
Real-time hybrid testing of a braceless semisubmersible wind turbine

Erin Bachynski, MARINTEK Valentin Chabaud, NTNU Maxime Thys, MARINTEK

Outline

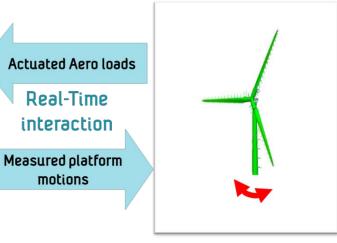
- How to Perform Model Test with a Floating Wind Turbine (FWT)
- Objectives of the Model Tests
- The Experimental Setup
- The Hybrid System
- Results of the Model Tests
- Conclusions about the Hybrid Model Tests

How to Perform Model Tests with a FWT?

<u>Approach 1: Install a wind tunnel in the basin</u> Use Froude scaling for waves, current, and floater.

What about wind and rotor scaling?

Geometrical or performance-based scaling.


Approach 2: Real-Time Hybrid Model Tests

Use Froude scaling for waves, current, and floater and aerodynamic loads!

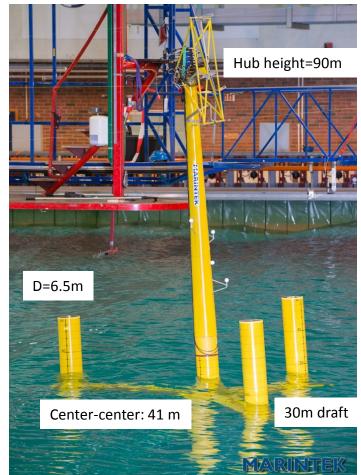
MARINTEK

Physcial waves and current

Simulated wind loads

Objectives of the Model Tests

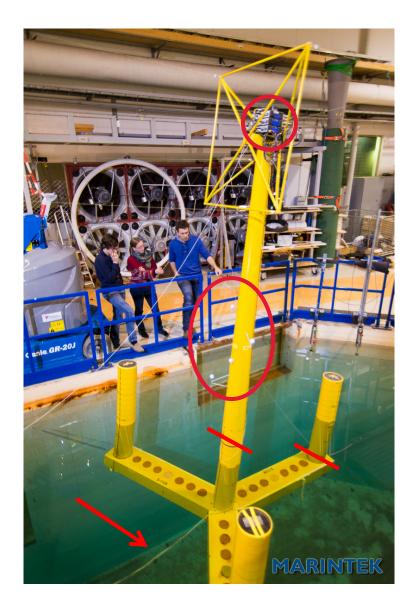
- Quantify the system behavior in environmental conditions representative of the Northern North Sea
- Prove the applicability of the hybrid test method



Experimental Setup

• The FWT:

- 5MW CSC turbine
- Floater designed by C. Luan for the NOWITECH project
- 5 MW NREL rotor-nacelle-assembly
- Froude Scale 1/30
- Water depth: 200m
- Mooring: Chain-chain catenary mooring system

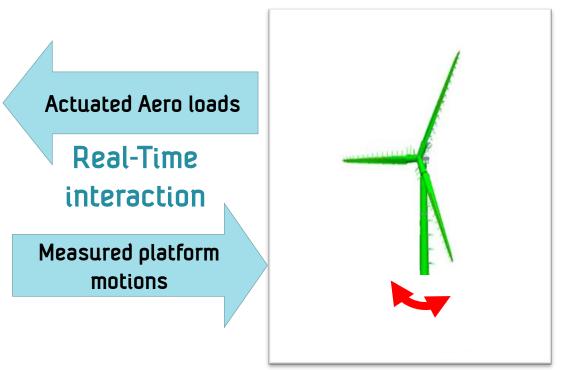


Experimental Setup: Instrumentation

- Position of model by optical positioning system
- Measure linear accelerations and rate of rotation at hub
- "Wind line" and mooring line tensions
- Overturning moment X and Y at base of tower
- Overturning moment X and Y at base of column 3

MARINTEK

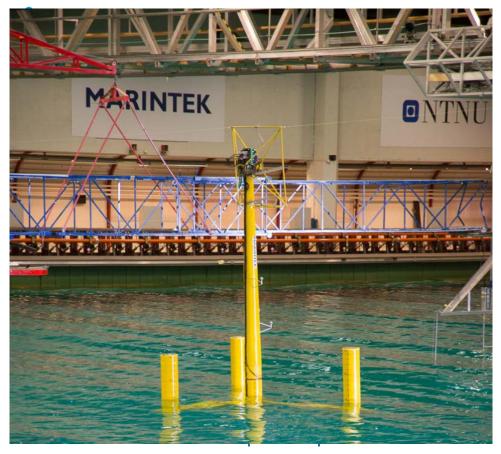
Ultra thin instrumentation cable under the model

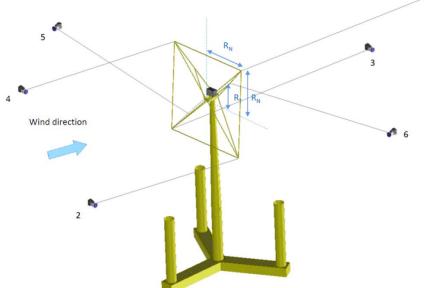


The Hybrid System

Physcial waves and current

MARINTEK


Simulated aerodynamic loads


- Thrust
- Aerodynamic sway force
- Aerodynamic pitch and yaw moment
- Generator torque

The Hybrid System

How do we apply the aerodynamic loads in 5DOF on the model?

Model Test program

- Tests without hybrid system <u>Decay</u>, Regular waves, Irregular waves
 Tests with zero wind <u>Decay</u>, Regular waves, Irregular waves
 Tests with constant wind <u>Decay</u> and Regular waves
 Tests with turbulent wind
 - Wind-only
 - Irregular waves
 - Below rated, rated, above rated
 - One test with current
 - Misaligned waves
 - Fault conditions

MARINTEK

Wind Wave 0° Current

Step by step increase in complexity with repetitions and decomposed conditions

Conclusions about the Hybrid Model Tests

- Performed model tests with a FWT in the Ocean Basin at MARINTEK:
 - with physical waves and current
 - simulated aerodynamic and generator loads on the wind turbine
- The hybrid system was found to perform well
 - Damping and irregular wave tests without the system and with the system in following mode showed little influence
- The wind turbine (including the control system) was found to have significant effects on the natural periods and damping of the system
- Interaction between aerodynamic and hydrodynamic loads was observed primarily at low frequencies
- Studied two fault conditions for the wind turbine
- Step forward toward commercialization of hybrid testing
- Further publications planned for OMAE 2016

DNTNU

NOWITECH

This research is part of FME NOWITECH (Norwegian Research Centre for Offshore Wind Technology) which is funded by the Research Council of Norway, industrial companies and participating research organizations

Thank you for your attention.

