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Solve the ODE initial value problem

flu(t),t), te(0,T],

Up,

——
= =
o=
|

foru: [0,7] — RY.
Example:

Solution u(t) = (sin(t), cos(t)).

Mats Larson - Chalmers —p. 3



Variational formulation:

/OT(u, v) dt = /OT(f(u, ), v) dt.

The cG(qg)-method for w = f then reads:
find U € V such that:

T T
/ (U,v) dt = / (f(U,-),v)dt YveW,
0 0
where the trial and test spaces V' and W defined as

Vo= {wele(o. 1) : v, € PUI)},
W — {”U . ?]Z"]j & Pq_l([j)h
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Now ¢ = 1. The trial space consists of linear polynomials and the the test
space of constant ploynomials.

cG(1):
/ttn (U7, 0) dt:/ttn(f,v) dt.

n—1 nq

Take v = (0,...,0,1,0,...,0) (i:th position), then

tn tn
| U= g
t —1 tn—l

n

or equivalently

tn U, (t,_ U:(t,) tn_1+ tn,
Ui(ty) —Ui(th-1) = / fi dt = ky f; ( ( 1);_ ( ), 12+ ) :
tn—1

which is solved with fixpointiteration for U(¢,,).
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The dual problem is given by

—ng(t) — ‘]T<U7U7t)¢(t)+g(t)7 t6[07T>7
o(T) = v,

where

1 8f
J(v1,v9,) = 8_(8v1 + (1 — s)vg, ) ds.
0 Uu
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The dual problem is given by

—ng(t) — ‘]T<U7U7t)¢(t)+g(t)7 t6[07T>7
o(T) = v,

where

I ->—/1a—f<s (1 ), ds
U1,02,°) = . ou U1 S)U2, .

By choosing v and g, different functionals L, ,(e) can be estimated. Two
basic examples:

v~ e(T)/|le(T)|| and g = 0 gives Ly 4(e) =~ |le(T)]]
Y =(0,...,0,1,0,...,0)and g = 0 gives Ly, 4(e) ~ e;(T)
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Take v = e(T)/||e(T||). Then
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Take v = e(T)/||e(T||). Then

le(T)]| = (qﬁ,u—U FU) + flu))dt

/ (6 Rt = [ (&m0, RU)at
> [ @-ro R <Y [ 1lo=mollIRW) |t

n=1 n—

M tn
< Z/ k4|6 ||| R||dt

=1 t’n—l

where
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|h?R(U)|| measures how good the calculation is
done locally.
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|h?R(U)|| measures how good the calculation is
done locally.

S(T) = foT |09 |dt measures how fast the local
errrors are accumulated globally.
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|h?R(U)|| measures how good the calculation is
done locally.

S(T) = foT |09 |dt measures how fast the local
errrors are accumulated globally.

S(T") is called stability factor.

Example:
1. — Au=0,5(T) <1 (parabolic).
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|h?R(U)|| measures how good the calculation is
done locally.

S(T) = foT |09 |dt measures how fast the local
errrors are accumulated globally.

S(T") is called stability factor.

Example:
1. — Au=0,5(T) <1 (parabolic).
2. Mass and a spring problem, S(T') =~ T
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|h?R(U)|| measures how good the calculation is
done locally.

S(T) = foT |09 |dt measures how fast the local
errrors are accumulated globally.

S(T") is called stability factor.

Example:

1. — Au=0,5(T) <1 (parabolic).

2. Mass and a spring problem, S(T') =~ T
3. Lorenz, S(T') =~ €.
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Heat equation
BS equation - Finance
Wave equation
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The heat equation reads

w—Au=f, in Qx|[0,T],
u(0, z) = uo, on €,
u(t,.) =0, on  Of).
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The heat equation reads

w—Au=f, in Qx|[0,T],
u(0, ) = uy, on (.
u(t,.) =0, on  Of).

Multiplying the by a test function

veW = L*([0,T], H'(Q)) and integrating on
(2 x [0, 7] we obtain

[ () - Gu)a= [0
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Integration by parts using the boundary condition
gives the problem we wish to solve

Problem: Find v € YV such that

fo ( Ug, U (u,v))dt — 0,
(O Cl?) — U(),

/\\
,

for every v € W, where

a(u,v) = (Vu, Vo).
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Let VP C H!(Q) denote the space of piecewise continuous functions of order p in
space.
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Let VP C H!(Q) denote the space of piecewise continuous functions of order p in

space. Yo 2 - PJLY
The standard nodal basis of V! SN N N S T

S0 51 s5SyS
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Let VP C H!(Q) denote the space of piecewise continuous functions of order p in
space. Yo 2 - PJLY
The standard nodal basis of V!: SN N S T N

5051 5588
On each space-timedab S,, = I, x €2, we define

W =Aw(t,s): w(t,s) = th’l)j(S),’Uj e VP (t,s) € Sn}.
j=0
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Let VP C H!(Q) denote the space of piecewise continuous functions of order p in
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Let VP C H!(Q) denote the space of piecewise continuous functions of order p in
space. Yo 2 - PJLY
The standard nodal basis of V!: SN N S T N

5051 5588
On each space-timedab S,, = I, x €2, we define

W =Aw(t,s): w(t,s) = th’l)j(S),’Uj e VP (t,s) € Sn}.
j=0

tn
mn ) Sn

0 S
Let W2 C VW denote the space of functions defined on [0, 7] x Q2 suchthat v | g, € W;i

forl <n < N.
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FE problem: FInd U € WY%suchthatforl <n < N

f[ (Ui, v) +a(U,v))dt =0 forallv e Wit
Ut (t,) =U(t,), n=1,..., N,
U+(t0):lb0,

where U%(t,,) = lim -0 U(t, =+ €) and

a(U,v) = (VU, V).
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Why?

To validate the solution and to approximate the
error.
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Why?

To validate the solution and to approximate the
error.

To choose a suitable mesh.
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To represent the error in a linear functional,

(b, o(T, ) + / (e, 0),

where e = u — U, we Introduce the continuous dual
problem for the heat equation:

Dual problem: Find ¢ € WV such that

( _¢t_A¢:¢17 in ()X [OaT]v
§ ¢ =0, on 0,
o(T,x) = o, on ).

\
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Multiplying with the error e = v — U € W and integrating on €2 x [0, T']

/OT(B,%)dt = /OT ( — (e, ¢s) — (e, A¢))dt.
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Multiplying with the error e = v — U € W and integrating on €2 x [0, T']

/OT(B,%)dt = /OT ( — (e, ¢s) — (e, A¢))dt.

Using integration by parts and Green’s formula we obtain

(1o, e(T,x)) + /OT(e,lm)dt = /OT ((et,qb) + (Ve, qu))dt.
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Multiplying with the error e = v — U € W and integrating on €2 x [0, T']

/OT(B,%)dt = /OT ( — (e, ¢s) — (e, A¢))dt.

Using integration by parts and Green’s formula we obtain

(1o, e(T,x)) + /OT(e,lm)dt = /OT ((et,qb) + (Ve, qu))dt.

Since e = u — U and u solves the FE problem we get the error representation
formula

Warel@e) + [ (evit=— [ (W0 +a,0) - (1,0))a
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We now proceed estimating the error when f = 0. Let 7 : W — W71
be the Lo projection intime, and let P be a suitable interpolation
operator into VP in space. Then using Galerkin orthogonality we can
replacep by ¢ — nPp = ¢ — Pp+ Pp— wP¢
T T
(2, e(T, x)) + / (€, ¢1)dt = — / ((Ut, ¢ — Po)+a(U, ¢ — qu)) di
0 0
T
- [ (@i Po~nPo) + U, P6 — 7P0))

—ZZ/ e, (U), 6~ Pg) dt
—Z/ U), Po —Pg) dt,

Mats Larson - Chalmers —p. 19



where

(ng(U)a ¢ o P¢) — ([Uaﬁ]a ¢ T P¢)8/~ij —|— (Ut T AU) ¢ T P¢)K)j
IS the space residual, and
(r'(U), P¢ — 7P¢) = (Uy — AU, P — wP¢)

Isthe timeresidual. Here we used the notation [U,| to denote the jJump
In U, over element interfaces.
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Rewriting we see that
T
(n,e(Ta)) + [ (etn)it] <
D231 f (U= Pl + (U= 0= P
+Z/ (U; — Au, P$ — mP9)]

<ZZHh‘”2 o112 (6 = P&)lowm, w1,

+ | U — Aull;x1, |6 — P||i;x1,
+ > U — Aulls, |Po — 7P|s,
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Compute an approximation ® of ¢ using an enriched finite
element space, for instance higher order approximation.

Compute Po.
Compute [, (rj’jj(U), O — Pgb) dt using quadrature in
space and time for each element , and time step.

Compute TP .

Compute fIn (rt(U), P¢ — ngb) dt using quadrature in
space and time for each time step.
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A brief introduction to option pricing

Mats Larson - Chalmers - p. 23



A brief introduction to option pricing
The finite element method
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A brief introduction to option pricing
The finite element method

A posteriori error estimation for the European
option
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A brief introduction to option pricing
The finite element method

A posteriori error estimation for the European
option

Extension of the framework to

- barrier options
- lookback options
- Aslan options
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European call option:
Payoff: max (0, S(T) — K),
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European call option:
Payoff: max (0, S(T) — K),

European put option:
Payoff: max(0, K — S(T)),
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- . s A p
European call option:
50(- . “r",*( "y
PayOff maX(O, S (T) - K ) y ﬁ ;‘wm\v,vx'\W,'.Jw,u
. o a5 A v
European put option: Tt
40 M\ RYRRAN

Payoff: max(0, K — S(T)), .. .
American call option:

Payoff: max(0,S5(t) — K),t < R
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European call option: N
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Payoff: max(0,S(T) — K), Ly :
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European put option: st
40 1Y, L

Payoff: max(0, K — S(T)), | ..

American call option:
Payoff: max(0,S(t) — K),t < T, |

American put option:
Payoff: max(0, K — S(t)),t <T.
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Risk free asset B(t) = B(0)e".
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Risk free asset B(t) = B(0)e".
An asset S(t), solving the SDE

dS(t) = (r — v)S(t)dt + o S(t)dW (1)),
S(0) = So,

where

r isthe constant interest rate,

v isthe constant continuous dividend yield,
o isthe volatility,

and W (t) isa @ Brownian motion process.
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Risk free asset B(t) = B(0)e".
An asset S(t), solving the SDE

dS(t) = (r — v)S(t)dt + o S(t)dW (1)),
S(0) = So,

where

r isthe constant interest rate,

v isthe constant continuous dividend yield,
o isthe volatility,

and W (t) isa @ Brownian motion process.

The solution to the equation above is

2

S(t) _ S(O)G(T_V_%)H_Uw(t).
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Let v(¢, S(t)) denote the value of a portfolio at time ¢, then

o25(t)?
2

U;/s (tv S(t)) + TS(t)?}; (tv S(t)) _ Tv(tv S(t)) =0,
t<T, S(t)>0.

vy (t, S(t)) +

Together with the terminal condition v(T', S(T")) = ¢g(S(T)), the
eguation above has the following solution,

o2
o(t, S(t)) = e TE |g(sel" TV

wheres = S(t)and 7 =T —¢.
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A European call option with payoff ¢(S(T)) = (S(T) — K)™,
maturity date T and strike price K hasthevalue c(t, S(t), K) at time
t < T where

c(t,s, K) =s®(dy) — Ke ""®(da),

lni—l—(r+a—2)7'
dp = —& 2 and dy,=dy —
1 aﬁ 2 1 Oﬁ,

where @ is the probability distribution function for a N (0, 1)
distributed stochastic variable.
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Multiplying the Black-Scholes equation by atest function
veW = L?([0,T], H(Q)) and integrating on 2 x [0, 7] we obtain

2

/OT ((ut, v) + (r —v)(sus,v) + % (s%uss, v) — 7(u, v))dt —0.
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Multiplying the Black-Scholes equation by atest function
veW = L?([0,T], H(Q)) and integrating on 2 x [0, 7] we obtain
2

/OT ((ut, v) + (r —v)(sus,v) + % (s%uss, v) — 7(u, v))dt —0.

Integration by parts using the artifi cial boundary condition v, = 0, or
equivalently by the Black-Scholes equation

r 1
Us = U — U
o s(r—v) s(r—v)

gives the problem we wish to solve.
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Problem: Find v € YV such that

o (mlu ) + alu, 0))dt = 0,
u(T,s) = max(s — K, 0),

\

for every v € W, where

( 2

m(ug,v) = (us,v) — m(sut, v)a0;
| awme) =y = o)) - % (s7us, vs)
\ +3 ( )(Su v)oa — r(u,v).
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Let VP C H!(Q) denote the space of piecewise continuous functions of order p in
space.
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Let VP C H!(Q) denote the space of piecewise continuous functions of order p in

space. Yo 2 - PJLY
The standard nodal basis of V! SN N N S T

S0 51 s5SyS
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Let VP C H!(Q) denote the space of piecewise continuous functions of order p in
space. Yo 2 - PJLY
The standard nodal basis of V!: SN N S T N

5051 5588
On each space-timedab S,, = I, x €2, we define

W =Aw(t,s): w(t,s) = th’l)j(S),’Uj e VP (t,s) € Sn}.
j=0
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Let VP C H!(Q) denote the space of piecewise continuous functions of order p in
space. Yo 2 - PJLY
The standard nodal basis of V!: SN N S T N

5051 5588
On each space-timedab S,, = I, x €2, we define

W =Aw(t,s): w(t,s) = th’l)j(S),’Uj e VP (t,s) € Sn}.
j=0

tn
mn ) Sn

0 S
Let W2 C VW denote the space of functions defined on [0, 7] x Q2 suchthat v | g, € W;i

forl <n < N.
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FE problem: FindU € W? suchthatfor1 <n < N

(

f]n (m(Ut,U) -+ CL(U,U))dt —( for a” v E W?%_l
U (ty)=UT(tn), n=N-1,...,1,
U_(tN) — ur,

\
where U*(t,,) = lim o> U(t, £ €) and

( 2

m(ug,v) = (ug,v) — T—,/)(SUtav)c’ma
| awr) = v o) (suv) = 5 (s, v)
\ +3 ( )(Su v)oa — r(u,v).
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Param
ues are
K =
’azol,q_O
—00.1 —
1 _0.10
T =
= 0.5,an
candt =
_O.
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Why?

To validate the solution and to approximate the error.
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Why?
To validate the solution and to approximate the error.

To choose a suitable mesh.
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Why?
To validate the solution and to approximate the error.

To choose a suitable mesh.
- we only need the solution in one or a few points
- 1f we are interested in the derivative of the solution
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To represent the error in a linear functional,

(u R U) ¢)7

we Introduce the continuous dual problem for the
Black-Scholes equation:

Dual problem: Find ¢ € V such that

y

~¢r 4+ (02 + v —=2r)p — (r — v — 20%)5¢s + G 5 bes = 0,
¢(0,5) = .

\

\
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Multiplying with the errore =« — U € W and
Integrating In space and time we get

/OT(— (61,€) + (02 + v = 2)(6,

—(r—v-— 202)(8¢3, e) + %Q(SngSS, e))dt = (.
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Using integration by parts and neglecting the
boundary terms we get

wref0.9) =~ [ () +ae,0))at
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Using integration by parts and neglecting the
boundary terms we get

wref0.9) =~ [ () +ae,0))at

Since e = u — U and wu solves the FE problem we get
the error representation formula

wre09) = [ (mU.0) + altr )
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Let 7 : W — WY~ ! bethe Ly projection in time, and let P be a
suitable interpolation operator into VP in space. Then using Galerkin
orthogonality wecanreplacep by ¢ — nP¢p = ¢ — P + Pp — nP¢
T
(0.6(0.5) = [ (m(Ui,6— Pé) + a(U,0— Po)) dt
T
/ (m(Ut, Py —nPo)+ a(U, Pop — ngb)> dt
0
=ZZ/ (75, (U),6 — Po) dt
n 7 In
3 / (rt(U), Po — qus) dt,
n In

where
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0.2

(1%, (V). ¢ = P§) = = (°[Usl, & — Pé)o,
2
(U, + (r — v)sU, + %SQUSS — U, ¢ — Po)y,
IS the space residual, and
2

(r{(U), P — mPd) = (U, + (r — v)sUs + —52Uss — rU, P — wP)
2

Isthetime residual. Here we used the notation [U;| to denote the jump
In U, over e ement interfaces.
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Compute an approximation ® of ¢ using an enriched finite
element space, for instance higher order approximation.

Compute Po.
Compute [, (r,ij(U), O — Pgb) dt using quadrature in
space and time for each element , and time step.

Compute TP .

Compute fIn (rt(U), P¢ — ngb) dt using quadrature in
space and time for each time step.
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To estimate the error at s = so welet ¢ = §5, (s). Figure shows ¢, forc = 0.1 and o = 0.3
whenr = 0.1.
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We approximate the derivative of u by g—"s‘ ~ “(S+”)2_M“(3_“) . To estimate the error of the

derivative of the solution we thus choose ¢ (s) = (ds,, (s — u) — ds,, (s + 1)) /2p.
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We approximate the derivative of u by g—"s‘ ~ “(S+”)2_M“(3_“) . To estimate the error of the

derivative of the solution we thus choose ¢ (s) = (ds,, (s — u) — ds,, (s + 1)) /2p.
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Up-and-out call option with payoff

maX(S(T) - K, O)l{ma@te[o,T]S(t)<H}’
at maturity 7.

Mats Larson - Chalmers —p. 43



Up-and-out call option with payoff

maX(S(T) - K, O)l{ma@te[o,T]S(t)<H}’
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at maturity 7',
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Up-and-out call option with payoff
maX(S(T) K, O)l{ma,xte mS(t)<H}>

at maturity 7.
Down-and-out call option with payoff

max(S(1) — K, 0)Lymin,com5(0)>H}-

at maturity 7.
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The same pricing PDE (BS) still holds between
monitoring dates
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The same pricing PDE (BS) still holds between
monitoring dates

Apply barrier constraints at discrete monitoring
dates
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The same pricing PDE (BS) still holds between
monitoring dates

Apply barrier constraints at discrete monitoring
dates

The finite element method Is the same (except for
the barrier constraints)
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The same pricing PDE (BS) still holds between
monitoring dates

Apply barrier constraints at discrete monitoring
dates

The finite element method Is the same (except for
the barrier constraints)

The error representation formula is still valid with
a suitable choice of the dual problem

Mats Larson - Chalmers —p. 44



For the value of the discretely monitored up-and-out call, u(, s), with
monitoring dates ¢;, we have the barrier constraint

0 IfS]ZH, j:O,l,...,J,

u_(tlﬂ;vs') —
’ ut(ty,s;) ifs;<H, j=0,1,...,J,

where H is the barrier.
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For the value of the discretely monitored up-and-out call, u(, s), with
monitoring dates ¢;, we have the barrier constraint

u_<tlﬂ;7 Sj) —

where H is the barrier.
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For the value of the discretely monitored up-and-out call, u(, s), with
monitoring dates ¢;, we have the barrier constraint

u_<tlﬂ;7 Sj) —

where H is the barrier.

H =120
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Parameter valuesarec = 0.3,r = 0.1,¢ = 0.0, 7 = 0.5,t = 0.0, K = 100, and H = 120.
Monthly sampling.

Mats Larson - Chalmers —p. 46

—- A —— Y B B . N | Y Y . Y I



Dual problem: Find ¢ € W

;

—t + (0% + v =20)p — (r — v — 207)s¢s + G 5°hss = 0,
¢(O7S) — 53047

¢T(th) = <

p
0 iijZH, j:O,l,...,J,
ty € D.

¢_(t7;,8j) if8j<H, 17=0,1,...,J,

\
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Multiplying with the error e = v — U € VV and integrating in
space and time we get

Z/ —(b) + (0> + v — 2r)(6, ¢)

2

—(r—v —20")(s¢s, €) + %(S2¢337 6))dt = 0.
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Multiplying with the error e = v — U € VV and integrating in
space and time we get

Z/ —(60) + (07 + v — 2) (0, )

2

—(r—v —20")(s¢s, €) + %(S2¢337 6))dt = 0.

We now have jumps in ¢ at the monitoring dates, affecting only
the first term. Studying this term in detail we see that

_Z/t*k (¢y, €) dt
Z( [ e <¢<t;;>,e<tz>>+<¢+<tzl>,e+<tzl>>)
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Next we note that
(¢ (th), e (th) — (67 (), e (1))
= [ ) — o e (1) ds

[y (670 — 6" (1) ds =,

were the first term on the right is zero since
F(t) = ¢~ (t)), and e (t}) = " (t;) for
s < h(ty)H, and second term is zero since
o7 (t7) = e (ty) = 0,fors > h(t;)H.
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Integrating the other terms as well just as for the European
option, we get the same error representation formula

e(0, 54) = Z/t

Uta

+a(U,9))

where the bilinear forms m(u;, v) and a(u, v) are defined exactly

as before.
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¢ for two different values of o whenr» = 0.10 and ¢ = 0.0 for the weekly sampled
down-and-out barrier call option with So = 100 and barrier H = 99.9.

c=0.1 c=023

B | L L g e o4l |
i S I B S 03l |

024 |

014

150
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¢ for the weekly sampled double barrier call option with S = 100 and barriers H;,,, = 95 and
Hpign = 125, whenr = 0.10 and ¢ = 0.0.

o=01 o=0.3

0.2 4 |

014

150
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¢ for the monthly sampled double barrier call option with Sg = 100 and barriers H;,,, = 95
and Hp,;45, = 125 wheno = 0.2, = 0.10 and g = 0.0.

150
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