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Main goal

Develop efficient adaptive finite element
techniques for complex models arising in
Industrial applications.

Particular focus on applications in solid
mechanics.

Adaptivity should be done in an interactive
fashion in real time.
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Typical problem

Figure 1:Gearbox model 2.3 Mdofs
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Typical problem: features
Problems haveeveral million dofsin the initial
coarse grid!

Coarse grid model based emplified
geometric model with small details removed.

Small details may be critical for stress levels.

Enhanced local resolution necessary to compute
accurate stresses.

Automatic residual based refinement may
manufacture models which are too large.

Seek to minimize/avoid global solves on refined
grid.
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Submodeling

Solve global coarse grid problem and store
solution.

ldentify area of interest interactively.

Cut out suitable local model containing area of
Interest.

Compute boundary conditions from coarse grid
solution.

Refine the mesh In the area of interest.

Compute enhanced local solution by solving
local problem.

Mats G Larson — Chalmers — p.7



Submodeling: Example 1

(a) Global problem (b) Submodel
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Submodeling: Example 2

(c) Global problem (d) Definition of area of interest
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Submodeling: Example 2

(e) Submodel (f) Submodel mesh
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Submodeling: Interface
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Figure 3:GUI for interactive submodeling

Mats G Larson — Chalmers — p.11



Submodeling: Notation

E1

E2

Figure 4: The domainf}, the submodeb, domain of
Interestw
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Submodeling: Elasticity
Findu : © — R’ such that

—V-.-o=f InQ,
oc=AV - -ul +2ue(u) Iing,
u=g¢gp ONlp,
n-o=gy Oonly.

wheree(u) = (Vu + Vul)/2 is the strain and andp
are the Lame parameters.
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Submodeling: FEM

Global FEM: Find|uy € Vi (€2)|such that

a(ug,v) =1(v) forallve Vy(Q)

Submodel FEM: Find|u" € V! (w)|such that

a(up,v) =1l(v) forallv e V) o(w)

whereV” C V is a finite element space of piecewise
polynomials withv = g on dw.

h {uH in Q\ w

U — ]
H u  inw
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A posteriori error estimation

Contributionsto error in submodd:

Coarse grid error gives error in submodel
poundary conditions.

Resolution in the submodel.
Resolution of the geometry.

Seek to construct algorithms which balance these
three contributions.

A posteriori error estimates can be derived by duality
based methods.

Neglect geometry resolution for simplicity.
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Goal oriented error estimates

Objective: Letm(-) be a linear functional ofv. We
seek to estimate the error

m(u) — m(uy)

In the functional in terms of the computed solution.
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Examples of functionals

Average of error in subdomain

m(e) = /w evda

Average of error in derivative in subdomain

m(e) = —/e@wwdaz
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Typical weight functions

(a) Point value (b) Derivative point value
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Dual problem

To represent the error we introduce the dual problem:
Find ¢ € V such that

m(v) =a(v,¢) allveV.
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Error representation

Settingv = e = u — v/, in the dual problem we get

m(u) —m(ujy) = m(e)
= a(e, @)
= U(¢) — a(ujy, 9)
= (¢ — m¢) — alug, ¢ — 7¢)
+U(md) — aluy, 7).

Here we used the linearity af -, -) andm(-) and
subtracted and added an interpolantc V), of ¢.

Note that the last term iBot zero due to variational
C rl m e ' Mats G Larson — Chalmers — p.20



Last term

The term
Z(ﬂ-(/b) o OJ(U?{, qu)

only depends on the elements neighboiaag

In fact:
l(m¢) — a(uy, m¢) = l(m¢ — w) — a(uf, 7¢ — w)

for all w € Vg such thaty = 0 on ow.
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Elasticity: dual problem
Find ¢ : O — R? such that

—V.-o=v 1In,
og=AV .ol +2ue(p) inf,
»=0 onlp,
n-c=0 only.

Takingy = §,,m controls the displacement errar —
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Example: solution to dual
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Example: solution to dual




L ocal dual problem

|dea: Derive an estimate based on
Dual argument on the subdomain.

A posteriori error estimate of error in boundary
condition.

L ocal dual problem: find ¢ :  — R? such that
—V-.-oc=19 Inuw,
oc=AV- ol +2ue(¢p) INw,
»=0 onow.
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Error representation

We have

[ev=[e=V-at0)
/V o(e):e(p—7op) + /&u - (n-0(9))

First term Is standard and second term can be
estimated using a global duality argument and
standard estimates

/8 e (n-0(¢))| < CIHR(up)|

with o > 3/2 (or a more detailed approach)

Mats G Larson — Chalmers — p.26



Elasticity: solution to primal
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Elasticity: solution to local dual

Figure 5:data = dipolee,
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Elasticity: solution to local dual

Figure 6:data = dipolexe,

Mats G Larson — Chalmers — p.29



Elasticity: solution to local dual

Figure 7:data = dipolexe,
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M esh refinement
Mesh refinemenmust respect CAD geometry

Otherwise wealo not get convergence to the true
solution and artificial stress concentrations may

OCCUl.

Figure 8:Projection of new node to CAD geometry
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M esh refinement
Basic principle:

Find NURBS patches corresponding to the
triangles under refinement.

When the coarse mesh is refined the new nodes
are projected to the true geometry using the
surface descriptions.

Requirements:
Sufficiently good quality of initial grid.
Not too coarse Initial grid.
Alternative:

Remesh the submodel. Useful for instance when
geometry changes locally.
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M esh refinement: example

Figure 9:Sphere defining area of interestume:-»x



M esh refinement: example

Figure 10: Close up of sphere defining asea-ofinteres!



M esh refinement: example

Figure 11:Solid after three refinemMentSaumes- s



M esh refinement: example

Figure 12:Mesh after three refinetrerntsmes-»2*



Conclusions and current work

Conclusions:

Submodeling appears to be an attractive
technique for practical use.

Initial a posteriori error estimates have been
derived.

Mesh refinement techniques respecting CAD
geometry have been developed.

Interactive environment developed.
Current work:

Construct suitable adaptive algorithm choosing,
mesh size and size of subdomain.

Couple the submodeling with local shape
Optl m |Zat|0n . Mats G Larson — Chalmers — p.37
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