

OC5 Project Phase Ib:

Validation of Hydrodynamic Loading on a Fixed, Flexible Cylinder for Offshore Wind Applications

DeepWind Conference – Trondheim, Norway

Amy Robertson January 21, 2016

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Co-Authors

- Fabian F. Wendt National Renewable Energy Laboratory, Colorado, USA
- Jason M. Jonkman National Renewable Energy Laboratory, Colorado, USA
- Wojciech Popko Fraunhofer IWES, Germany
- *Henrik Bredmose* Technical University of Denmark, Denmark
- *Michael Borg* Technical University of Denmark, Denmark
- *Flemming Schlutter* Technical University of Denmark, Denmark
- Jacob Qvist 4Subsea, Norway
- Roger Bergua Alstom Wind, Spain
- Rob Harries DNV GL, England
- Anders Yde Technical University of Denmark, Denmark
- Tor Anders Nygaard Institute for Energy Technology, Norway
- Luca Oggiano Institute for Energy Technology, Norway
- Pauline Bozonnet IFP Energies nouvelles, France
- Ludovic Bouy PRINCIPIA, France
- Carlos Barrera Sanchez Universidad de Cantabria IH Cantabria, Spain
- Raul Guanche García Universidad de Cantabria IH Cantabria, Spain
- Erin E. Bachynski MARINTEK, Norway
- Ying Tu Norwegian University of Science and Technology, Norway
- *Ilmas Bayati* Politecnico di Milano, Italy
- Friedemann Beyer Stuttgart Wind Energy, University of Stuttgart, Germany
- Hyunkyoung Shin University of Ulsan, Korea
- Matthieu Guerinel WavEC Offshore Renewables, Portugal
- Tjeerd van der Zee Knowledge Centre WMC, the Netherlands

IEA Wind Tasks 23 and 30 (OC3/OC4/OC5)

- Verification and validation of offshore wind modeling tools are need to ensure their accuracy, and give confidence in their usefulness to users.
- Three research projects were initiated under IEA Wind to address this need:

 OC3 = Offshore Code Comparison Collaboration (2005-2009)
OC4 = Offshore Code Comparison Collaboration, Continuation (2010-2013)
OC5 = Offshore Code Comparison Collaboration, Continuation, with Correlation (2014-2017)

OC5 Project Phases

- OC3 and OC4 focused on *verifying* tools (tool-to-tool comparisons)
- OC5 focuses on *validating* tools (code-to-data comparisons)

Phase I: Monopile - Tank Testing Phase II: Semi - Tank Testing

Phase III: Jacket/Tripod – Open Ocean

NATIONAL RENEWABLE ENERGY LABORATORY

OC5 Phase Ib

- **Objective**: validate hydrodynamic loads and acceleration response for a fixed, flexible cylinder
- Test Data from **Wave Loads Project**:
 - 3-year project with goal of improving numerical models for wave loads on offshore wind turbines
 - Carried out collaboratively by DTU Wind Energy, DTU Mechanical Engineering, and DHI
 - Performed at shallow-water basin at DHI
 - Thank you to: Ole Petersen at DHI and Henrik Bredmose and Michael Borg at DTU for graciously supplying the data and information needed for this phase of the OC5 project.

Test Set-Up

Tests Simulated

Test #	Wave Type	Water Depth (m)	H/Hs (m)	T/Tp (s)	Gamma	C _A	C _D
1	Regular	0.51	0.090	1.5655		1.22	1.0
2	Regular	0.51	0.118	1.5655		1.22	1.0
3	Irregular	0.51	0.104	1.40	3.3	1.0	1.0
4	Irregular	0.51	0.140	1.55	3.3	1.0	1.0
5	Regular	0.26	0.086	1.565		1.22	1.0
6	Regular	0.26	0.121	1.565		1.22	1.0
7	Irregular	0.26	0.133	1.560	3.3	1.0	1.0

• 7 Datasets were examined:

- o 4 regular cases
 - 2 water depths
 - 2 wave heights
- o 3 irregular cases
 - 2 water depths
 - 2 wave heights
- First regular wave case used for calibration

Summary of Tools and Modeling Approach

Participant	Code	Wave Model (Reg/Irr)	Wave Elevation	Hydro Model	Structural Model	Number DOFs
4Subsea	OrcaFlex	FNPF kinematics	FNPF kinematics	ME	FE, RDS	160 elements 960 DOFs
GE	SAMCEF Wind Turbines (S4WT)	5th Order Stokes/ Linear Airy	Stretching	ME	FE (TS), RD	13 elements 84 DOF
DNV GL-ME	Bladed 4.6	6 th and 8 th Order SF/ Linear Airy	Measured	ME	FE (TS), MD	8 (CB)
DNV GL-PF	Bladed 4.6	Linear Airy	Measured	1 st Order PF	Rigid	N/A
DTU-HAWC2	HAWC2	6th and 8th Order SF/L. Airy & FNPF kinematics	Stretching & FNPF kin.	ME	FE (TS), RDS	20 elements, 126 DOF
DTU-HAWC2-PF	HAWC2	6th and 8th Order SF/L. Airy	Stretching	1 st Order PF	FE (TS), RDS	31 elements, 192 DOF
DTU-BEAM	OceanWave3D	FNPF kinematics	FNPF kinematics	ME+Rainey	FE (EB), RD	160 DOFs
IFE	3Dfloat	FNPF kinematics	FNPF kinematics	ME	FE (EB), RDS	62 elements, 378 DOF
IFE-CFD	STAR CCM	CFD	CFD-derived	CFD	Rigid	N/A
IFP-PRI	DeeplinesWind	3rd Ord. SF/ Linear Airy	Measured	ME	FE	200 elements
UC-IHC	IH2VOF	FNPF kinematics	FNPF kinematics	ME	Rigid	N/A
MARINTEK	RIFLEX	2 nd Order Stokes & FNPF kinematics	Measured & FNPF kin.	ME	FE(E-B), RDS, FS	167 elements, 1002 DOF
NREL-ME	FAST	2 nd Order Stokes & FNPF kinematics	Measured & FNPF kin.	ME	FE (TS), MD	4 (CB)
NREL-PF	FAST	2 nd Order Stokes	Measured	2 nd Order PF	Rigid	N/A
NTNU-Lin	FEDEM 7.1	Linear Airy	None	ME	FE (EB), RD	13 elements, 84 DOF
NTNU-Stokes5	FEDEM 7.1	5 th Order Stokes	None	ME	FE (EB), RD	13 elements, 84 DOF
NTNU-Stream	FEDEM 7.1	Stream Function	None	ME	FE (EB), RD	13 elements, 84 DOF
PoliMi	POLI-HydroWind	2 nd Order Stokes	None	ME	FE (EB), RD	23 elements, 69 DOF
SWE	SIMPACK +HydroDyn	2 nd Order Stokes	None	ME	FE (TS), MD	50
UOU	UOU + FAST	2 nd Order Stokes	None	ME	Rigid	N/A
WavEC	Wavec2Wire	2 nd Order Stokes /Linear Airy	Measured	2 nd /1 st Order PF	Rigid	N/A
WMC	FOCUS6 (PHATAS)	FNPF kinematics	FNPF kinematics	ME	FE (TS), MD	12 (CB)

Calibration

- Group calibrated C_A and C_D coefficients based on Test 1, to get appropriate levels of force
 - All participants used same values to have consistency in model parameters – to better see differences in modeling approach
- A C_A value of 1.22 was required, which is larger than expected
 - Suspect the higher measured loads might be due to reflected waves that were not modeled in the simulation

$$F = \frac{1}{2}C_D \rho D u \left| u \right| + C_M \rho \frac{\pi D^2}{4} \dot{u}$$

Morison's Equation

Test 1 – Regular Wave – Deeper Water - Force Results

Frequency (Hz)

Test 6 – Regular Wave – Shallower Water - Force Results

1st Peak Force Component

Peak Force1 (N)

Test 6, 0.26 m water depth, H = 0.121 m, T = 1.560 s

Shallower Water Depth

2nd Peak Force Component

Test 5, 0.26 m water depth, H = 0.086 m, T = 1.565 s

Shallower Water Depth

Test 6, 0.26 m water depth, H = 0.121 m, T = 1.560 s

3rd Peak Force Component

Test 5, 0.26 m water depth, H = 0.086 m, T = 1.565 s

UC-IHC-kin 4Subsea-kin SWE Shallower POLIMI NTNU-Stream NTNU-Stokes5 Water NTNU-Lin NREL-PF-elv2 Depth NREL-PF-elv1 NREL-PF NREL-ME-kin NREL-ME-elv2 NREL-ME-elv1 NREL-ME MARINTEK-elv IFE-kin EXPERIMENT DTU-HAWC2-kin DTU-HAWC2 DTU-BEAM-kin DNV-GL-PF-elv DNV-GL-ME-elv

Test 6, 0.26 m water depth, H = 0.121 m, T = 1.560 s

Test 7 – Irregular Wave – Shallower Water

Irregular Waves – Exceedance Probability Plots

Conclusions

- Higher-order wave theory important in capturing higher-order components of hydrodynamic force
 - o Extreme loads
 - Excitation of structural frequencies
 - Most important in shallow water

• Sloped seabed creates complex wave kinematics

- Standard wave theories cannot account for slope
- CFD-type analysis might be needed to create wave kinematics for nonflat seabed conditions
- Majority of offshore wind modeling tools do not presently address breaking waves
 - Complex wave theories and CFD can accurately model steep waves that will break
 - Need to model the impulsive load that a breaking wave will impart on the structure
 - Some codes are seeking to include this

111

Thank You!

Amy Robertson +1 (303) 384 – 7157 Amy.Robertson@nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.