  L̂ : 

   int
0 0

ˆ                 
r L

d d

U e L e
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 Similarly, it may easily be shown that the second derivatives 
of L with respect to the nodal displacements  d , become: 

2 1 1 ˆ ˆ ˆ
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I Id d d d

T
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 The tangent stiffness  k t  is obtained simply by differentiat-

ing the internal force vector  intr  with respect to the nodal 

displacements  d : 

 
int
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0 2
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0 0 2
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   

                                            

                                           

r
k

d

d d d d d d

d d d d d d

t

T T

T T

N e L e L L e L
L N N

L L L

e L L e L L e L
L EA N

L L L

 
   

 

 Substituting the expressions for the first and second partial 
derivatives of the element length from above, we obtain: 

 
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where the material stiffness  km  and the geometrical  

stiffness   k g  reads: 
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 The above expressions for the internal force vector  intr  and 

the tangent stiffness  k t are general and made independent 

of the choice of strain measure 

 The appropriate choice of strain measure should be made to 
get the final form of the internal force vector  intr  and 

tangent stiffness  k t  

 The values of  the partial derivatives with respect to L and 
the final form of  the internal force vector  intr  , the material 

stiffness  km , and the geometric stiffness   k g  for some 

specific strain measures are collected in the Table below: 
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 The internal force vector and the geometric stiffness matrix 
for the Green strain measure thus becomes: 
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