3 Nonlinear Problems

We introduce a general paradigm for residual-based adaptivity in the approximation of
nonlinear variational problems. This provides the abstract framework for the later appli-
cation to various types of nonlinear problems in solid and fluid mechanics including also
eigenvalue and optimal control problems.
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3.1 Preliminaries

Primal and dual Galerkin approximations of linear problems:

a(u, o) = F(p) VpeV, a(un, o) = F(pn) Yon € Vi

a(y,z) =J(¥) VeV, a(tn, zn) = J(Yn) Vi € Vi

Primal solution w, dual solution z:

J(u) = a(u,z) = F(z)

Primal error e := u—uy, dual error e* := z—z,
(by Galerkin orthogonality):

J(e) =ale, z) = ale,e’) = alu,e’) = F(e")

J(e) =ale,z—n) = F(z—tn) — alun, 2—9Yn) tn €Vj

/

-~

=: p(un)(z-¥n)
F(e) = a(u—gpp, €’) = ;](u—ﬁﬂh) — a(u—pn, Zhl on € Vi

-~

=: p*(2p)(u—pp)

= () = o) e—tn) + 50 () umgn). onthn € Vi
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3.2 Galerkin approximation of nonlinear variational equations

Variational equation in function space V :
A(u)(-) =0, target quantity J(u)
Galerkin approximation in finite dimensional subspaces V; C V' :

Ap(up)(-) =0, error measure J(u)—J(up)

Example: Nonlinear convection-diffusion equation (Burgers equation)
—vAu+uVu=f, V=HjQ)"

Au)(¢) = v(VuV) + (u- Vu, ¢) = (£, ¢)

Formal Euler-Lagrange approach:
‘Dual’ variable z (‘Lagrangian multiplier’)
Lagrangian functional — L(u,z2) := J(u) — A(u)(2)

(P) Stationary point {u,z} € VxV:

= o {ZHTH )20 s

(P,) Galerkin approximation {up, 2z} € Vi xVj, :

Vs =0 o { T A |y i

Goal: Estimation of error J(u)—J(uy) in terms of ‘primal’ and ‘dual’ residuals:

p(up)(+) == —A(un) ()
p* (un, 2)(+) := J'(un) (-) = A’ (un) (-, 2n)
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Proposition. We have the error identity

J(u) — J(up) = o (un, 2) (w—n) + R,

-~

DO | =

plun)(z—vn) +

7

N | =

-~

primal dual

with arbitrary approximations ¢pn, Y € Vi and a remainder Ry which is cubic in the
primal and dual errors e == u—uy and e* := z—z,

1 1
Rf) = 5/ {J" (un+se)(e, e, e) — A" (up+se) (e, e, e, z,+se”)
0

— 3A"(up+se)(e,e,e*)} s(s—1) } ds

Proof. Set = := {u, 2}, xp :== {up, 21}, e:=x—xp, and L(z) := L(u, 2).

J(u) = J(up) = L(z) — L(zn) — A(u)(2) + An(un)(2)

=0

_ /0 L (entse)(e) ds — 3 {1/ (@) () + I'(2)(e))

+ %L'(zh)(e)

Error representation of the trapezoidal rule

| =500+ 10} 5 [ st ds

yields

J(u) — J(up) = %L'(xh)(e) + %/0 L" (zp+se)(e, e e) s(s—1)ds

By Galerkin orthogonality

L'(zp)(e) = L'(zn)(x—yn) + L'(xn) (Yo —z1), yn € Vax Vi

-~

=0

= J'(up)(u — @n) — A'(up) (v — o, 2n) — Aun)(z — tn)

Q.E.D.
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Remarks:

1. The derivation of the error representation does not require the uniqueness of solu-
tions (important for application to eigenvalue problems). The a priori assumption
zp — = (h — 0) makes the result meaningful for cases with non-unique solutions.

2. The evaluation of the error identity requires guesses for the primal and dual solution
u and z.

3. The cubic remainder term RS’) is usually neglected.

4. The solution of the dual problem takes only a ‘linear’ work unit.

Proposition. There holds the simplified error representation:
J(u) = J(un) = plun)(z= 1) + R,

for arbitrary @, € Vy, , with the quadratic remainder

1
R = / {A"(up+se)(e, e, z) — J"(up+se) (e, e) } ds.
0

Proof. By integration by parts

R = — /0 {A'(up+s€) (e, 2) — J (up+se)(e) } ds
+ A'(u)(e, 2) = J'(u)(e)

= —A(u)(z) +_A(uh)(z) + J(u) — J(up)
= —p(un)(2) + J(u) = J (un) = —p(un)(z—pn) + J(u) = J (up)

Q.E.D.

Remark: Application of the abstract theory to the Galerkin approximation of the Navier-
Stokes equations with the quadratic nonlinearity (u - Vu,-)r2 yields remainder terms of
the form

1
RELZ) = 2(e" - Ve, 2), RS’) = —5(6“ - Ve, e?)

38



3.3 Nested Solution Approach

For solving the nonlinear problems by a Galerkin finite element method, we employ the
following iterative scheme. Starting from a coarse initial mesh Ty, a hierarchy of refined
meshes

TocT,Cc---CcT,C---CTyg

and corresponding finite element spaces V, [ = 1,..., L, is generated by a nested solution
process.

1. Initialization: For j = 0, compute the solution ug € V; on the coarsest mesh T .
2. Defect correction iteration: For [ > 1, start with ul(o) =u 1 €V,

3. Iteration step: For computed iterate ul(j ) evaluate the defect

(@, 0) = ~A@u?)(9), veV;
and solve the correction equation
AP, ¢) = ([, 0) Vo eV

by Krylov-space or multigrid iterations using the hierarchy of already constructed
meshes {Ty, ..., To}. Update

WD = ) 40

set j =j+ 1 and go back to (2). This process is repeated until a limit v, € V] is
reached within a certain prescribed accuracy.

4. Error estimation: Solve the (linearized) discrete dual problem
ne€Vi: Aw)(p,z)=J(p) YoeV

and evaluate the a posteriori error representation and estimate

J(er) = E(w), [E(w)| < i(w)

If |E(w)| < TOL, or N; > Ny,4,, then stop. Otherwise cell-wise mesh adaptation
yields the new mesh T;,;. Then, set [ =141 and go back to (1).
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3.4 Application to eigenvalue problems

Eigenvalue problems of particular interest:
e The symmetric eigenvalue problem of the Laplace operator:

—Au = \u

e The nonsymmetric eigenvalue problem of a convection-diffusion operator:

—Au+b-Vu=)u

e The stability eigenvalue problem governed by the linearized Navier-Stokes operator:
—vAv+1-Vo4+v-Vi+Vp=X, V-v=0
where ¢ is some ‘base solution’ the stability of which is to be investigated.
Eigenvalue problem in (complex) function space V/
(m(-,-) semi-scalar product):

a(u, ) = Am(u, ) VYo eV, AeC, m(u,u)=1

Galerkin approximation in finite dimensional subspaces Vj, C V' :

a(up, on) = Anmuppn) Von € Vi, A €C, m(up,up) =1

Goal: Control of error in eigenvalue A— M\, in terms of the residual

p(un, An)(+) = Apm(un, -) — alup, -)
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A posteriori error analysis
Embedding into the general framework of variational equations
U:={u,\} € V:=VxC, Up = {up, \p} € Vy :=VxC
Semilinear form for ® = {p, u} € V:
A(U)(®) = Am(u, 9)~a(u, ) + 7 {m(u,u) ~ 1}

normalization

Compact variational formulation of eigenvalue problems

AU)@) =0 VdeV
A(Uh)(q)h) =0 Vo, €V,

Error control functional

J(@) = pum(p,0),  ©={p,u}

m(u,u)=1 = JU)=\

Dual solutions Z = {z,7} € V, Z, = {zn,mh} € Vp:

AU)®,Z) = J'(U) (@) VoeV
AI(Uh)((I)h, Zh) = JI(Uh)((I)h) Vq)h € Vh
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Detailed form of adjoint equations: U = {u, A}, ® = {p, u}, Z ={z,7}
A(WV)(®@,2) = Amlp,2)—alp,2) + pm(u, 2) + 2 Rem(p, u)
+ :U’{m(ua u)_l}

J(U)(®) = pm(u,u) + 22ARem(p,u)

Observing that m(u,u) = 1, the dual problem takes the form
Am(z, ) —a(p, 2) + p{m(u, z2)—1} + 2{7F—A\}Rem(p,u) = 0

for all & = {p, u}. This system is equivalent to the ‘dual’ eigenvalue problem

a(p,z) =am(p,z) VYoeV, 7=X muz) =1
or identifying z = u* and 7 = \*,

a(p,u*) = Xm(p,u*) Yo eV, mu,u*)=1

The discrete adjoint problem is equivalent to

alen,ur) = Xem(on,ul) Von € Vi, m(up,uj) =1

Associated dual residual:

P (Uh, A () = Ay m(e, up) —al-, up)

Proposition. We have the error representation

1 * 1 * * *
A=Ay = §P(Uh,/\h)(u —n) + 2P (Uhs AR)(u—tpn) + Ry
for arbitrary ¥y, @ € Vi, with the cubic remainder term

1
R, = 5()\—)\;1) m(u—up, u* —uy)
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Proof: Setting F := {u—up, A=Az} and E* := {u*—uj, \*— A} }, the general remainder
term from the abstract theory has the form

RY = % / 1 {J"(Uy+5E)(E, E, E) — A"(Uy+sE)(E, E, E, Zy+sE)
—O3A"(Uh+sE)(E, E,E*)} s(s—1)ds
In the present case, by a simple calculation, we have
J"(Up+sE)(E, E,E) = 6(A—Xp)m(u—up, u—up),

A"(Un+sE)(E, E, E, Zy+sE*) = 0
—3A"(Up+sE)(E,E,E*) = — 6(A— ) m(u—up, u* —uj)

— 6(A* = A7) m(u—up, u—up)

Consequently, noting that A—X, = A*— A} | it follows that

1
RS') — _3/ (A=Ap) m(u—up, u*—up)s(s—1)ds
0

= 2( A=) m(u—up, u*—u})

which completes the proof.
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Remarks:

e Simultaneous solution of primal and adjoint eigenvalues problems is necessary within
an optimal multigrid solver of nonsymmetric eigenvalue problems.

Case of multiple eigenvalues can easily be treated.

No assumption about the multiplicity of the eigenvalue necessary.

e Error estimates for functionals j(u) of eigenfunctions.

Case of additional approximation in operator A = A(1)
(stability eigenvalue problem).
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Evaluation of eigenvalue residuals

On a polygonal /hedral domain 2 C R? consider the eigenvalue problem
Av = —-Av+b-Vv = v in), vjpe=0

with a smooth (or even constant) transport coefficient b, and M :=id. This eigenvalue
problem is approximated by the Galerkin method using piecewise linear or d-linear finite
elements on meshes T, = {K}.

Within this setting, we can proceed analogously as before, obtaining

p(tun, An)(¥) = A m(up, ¥) — a(un, )
= Z {(AnMup—Aup, )k — (07t un, ¥)ox }

KeTy,

= Z {(MMup—Aup, ) — %([@f‘uh]aw@K}

KeTy,

and

P (g, Ap)(9) = Ay m(ep, 2n) — (¥, 2n)
— Z {(QD, )\ZMZh—.A*Zh)K — ((p, 8;4*2}1)3[(}

KETh

= Y {(p, s Man—Az)k — 50, [0; 2n))oxc }

KeTy,

Hence, using again the notation of ‘equation’ and ‘jump residuals’, the primal residual
admits the estimate

p(un, Ap) (u* —ipu”)| < Z PEWE
KeTy,

with the cell-residuals and weights defined by

o 1/2
pic = (|[R(un, A% + bl (un) 13)

* * * 1/2)). * 1/2
Wi = (lu* = Iyu*||% + by |lu* — Inu*|3 )
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Correspondingly, for the dual residual:

1" (i, A (w—inu)| < Y piwn
KeTy,

with

* X[k O\ % =1/2y %/ % 1/2
e = (IR (up, A% + hi PNl (up) 2

1/2
wic = (u=Tnull% + 2R3 u—Tu|3x) "

Proposition. Within the above setting, assuming that
Im(u—up,u*—up)| <1
we have the a posteriori error estimate

A=dnl <78 =Y {pwi + pkwic)
KeTy,

Proof: By the above estimates,

A=Xn| < 5 Z {prwi + piwi } + R
KeT,

Since, by the assumption,
|Ra| = 3|(A=2n) m(u—un, u* —up)| < 5 [A=X]

the asserted estimate follows.

Remark: From the above ‘weighted’ a posteriori error estimate, we can derive the fol-
lowing ‘weight-free’ estimate

A=l < 0= > {0k + il
KETh

with a constant ¢y = O(|}]).

45



Numerical example (V. Heuveline 2001)
Convection-diffusion problem:
—Av+bVv = M inQ, v=0 auf 092

b=(0,b,)", Q=(-1,1) x (-1,3)
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Figure. Configuration for b = 0 (left), adapted mesh with 12,000 cells (middle),
normlized eigenfunctions (right).

Refinement indicators:

i = bl ok + ok

KeTy,

=Y M
KETh

2 ._ X 2 %2 1/2

= Z K{pK+pK}

KGTh

m =Y ha{px@k + P }

KEeTy,
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Test case 1: Symmetric problem

10

-2 O
10 o ]
= *
I, * @]
<
< e‘%"
1
o ny
)
-3 e&/eighl
10 " e, =
Wweight
* egblubal)
—A— A
107 s
1 1 1 1 ]
107 10° 10* 10°

Number of cells

Figure 77;1) O, n§\2) coy, n;\”eight (’%’), uniform ("A\’).

Test case 2: Vertical transport b, = 3
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Figure. Primal (left) and dual eigenfunction (right) .
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Figure. Adapted mesh with 10,000 cells by 77,(\1) (left), mied (middle), 7y<™ (right)
(fixed-rate strategy with X = 20% .
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Figure. n\" (0), n5ed (%), nP" (+), uniform (A).
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