2 Nonstandard Linear Problems

The particular feature of the DWR method is its applicability to situations in which the
underlying mathematical model lacks quantitative coercivity properties. As examples,
we discuss the adaptive solution of the acoustic wave equation and the radiative transfer
equation.
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2.1 Adaptive soluton of the acoustic wave equation
We consider the acoustic wave equation
O'w—V-{aVw}=0 in Qr=Qx1

Wit=0 = UJO, atw‘t:() = ’U0 on 2

n-aVwjsg = 0 on [

where 2 C R, d > 1, and I = (0,7T); the elastic coefficient a may vary in space.
We consider approximation by a ’velocity-displacement’ formulation which is obtained by
introducing a new velocity variable v := O;w. Then, the pair u = {w,v} satisfies the
system of equations

ow—v=0
o — V-{aVw} =0

with the natural solution space
V= [H'(0,T; L*(Q)) N L*(0,T; H' ()] x H'(0,T; L*(Q))
We split the time interval [0,7] into subintervals I,, = (¢, 1, .|,
O=ts< ... <t <..<ty=T, ky, :=1t, —th_1

At each time level ¢, , let V;* C V' be appropriate finite dimensional subspaces. On each
time slab Q" := Q x I,,, we define intermediate meshes T} which are composed of the
mutually finest cells of the neighbouring meshes T”h_l and T}, and obtain a decomposition
of the time slab into space-time cubes Q% = K x I,,, K € T%.
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This construction is used in order to allow continuity in time of the trial functions when
the meshes change with time. The discrete ’trial spaces’ V}, ; in space-time domain consist
of functions that are (d + 1)-linear on each space-time cell Q% and globally continuous
on Q7. This prescription requires the use of ’hanging nodes’ if the spatial mesh changes
across a time level %, .

The corresponding discrete 'test spaces’ W}, consist of functions that are constant in
time on each cell Q% , while they are d-linear in space and globally continuous on 2.

On these spaces, we introduce the bilinear form

a(u,9) = (Ow,&)qr — (v,€)q, + (w(0),£(0))
+ (atva w)QT + (CLVU), Vw)QT + (U(O)a ¢(0))

The Galerkin approximation seeks up = {wp, vy} € Vj, i satisfying

a(un, orn) = Fp) = (0°,4(0)) + (w° £(0)) Veor = {¢n, &} € Wy

This scheme is a 'Petrov-Galerkin’ method. We again have Galerkin orthogonality for the
error e := {e",e"}:

a(ea Qah) = Oa ©h S Vh,k
This time-discretization scheme is called the ’cG(1) method’ (continuous Galerkin method)
in contrast to the dG method (discontinuous Galerkin method) frequently used for parabolic

problems. From this scheme, we can recover the standard Crank-Nicolson scheme in time
(combined with a spatial finite element method):

(w*—w"" ) = Lk, (0" +0" T ) = 0
(V" =" ) + %kn(aV(w”—i-w”_l), Vi) =0

This system splits into two equations, a discrete Helmholtz equation and a discrete L2-
projection.
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In order to embed the present situation into the general framework, we introduce the

spaces . R
V.= V@Vh,k, |4 ZIVEDW},,,]C

We want to control the error in terms of a functional of the form
J(e) = (.77 ew)QT

with some density function j(z,t). To this end, we again use a duality argument in
space-time employing the time-reversed wave equation

072 —V-{aVz¥} =3 in Qr
Zw|t:T = 0, —atzw‘t:T =0 on Q

n-aVz¥ s =0 on I
Its solution z = {—0y2%, 2"} € W satisfies the variational equation
alp,z)=J(p) VpeV
Then, from the general results, we obtain the error identity
J(e) = F(z—on) — a(wn, 2—n)

for arbitrary ¢, = {¢}, ¢} € Wh . Recalling the definition of the bilinear form A(-,-),
we obtain the following error identity:

Gy warl < D0 D (R (un), 02" =0} i,

n=1 KTy}

— (R (un), 2" =0} kxr, — (r(un), 2" — ) ok x1, |

with the cell residuals
R"(up) |k = Oywp — vy, RY(up) |k = Oy — V - {aVwy}

and the edge residuals

sn-[aVwy], if I' C 0K \0Q

r(wn)irxt, = {0, if T C 00
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Numerical test (W. Bangerth 1998)

The energy-norm-type error estimator

ml) = (3 s?)

n=1 KeT?
nl ._ ~1/2
px = [|R(un)llxxr, + g " |lr(un)llox xz,
measures the spatial smoothness of the computed solution wy, .

We consider the propagation of an outward travelling wave on Q = (—1,1)® with a
strongly heterogeneous coeflicient. Boundary and initial conditions are chosen as follows:

n-{aVu}=0 on y=1, w=0 on IN\{y=1}
wo=0 vy =0(s—r)exp (—|z[*/s*) (1 = |z[*/5”)

with s = 0.02 and 6(-) the jump function. The lowest frequency in the initial wave field
has wavelength A = 4s; hence taking the usual minimum ten grid points per wavelength
would yield 62500 cells for the largest wavelength. If this example is taken as a model
of propagation of seismic waves in a faulted region of rock, then the seismograms at the
surface, the top line I' of the domain, are to be recorded. A corresponding functional
output is

J(w) =/()T/Pw(x,t) (€, 1) de dt

with a weight w(&,t) = sin(37¢)sin (57t/T), and end-time T = 2. The frequency of
oscillation of this weight is chosen to match the frequencies in the wave field to obtain
good resolution of changes.
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Line of evaluation

origin
of waves

Figure. Layout of the domain (left) and structure of the coefficient a(z) (right).

weighted estimator heuristic indicator

NxM J(wy) NxM J(wp)
327789 | -2.085e-6 || 327789 | -2.085e-6
920380 | -4.630e-6 || 920380 | -4.630e-6
2403759 | -4.286e-6 || 2403759 | -4.286e-6
1918696 | -4.177e-6 || 5640223 | -4.385e-6
2975119 | -4.438e-6 || 10189837 | -4.463e-6
6203497 | -4.524e-6 || 17912981 | -4.521e-6
41991779 | -4.517e-6

Table. Results obtained by adaptation by the DWR, method (reference value
J(w) ~ -4.515e-6 , M = # time-steps, N = # mesh-cells.)

Remark. The evaluation of the a posteriori error estimate requires a careful approxima-
tion of the adjoint solution z. Therefore, a higher-order method (bi-quadratic elements)
is used for solving the space-time adjoint problem.
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Figure. Grids produced by the energy-error indicator (left) and by the weighted
estimator (right), at times ¢ = 0,

32



2.2 Application to radiative transfer
Radiative transfer equation for intensity u = u(x,, \,)
0-Vyu+ (k+p)u= ,u/ k(6,0 Yudd + B inQ x Ss,
Sa
u=0 auf [ihp={zr €0, n-0 <0}

Given: Absorption &, scattering pu, recombination k(-,-),
radiation source (Planck function) B.

Computation of observed mean intensity

J(u) = / u(z, Oobs) ds, -
{n'9ob520}

Finite element Galerkin discretizierung with V;, C H*(Q) x L?()

(T + Z)un, on)axs, = (B, ¢n)axs, Yeon € Vi,

Tup =0 -Vaup, Sup:=(K+p)uy—p [ K(O,0)u,dd.
Sa
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Numerical test (G. Kanschat 1996):

L? indicator weighted indicator

564 0.181 576 0.417 | 3.1695 | 23.77
1105 0.210 | 1146 | 0.429 | 1.0804 8.62
2169 | 0.311 | 2264 | 0.461 | 0.7398 7.11
4329 | 0.405 | 4506 | 0.508 | 0.2861 3.94
8582 0.460 | 9018 | 0.555 | 0.1375 3.33
17202 | 0.488 | 18857 | 0.584 | 0.0526 2.39
34562 | 0.537 | 39571 | 0.599 | 0.0211 1.76
68066 | 0.551 | 82494 | 0.608 | 0.0084 1.41
00 0.618

oo| ~1| | | x| o po| ||

Table. Adaptive solution of the radiative transfer equation with a (heuristical) L2-error
indicator and the weighted error indicator; total number of degrees of freedom:
Niot = Ny - 32

Figure. Adapted meshes obtained by the L?-error indicator (left) and by the weighted
error indicator (right)
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