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The Response Problem
Perturbation Theory

Start in equilibrium (bottom of potential well)



The Response Problem
Perturbation Theory

Force

?

Turn up force slowly
How does the system respond?



The Response Problem
Formal statement

1. Given a variationally optimized system (equilibrium)

2. Assuming the perturbed system stays variational

É How does the system respond to infinitesmal perturbations?
É How does the energy change with respect to the perturbation

strengths?
É What if the perturbations are time dependent?



Applications in Quantum Chemistry

É Geometric gradients, Hessians. Geometry optimization and
dynamics.

É Electromagnetic interactions — Absorption, Emission, Optics.
É Electron correlation (Møller–Plesset perturbation theory)
É Nuclear Magnetic Resonance (NMR)
É Relativity

We often go to high orders (nonlinear optics, combined
geometric–electronic perturbations, excited state properties,..)
Response theory only feasible way to calculate time dependent
properties in many cases.



Our Cast

The infinitesmal perturbation strengths

ε= (ε1,ε2, . . .εK)
T

K is a small number (∼ 1− 10)

The model parameters

x = x(ε) = (x1, x2, . . . xN )
T

N is a large number (∼ 106–108).

The energy functional which determines the dynamics

L(x(ε),ε)



The Response Problem

Observable properties can be calculated as derivatives of the
“energy”; Response Functions:

〈〈Â; B̂〉〉=
∂ 2

∂ εA∂ εB
L(x(ε),ε)

But, the energy must be variational for all perturbation strengths

∇x L(x(ε),ε) = 0

We have to determine the Taylor expansion of x(ε)

x = x(ε) = 0+ x1ε1+ x2ε2+ x12ε1ε2+ . . .



Some Notation

With a multi index m= (m1, m2, . . . mK) we mean

xm = xm1
1 xm2

2 . . . xmK
K

and if N is an integer:

cN xN =
∑

|m|=N

cm xm.

We write (slightly non-standard but following Brent)

f (x) = p(x) mod xN+1

when the Taylor expansions in x are equal up to order N .



Response Algorithm

Algorithm 1 Determine the Taylor expansion L(x(ε),ε)
mod ε2N+2, with the constraint ∇x L(x(ε),ε) = 0.

Require: ∇x L(x , 0)
�

�

x=0 = 0
1: x (0)← 0
2: for k = 1 to N do
3: g(k)←∇x L(x (k−1),ε) mod εk+1 {Order k forces}
4: Solve ∇x L(xkε

k, 0) =−g(k) mod εk+1 {Linear in xk}
5: x (k)← x (k−1)+ xkε

k {Build polynomial solution}
6: end for

Ensure: ∇x L(x (N)(ε),ε) = 0 mod εN+1

7: return L(x (N)(ε),ε) mod ε2N+2 {Wigner 2N + 1 rule}



An example: Harmonic well with x4 confinement

Force

?

Apply the algorithm..



An example: Harmonic well with x4 confinement

x(1)Force



An example: Harmonic well with x4 confinement

x(1)x(3) Force



An example: Harmonic well with x4 confinement

x(1)x(3)

x(5)

Force



An example: Harmonic well with x4 confinement

x(1)x(3)

x(7) x(5)

Force



An example: Harmonic well with x4 confinement

x(1)x(3)

x(7) x(5)

Exact

Force

Solution only improved for small forces (radius of convergence)
Usually we don’t know the exact solution..
(Can try Padé or better parameterization)



Response from Automatic Differentiation

What do you have to program yourself?

1. Implement the energy L(x ,ε)

2. (Optimize the reference state)

3. (Implement an efficient Hessian solver H x = g)

What is done for you:

1. Arbitrary order gradient ∇x L(x (k−1),ε)

2. Arbitrary order properties L(x (N)(ε),ε)

É Useful for all nonlinear energy expressions!



Time Dependent Perturbation Theory

+

-
Light pushes and pulls electrons back and forth



Time Dependent Case

Many physical perturbations are time-periodic (EM fields etc).
Look at the quasi-energy

Q(t) = 〈Ψ(t)|Ĥ(t)− i
∂

∂ t
|Ψ(t)〉

We have a variational principle for Q(t). But we don’t want to
make a super long Taylor expansion in t!



The Adiabatic Approximation

É Periodic perturbation
É No memory between cycles
É No absorption, instead divergences
É Response is in phase (0◦ or 180◦) with the perturbation
É Fourier series solution! (Floquet theory)



Time dependent Taylor variables

Let’s turn our Taylor polynomial into a Fourier expansion:

ε= Feiωε t .

We can treat it with AD if we program

∂ εn

∂ t
= inωεε.

Taylor expand
Q(ε,ε∗)

and use the response algorithm.



Density Functional Theory: A case for AD
In Density Functional Theory the energy εX C is extremely
complicated

. . .

. . .

But for the algorithm we need k:th order derivatives:

g(k)←∇x L(x (k−1),ε) mod εk+1

Hopeless to differentiate by hand, easy with AD. No explosion of
partial derivatives.



Benchmark

Exchange-correlation Derivatives
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Derivative order

Not so bad, but don’t compute so many partials..



So what can we use it for?

Response theory connects Caroten ↑ and Carrots ↓


