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Outline
• Linear versus nonlinear reponse

• Fundamental and secondary path

• Critical points

• Why Nonlinear Finite Element Analysis (NFEA) ?

• Sources of nonlinearities

• Solving nonlinear algebraic equations by Newton’s method

• Line search procedures and convergence criteria

• Arc-length methods

• Implicit dynamics
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Linear vs Nonlinear Respons 
• Numerical simulation of the response where both the LHS and RHS depends 

upon the primary unknown.

• Linear versus Nonlinear FEA:
 LFEA: 

 NFEA:

• Field of Nonlinear FEA:
 Continuum mechanics
 FE discretization (FEM)
 Numerical solution algorithms
 Software considerations (engineering)
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• Requirements for an effective NFEA:

Interaction and mutual enrichment
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Equilibrium path
• The equilibrium path is a graphical representation 

of the response (load-deflection) diagram that 
characterize the overall behaviour of the problem

• Each point on the equilibrium path represent a 
equilibrium point or equilibrium configuration

• The unstressed and undeformed configuration
from which loads and deflection are measured is 
called the reference state

• The equilibrium path that crosses the reference 
state is called the fundamental (or primary) path

• Any equilibrium path that is not a fundamental path 
but connects with it at a critical point is called a
secondary path
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Critical points

• Limit points (L), are points on the equilibrium path at which the tangent is 
horizontal

• Bifurcation points (B), are points where two or more equilibrium paths cross 

• Turning points (T), are points where the tangent is vertical

• Failure points (F), are points where the path suddenly 
stops because of physical failure 

Geilo 2012
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Advantages of linear response
• A linear structure can sustain any load whatsoever and undergo any 

displacement magnitude

• There are no critical (limit, bifurcation, turning or failure) points

• Solutions for various load cases may be superimposed

• Removing all loads returns the structure to the reference state

• Simple direct solution of the structural stiffness relationship without need 
for costly load incrementation and iterative schemes
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Reasons for Nonlinear FEA
• Strength analysis – how much load can the structure support before global failure

occurs

• Stability analysis – finding critical points (limit points and bifurcation points) 
closest to operational range

• Service configuration analysis – finding the ‘operational’ equilibrium configuration 
of certain slender structures when the fabrication and service configurations are 
quite different (e.g. cable and inflatable structures)

• Reserve strength analysis – finding the load carrying capacity beyond critical 
points to assess safety under abnormal conditions

• Progressive failure analysis – a combined strength and stability analysis in which 
progressive detoriation (e.g. cracking) is considered
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Reasons for NFEA (2)
• Establish the causes of a structural failure

• Safety and serviceability assessment of existing infrastructure whose integrity 
may be in doubt due to:

– Visible damage (cracking, etc)

– Special loadings not envisaged at the design state

– Health–monitoring

– Concern over corrosion or general aging 

• A shift towards high performance materials and more efficient utilization of 
structural components

• Direct use of NFEA in design for both ultimate load and serviceability limit states

Geilo 2012
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Reasons for NFEA (3)
• Simulation of materials processing and manufacturing (e.g. metal forming, 

extrusion and casting processes)

• In research:
– To establish simple ‘code-based’ methods of analysis and design

– To understand basic structural behaviour

– To test the validity of proposed ‘material models’

• Computer hardware becomes cheaper and faster and FE software becomes 
more robust and user-friendly

• It will simply become easier for an engineer to apply direct analysis rather than 
code-based checking
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Consequences of NFEA
• For the analyst familiar with the use of LFEA, there are a number of consequences 

of nonlinear behaviour that have to be recognized before embarking on a NFEA:
 The principle of superposition cannot be applied 

 Results of several ‘load cases’ cannot be scaled, factored and combined as is done 
with LFEA

 Only one load case can be handled at a time

 The loading history (i.e. sequence of application of loads) may be important

 The structural response can be markedly non-proportional to the applied loading, 
even for simple loading states

 Careful thought needs to be given to what is an appropriate measure of the behaviour

 The initial state of stress (e.g. residual stresses from welding, temperature, or 
prestressing of reinforcement and cables) may be 
extremely important for the overall response
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A typical Nonlinear Problem

Possible questions:
 Yield load
 Limit load
 Plastic zones
 Residual stresses
 Permanent deflections
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Sources of Nonlinearities
• Geometric Nonlinearity:

 Physical source:  
Change in geometry as the structure deforms is taken into account in 
setting up the strain displacement (kinematic) and equilibrium equations.

 Applications:
– Slender structures
– Tensile structures (cable structures and inflatable membranes) 
– Metal and plastic forming
– Stability of all types of structures

 Mathematical source:
The strain-displacement operator ഥࣔ is nonlinear when finite strains (as 
opposed to infinitesimal strains) are expressed in terms of displacements u

Considering geometric nonlinearities, the operator applied to the stresses, ்ࣔ	for linear 
elasticity, is not necessarily the transposed of the strain-displacement operator ࣔ ് ഥࣔ
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Example – Geometric Nonlin.
• Snap-through behavior of a shallow 

spherical cap with various ring loads
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Sources of Nonlinearities (2)
• Material Nonlinearity:

 Physical source:  
Material behavior depends on current deformation
state and possibly past history of the deformation.                                                           
The constitutive relation may depend on other                                                                          
variables (prestress, temperature, time, moisture,                                                          
electromagnetic fields, etc)

 Applications:
– Nonlinear elasticity
– Plasticity
– Viscoelasticity
– Creep, or inelastic rate effects

 Mathematical source:
The constitutive relation that relates strain and stresses, C, is nonlinear when the material 
no longer may be expressed in terms of e.g. Hooke’s generalized law:
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Sources of Nonlinearities (3)
• Force Boundary Condition Nonlinearity:

 Physical source:  
Applied forces depend on the deformation.                                                          

 Applications:
– Hydrostatic loads (submerged tubular bridges)
– Aerodynamic or hydrodynamic loads
– Non-conservative follower forces

 Mathematical source:
The applied forces, prescribed surface tractions                                                               
and/or body forces b, depend on the unknown displacements u:
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Sources of Nonlinearities (4)
• Displacement Boundary Condition Nonlinearity:

 Physical source:  
Displacement boundary conditions depend on the deformation.                                                     

 Applications:
The most important application is the contact problem, in which no interpenetration 
conditions are enforced on flexible bodies while the extent of contact area is unknown.

 Mathematical source:
The prescribed displacements      depend on unknown displacements, u:

Geilo 2012
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Example ─ Geometric Nonlin.

• A two-element truss model with constant axial stiffness EA and initial axial force No is 
considered to illustrate some basic features of geometric nonlinear behavior.

• From the three fundamental laws: 
 Compatibility
 Material law        
 Equilibrium

Geilo 2012
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Example ─ Geometric Nonlin.

• Equilibrium path representing the solution of the nonlinear load-displacement relationship
 As the load increases (downward) an initial maximum load, called the limit load, is reached 

at the limit point (a)
 Further increase of the load would lead to snap-through to the new equilibrium state at (b). 

The snap-through is an unstable dynamic process                                                                  
the straight line from (a) to (b) does not represent the true equilibrium path.

 In order to trace the true unstable equilibrium branch between (a) and (b), the             
displacement u has to be prescribed rather than prescribing the load P.

Geilo 2012
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Solving the Nonlinear Equations
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• From conservation of linear momentum, we may establish the equations of motion.

• Substituting the FE approximations (and neglecting time dependent terms), the 
global equilibrium equations on discretized form is obtained:
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Solving the Nonlinear Equations
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• In order to satisfy equilibrium,                                                                                     
external             and internal                                                                                          
forces             have to be in                                                                                      
balance  

• Consider the solution of 
nonlinear equilibrium equations                                                                                       
for prescribed values of the load 
or time parameter . 

• The problem consists of finding the  
displacement vector which                                                                      
produces an internal force vector 
୧୬୲܀ ۲, ߣ 		balancing externally 

applied loads  .

       res ext int .   R R R 0

 intR
 extR
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Load incrementation
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• Our purpose is to trace the fundamental 
(primary) equilibrium path while travers-
ing critical points (limit, turning and 
bifurcation points)  

we want to calculate a series
of solutions:

that within prescribed accuracy                                                                       
satisfy the equilibrium equations:

• A major problem in tracing a nonlinear 
solution path is how to choose the size 
of the load increments         .
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Incremental-Iterative solution
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• By linearizing the residual of the global 
equilibrium equations the incremental form     
of the equations of motion expressed in terms      
of the incremental nodal displacements           ,    
is obtained as:
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Incremental-Iterative solution
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• The most frequently used solution procedures 
for NFEA consists of a predictor step involving 
forward Euler load incrementation and a correc-
tor step in which some kind of Newton iterations 
are used to enforce equilibrium.

• The incremental-iterative procedure that  
advances the solution while satisfying the global 
equilibrium equations at each iteration ‘i’, within  
each time (load) step ‘n+1’ , is governed by the 
incremental equations:

• A series of successive approximations gives: nD  
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Newton’s method
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• Newton’s method is the most 
rapidly convergent process for 
solution of problems in which only 
one evaluation of the residual is 
made in each iteration.

• Indeed, it is the only method, 
provided that the initial solution is 
within the “ball of convergence”, in 
which the asymptotic rate of  
convergence is quadratic.

• Newton’s method illustrated in the 
Figure shows the very rapid 
convergence that can be 
achieved. nD  

1
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Weaknesses of Newton’s method
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• The standard (true) Newton’s method, although effective in most cases, is not necessarily 
the most economical solution method and does not always provide rapid and reliable 
convergence.

• Weaknesses of the method:
 Computational expense: 

─ Tangent stiffness has to be computed and assembled at each iteration within each load step
─ If a direct solver is employed KT  also needs to be factored at each iteration within each load 

step
 Increment size:

─ If the time stepping algorithm used is not robust (self-adaptive), a certain degree of trial and 
error may be required to determine the appropriate load increments

 Divergence:
─ If the equilibrium path include critical points negative load increments must be prescribed to 

go beyond limit points
─ If the load increments are too large such that the solution falls outside ‘‘the ball of 

convergence’’ analysis may fail to converge
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Modified Newton methods
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• Modified Newton methods differ from the 
standard method in that the tangent stiffness 
KT is only updated occasionally.

• Initial stiffness method:
 Tangent stiffness KT updated only once
 The method may result in a slow rate of 

convergence

• Modified Newton’s method:
 Tangent stiffness KT  updated occasionally 

(but not for every iteration)
 More rapid convergence than the initial 

stiffness method (but not quadratic)

• Quasi (secant) Newton methods:
 The inverse of the tangent stiffness obtained 

by a secant approximation rather than 
recomputing and factorizing KT at every 
iteration

Initial stiffness method

Modified Newton’s method
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Line search procedures
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• By line searches (LS) an optimal incremental 
step length is obtained by minimizing the 
residual               in the direction of           .  

• LS can be particularly useful for problems 
involving rapid changes in tangent 
stiffness, such as in reinforced concrete 
analysis when concrete cracks or steel yields.

• LS not only accelerate the iterative process, 
they can provide convergence where none 
is obtainable without LS, especially if the 
predictor increment lies outside the ‘‘ball of 
convergence’’.

• LS is highly recommended and may be used 
in all type of Newton methods; standard, 
modified, and quasi Newton methods.

 D
R
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opt optD s D    
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Convergence criteria
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• A convergence criteria measures how well the obtained solution satisfies equilibrium.
• In NFEA of the convergence criteria are usually based on some norm of the:

 Displacements (total or incremental)
 Residuals
 Energy (product of residual and displacement)

• Although displacement based criteria seem to be the most natural choice they are not 
advisable in general as they can be misleadingly satisfied by a slow convergence rate.

• Residual based criteria are far more reliable as they check that equilibrium has been 
achieved within a specified tolerance in the current increment.

• Alternatively energy based criteria that use both displacements and residuals may be 
applied. However, energy criteria should not be used together with LS.

• In general NFEA it is recommended that a combination of the three criteria is applied.
• The convergence criteria and tolerances must be carefully chosen so as to provide 

accurate yet economical solutions. 
 If the convergence criterion is too loose inaccurate results are obtained.
 If the convergence criterion is too tight too much effort spent in                               

obtaining unnecessary accuracy.
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Choosing step length
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• The optimal choice of the incremental step depends on:
 The shape of the equilibrium path:

Large increments may be used were the                                                                                                 
path is almost linear and smaller ones                                                                                                
where the curve is highly nonlinear

 The objective of the analysis:
If it is necessary to trace the entire                                                                                                    
equilibrium path accurately, small 
increments are needed, while if only                                                                                              
the failure load is of interest, larger
steps can be used until the load is 
close to the limit value

 The solution algorithm employed:                                                                                                 
The initial stiffness method require smaller increments than the modified Newton’s method 
that again require smaller increments than the standard Newton’s method

• It is desirable that the solution algorithm includes a solution monitoring device that 
on basis of: 
 Certain user prescribed input, and 
 Degree of nonlinearity of the equilibrium path is able to                                                                 

adjust the size of the load increment

extR

D
 large  smaller  required
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Load incrementation

Geilo 2012

• For monotonic loading, the load increment can be based on 
number of iterations:

where ௗܰ is a ‘desired number of iterations’ selected by the
analyst, ௡ܰିଵ is the number of iterations required for 
convergence at increment ‘݊ െ 1’, while ߣ߂୫ୟ୶ and ߣ߂୫୧୬

are upper and lower limit of the increment prescribed by the
analyst

• However, the initial load increment still have to be selected 
by the analyst

 min max
1

1

          d
n n n

n

N
N



       
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Automatic load incrementation
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• Even though you may find more 
sophisticated incremental load 
control methods, they can only 
work effectively if nonlinearity 
spreads gradually.

• Such methods cannot predict a 
sudden change in the
stiffness.

• Solution methods based on 
prescribed load
or prescribed displacements

are not able to 
trace the equilibrium path
beyond limit and turning 
points, respectively.

   ext ext ( )n n R R
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extR

1D  3D  4D  

D

ext
1R  equilibrium path 

2D  

ext
2R

ext
3R

ext
4R

load control 

displacement control 

 
 
 displacement  
 control fails 

load control fails



32

Example ─ Load control fails

• At limit (L) and bifurcation (B) points the tangent stiffness KT becomes 
singular 	⇒	 the solution of the nonlinear equilibrium equations is not  
unique at this point

Geilo 2012
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Example ─ Displ. control fails

• Cannot go beyond turning (T) points  ⇒	
have to prescribe negative displacement increments

Geilo 2012
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Arc-length methods
• In order to trace the equilibrium path 

beyond critical points, a more general 
incremental control strategy is                                
needed, in which displacement  
۲߂ and load ߣ߂ increments                                   

are controlled simultaneously

• Such methods are known as 
“arc-length methods” in which 
the ‘arc length’ ℓ of the combined
displacement-load increment
is controlled during equilibrium 
iterations

					⇒ we introduce an additional unknown ߣ߂
to the ndof incremental displacements ۲߂

⇒ an additional equation is required to obtain 
a unique solution to ۲߂ and ߣ߂

Geilo 2012
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Arc-length methods (2)
• In arc length methods a                                                                                                      

constraint scalar equation                                                                                                            
is introduced

in which the ‘length’ ℓ of
the combined displacement-
load increment is prescribed

where ߰ is a scaling parameter
( ۲߂ and ߣ߂ have different dimension)

• The basic idea behind arc length methods is that instead of keeping the load (or the 
displacement) fixed during an incremental step, both the load and displacement 
increments are modified during iterations

																					⇒	Limit and turning points may be passed with this method

Geilo 2012
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Arc-length methods (3)
• All variants of the arc length method consists of a prediction phase and a

correction phase:
1. Prediction phase:

During the prediction phase, an estimate for the next point on the equilibrium 
path ܈௡଴ ൌ ௡଴ߣ , ۲௡଴ ்,	is established from a known converged solution on
the equilibrium path ܈௡ିଵ ൌ ,௡ିଵߣ ۲௡ିଵ ்

2. Correction phase:
From this estimate, Newton iterations are employed during the correction phase to 
find a new point on the equilibrium curve based on the incremental form of the 
equations of motion and the constraint equation

۹෡்,௡௜ ௡௜܈߂ ൌ ௡௜܀߂ and    ۱ሺ܈௡௜ ൯ ൌ 0

where the augmented tangent stiffness matrix ۹෡்௡௜ and the incremental force 
vector ௡௜܀߂ is obtained from

and where ‘n’ and ‘i’ signifies the incremental load step and iteration number.
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Arc-length methods (4)
1. Normal plane arc-length method

Newton iterations are forced to follow a hyperplane that 
is normal to the initial tangent ܈ത௡ିଵ 	at a ‘distance’ ℓ
from the previous obtained solution at step ‘n-1’:
۱ሺ܈௡௜ ൯ ൌ ത௡ିଵ܈ ் ௡௜܈ െ ௡ିଵ܈ െ ℓ ൌ 0

2. Updated normal plane arc-length method
Hyperplane is normal to the updated tangent ܈ത௡௜
instead of ܈ത௡ିଵ 	:

۱ሺ܈௡௜ ൯ ൌ ത௡௜܈
் ௡௜܈ െ ௡ିଵ܈ െ ℓ ൌ 0

3. Spherical arc-length method
Newton iterations are forced to follow a hypersphere
of radius ℓ		centered at the converged solution ௡ିଵ܈
of the previous step ‘n-1’:

۱ሺ܈௡௜ ൯ ൌ ௡௜܈ െ ௡ିଵ܈
் ௡௜܈ െ ௡ିଵ܈ െ ℓଶ ൌ 0

4. Cylindrical arc-length method
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Implicit dynamics algorithm
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• The main advantage of an implicit method over an explicit method is the 
large time step permitted by unconditionally stable time integration 
methods

• However, unconditional stability in a linear problem does not guarantee 
unconditional stability in a nonlinear problem

• The incremental strategy for dynamic problems is provided by a temporal 
discretization algorithm that transforms the ordinary differential equation 
system into a time-stepping sequence of nonlinear algebraic equations. 

• Hence, a unified treatment of nonlinear static and implicit dynamic 
algorithms may be employed:

							⇒ The solution algorithms that have been presented for nonlinear 
static problems may also be applied to nonlinear dynamic problems
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Implicit dynamics algorithm (2)
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• Substituting a linearized (first-order) approximation to the internal forces ܀୧୬୲ ௡ାଵ, 
the equation of motion at time tn+1 becomes:

• Substituting the updated values for the nodal accelerations and velocities at time 
tn+1 , that with Newmark approximations may be obtained from:

we obtain the equation of motion on incremental form

where
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