

An investigation into the effect of low induction rotors on the levelised cost of electricity for a 1GW offshore wind farm

Rory Quinn, Bernard Bulder, Gerard Schepers EERA DeepWind Conference Trondheim 22nd Jan 2016

www.ecn.n

List of Contents

• Goal

Context

- Low Induction Rotors (LIR's)
- Wind Farm Power Density

Methodology

- Target wind farm
- Target turbines
- Modelling: Wake effects, electrical infrastructure, turbine costs

• Results

Goal:

To optimise the LCOE of Low Induction Rotors versus Conventional Rotors for a 1GW off-shore wind farm with different values of Wind Farm Power Density using state of the art wake modelling, electrical modelling and cost modelling

List of Contents

Goal

Context

- Low Induction Rotors (LIR's)
- Wind Farm Power Density

Methodology

- Target wind farm
- Target turbines
- Modelling: Wake effects, electrical infrastructure, turbine costs

• Results

Introduction

Classical Approach versus Low Induction

 Power Coefficient flat around Betz maximum (a = 1/3)

$$C_{P} = \frac{P}{\frac{1}{2}\rho A U_{\infty}^{3}} = 4a(1-a)^{2}$$

 Aerodynamic load coefficient strongly dependant on a

$$C_{D.ax} = \frac{D.ax}{\frac{1}{2}\rho A U_{\infty}^{2}} = 4a(1-a)$$

 Increase diameter → maintain aerodynamic loads → increase power

Introduction

Low Induction Rotors

- Low induction Rotors (LIR's) are sometimes seen as an option to reduce LCOE
- Literature finds justification for LIR's for isolated operation, e.g. ¹)
- Wake effects are known to depend on C_{Dax} (induction)
- LIR's are expected to reduce the wake effects

¹) Chaviaropoulos, Beurskens & Voutsinas 2013

Introduction

No clear trend on Wind Farm Power Density (WFPD)

List of Contents

Goal

Context

- Low Induction Rotors (LIR's)
- Wind Farm Power Density

Methodology

- Target wind farm
- Target turbines
- Modelling: Wake effects, electrical infrastructure, turbine costs

• Results

Methodology The Approach

- Theoretical 1GW wind farm (10x10 grid)
- Range of Turbine Spacings
 - Fixed spacing ratios (PWD/CWD)
 - Range of CWDs

Methodology

The Approach

Methodology The Approach

- Theoretical 1GW wind farm (10x10 grid) 16
- Range of Turbine Spacings
 - Fixed spacing ratios (PWD/CWD)
 - Range of CWDs
- Either conventional or LIR turbines

INNWIND.EU and AVATAR RWT *)

	INNWINDEU	AdVanced Aerodynamic Tools for lArge Rotors
Power:	10 MW	10 MW
Rotor diameter:	178.3m	205.8m
WTPD:	400 W/m ²	300 W/m ²
Axial induction:	0.3	0.24
RPM → Tip speed	9.8rpm→ 90m/s	9.8 rpm→ 103.4 m/s
Hub height:	119m	132.7m

www.innwind.eu and http://www.eera-avatar.eu/

AVATAR RWT vs. INNWIND.EU RWT

http://www.eera-avatar.eu/publications-results-and-links/

- 5% Increase in energy production due to larger diameter
- Key rotor load levels are maintained but:
 - Non-rotor loads and mass slightly exceeded
 - Use of carbon fibre
 →
 - Does increased AEP compensate increased costs?

Methodology The Approach

- Theoretical 1GW wind farm (10x10 grid)
- Range of Turbine Spacings
 - Fixed spacing ratios (PWD/CWD)
 - Range of CWDs
- Either conventional or LIR turbines
- Typical North Sea wind climate

- Calculates:
 - Losses and added turbulence due to wakes
 - Annual energy production (AEP)

• The model is based on UPMWAKE ¹)/WAKEFARM/FARMFLOW

- Modified by ECN since 1993
- Extensively validated with results from ECN's research farms and measurements from EU projects (e.g. ENDOW, Upwind, EERA-DTOC)

¹) Crespo et al. 1988

FARMFLOW: Theory and model description

- Solves the Parabolized Navier-Stokes equation
- Turbines modelled as actuator disc, prescribed by C_{Dax}
- Wake modelled with a k- ϵ turbulence model

FARMFLOW: Advanced Model

- Parabolisation: Fast, but how to solve the near wake where axial pressure gradients are significant?
- Solution:
 - Prescribe axial pressure gradients from free vortex wake method!
 - Fast database approach
- Adjusted k- ε turbulence model parameters in near wake based on:
 - Measurements from ECN's research farms and Horns Rev farm
 - Detailed wake measurements in TUDelft wind tunnel

What is EEFARM?

- Program to study and optimise the electrical performance of wind farms.
- Program is used to determine the:
 - Energy production,
 - Electrical losses,
 - Component failure losses
 - Price of the produced electric power

EeFarm-II linked to FarmFlow!

List of Contents

Goal

Context

- Low Induction Rotors
- Wind Farm Power Density

Methodology

- Target turbines
- Target wind farm
- Modelling: Wake effects, electrical effects, costs
- Results

Results Capacity Factor

Results Power Performance (7Dx11.2D)

Results

Results LCoE

Conclusions

• LIR could offer a lower LCoE than conventional turbines

- Sensitive to cost model
- Sensitive to atmospheric conditions
- How representative is AVATAR LIR?
- LIR requires less area than conventional turbine for optimum LCoE
 - Indicates LIR turbines offer more efficient use of sea area
- Alternative layouts (not in presentation, but in paper)
 - Staggered offered no improvement
 - Aligned offered marginal cost reduction

Questions?