

EERA DeepWind'2016 13th Deep Sea Offshore Wind R&D Conference

Probabilistic assessment of floating wind turbine access by catamaran vessel

Michele Martini*, Alfonso Jurado, Raul Guanche**, Iñigo Losada

*michele.martini@unican.es **raul.guanche@unican.es

Environmental Hydraulics Institute "IH Cantabria" C/Isabel Torres 15, 39011 Santander (Spain)

Trondheim, Norway, 20-22 January 2016

Friday, January 22, 2015 Operations and maintenance

Outline

- Motivation
 - Offshore wind energy trends
 - O&M challenges
- Methodology
 - Analysis of constrained multi-body system
 - Definition of access criteria
 - Calculation of short-term extreme response
- Case study: Aberdeen, Scotland
 - Evaluation of long-term accessibility
- Conclusions

Motivation

Motivation/1

- **TRENDS** Offshore wind market is rapidly increasing (EWEA 2015)
 - **+111%/+70%** capacity/average investment in 2012-2014
- LIMITATIONS ·
- Maximum water depth for fixed structures is **50 m** (EWEA 2013)
 - Limited amount of available sites
- ALTERNATIVES
- Floating systems for deeper waters (Hywind, WindFloat, Fukushima)
 - Vast potential market

Motivation/2

CHALLENGES ·

- **Availability** (% of time wind turbine produces electricity)
- Reducing downtimes
- Inspection and maintenance has high cost (25% of LCOE, GL 2015)

ACCESS STRATEGIES · Helicopter

- Relatively large access vessels with motion compensated gangway
- Small and fast CTVs with fender

Source: NOS, Windcat Workboats

- **QUESTIONS** What is the **combined response** of floating platform/access vessel?
 - What is the **long-term accessibility** for a chosen spot?

OBJECTIVES ·

- Model the catamaran walk-to-work access of floating wind turbine
- Evaluate long-term accessibility in Aberdeen, Scotland

Methodology

Methodology/1

Landing procedure on a floating platform

- The catamaran lands on the bumpers mounted on the platform. The platform displaces until the system reaches equilibrium
- The bow-mounted fender helps in:
 - Absorbing the impact energy
 - Providing friction at the contact surface
- O&M technicians step-over from the vessel to a platform mounted ladder
- Access is possible when:
 - No-slip conditions occur at the fender
 - Relative rotations are below tolerance limits

Source: Windcat Workboats

Methodology/3

Analysis of constrained multi-body system: approach

- Floating body equation of motion in frequency domain
 - Multibody hydrodynamic coefficients from DNV SESAM
 - Linearization of mooring and quadratic damping

 $\boldsymbol{G}(j\omega)\boldsymbol{\zeta}(j\omega) = \boldsymbol{f}(j\omega,\theta)$ $\boldsymbol{G}(j\omega) = -\omega^2[\boldsymbol{M} + \boldsymbol{A}(\omega)] + j\omega[\boldsymbol{B}(\omega) + \boldsymbol{B}_I] + [\boldsymbol{C} + \boldsymbol{C}_I]$

Displacements

Reaction forces

• The fender acts as a joint between the two bodies

Constraint matrix

- Motion is constrained: equation has to be rewritten
- Relative translations at contact point are impeded

00

Condition 2

• Small relative rotations at fender $|\Delta \rho(t)| \le \Delta \varphi_{\lim}$

Methodology/6

Calculation of short-term response extremes

L. H. Holthuijsen, Waves in Oceanic and Coastal Waters. New York: Cambridge University Press, 2007. Det Norske Veritas, Environmental conditions and loads, DNV-RP-C205, 2014.

Floating platform and vessel data

Catamaran CTV

CTV						
Displacement	102	t				
Length/Beam/Draft	24/10/1.37	m				
Water plane area	94.45	m ²				
Fender friction coefficient	1.2	-				
Bollard push force	135	kN				
Heave/roll/pitch natural period	3.0/3.5/4.5	S				

OC4 floating platform

OC4		
Displacement	13473	t
Total draft	20	m
Diameter of central/offset col.	6.5/12.0	m
Diameter of heave plates	24	m
Spacing between offset columns	50	m
Heave/roll/pitch natural period	18/27.5/27.5	S

System transfer functions – Joint forces (α and β)

- Short (5-12 s) and very long (20-25 s) waves
 - Upward slip is more probable than downward
 - Head seas give higher contact forces than in beam seas
- Medium length/long waves (12-20 s)
 - Upward and downward slip are equally probable
 - Beam seas give higher contact forces than in head seas
- Slip is highly probable at 16.5 s and 24 s
 - Shifted from platform natural periods (18 s, 27.5 s)!
 - Relative motion drives contact forces!

System transfer functions – Catamaran displacements

- When free to move, bodies respond to:
 - Catamaran: short waves (small inertia)
 - Floating platform: long waves (high inertia)
- When constrained, bodies exchange forces through the joint
 - Catamaran: response also to longer waves, when contact forces are higher

"HS" = "Head Sea", "HQS" = "Head Quartering Sea", "BS" = "Beam sea"

System transfer functions – Limiting wave height in regular waves

M. Wu, "Numerical analysis of docking operation between service vessels and offshore wind turbines," Ocean Eng., vol. 91, pp. 379–388, 2014

Offshore location and data – Aberdeen, Scotland

Coordinates: 57.000° N, 1.875° W Distance from the coast: 10 km Water depth: 90 m

Reanalysis data: IH Cantabria

- GOW: Global Ocean Waves
 - 0.125° spatial resolution (lat/lon)
 - 1 hour time resolution
 - 1980-2013 spanned period
- Time series of:
 - Hs, significant wave height
 - Tp, wave peak period
 - θm, mean wave direction
 - $-\sigma\theta$, mean directional spreading

Offshore location and data – Aberdeen, Scotland

		Wave significant height [m]							
		0.5	1.5	2.5	3.5	4.5	5.5	6.5	
	2	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%
	3	1.6%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.6%
	4	6.9%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	7.3%
	5	9.1%	4.5%	0.0%	0.0%	0.0%	0.0%	0.0%	13.6%
_	6	7.5%	9.1%	0.6%	0.0%	0.0%	0.0%	0.0%	17.1%
d [s	7	5.5%	7.8%	2.0%	0.0%	0.0%	0.0%	0.0%	15.4%
rio	8	4.9%	7.3%	3.0%	0.5%	0.0%	0.0%	0.0%	15.7%
¢ pe	9	3.5%	4.4%	2.3%	1.0%	0.1%	0.0%	0.0%	11.4%
Wave peak	10	2.2%	2.9%	1.2%	0.6%	0.3%	0.1%	0.0%	7.3%
	11	1.5%	2.1%	0.6%	0.3%	0.1%	0.1%	0.0%	4.6%
	12	0.9%	1.3%	0.4%	0.2%	0.0%	0.0%	0.0%	2.7%
	13	0.5%	0.6%	0.2%	0.1%	0.0%	0.0%	0.0%	1.3%
	14	0.4%	0.3%	0.1%	0.0%	0.0%	0.0%	0.0%	0.9%
	15	0.4%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.6%
	16	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%
	17	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%
45.3% 40.8%								100.0%	
								\frown	
	E	1.5%	1.5%	0.6%	0.3%	0.1%	0.0%	0.0%	3.9%
	ESE	3.8%	3.2%	1.1%	0.4%	0.2%	0.1%	0.0%	8.8%
	SE	5.1%	4.5%	1.3%	0.4%	0.1%	0.0%	0.0%	11.3%
	SSE	3.7%	4.3%	1.5%	0.4%	0.1%	0.0%	0.0%	10.0%

	ESE	3.8%	3.2%	1.1%	0.4%	0.2%	0.1%	0.0%	8.8%
	SE	5.1%	4.5%	1.3%	0.4%	0.1%	0.0%	0.0%	11.3%
	SSE	3.7%	4.3%	1.5%	0.4%	0.1%	0.0%	0.0%	10.0%
leg	S	3.0%	3.1%	0.8%	0.1%	0.0%	0.0%	0.0%	7.0%
u[c	SSW	3.9%	3.5%	0.5%	0.1%	0.0%	0.0%	0.0%	7.9%
ctio	SW	1.3%	1.1%	0.1%	0.0%	0.0%	0.0%	0.0%	2.5%
ire	WSW	0.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.8%
n d	W	0.3%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.5%
nea	WNW	0.3%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%
veı	NW	0.3%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.5%
Wa	NNW	0.6%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%
	N	1.9%	1.5%	0.2%	0.0%	0.0%	0.0%	0.0%	3.6%
	NNE	9.9%	9.9%	2.4%	0.6%	0.1%	0.0%	0.0%	22.9%
	NE	5.0%	3.2%	0.5%	0.1%	0.0%	0.0%	0.0%	8.9%
	ENE	3.0%	2.3%	0.5%	0.2%	0.0%	0.0%	0.0%	6.0%
		45.4%	40.9%	10.2%	2.7%	0.6%	0.1%	0.0%	100.0%

86.1% of Hs less than 2 m •

41.1% of θm between E and S

Long-term accessibility – Aberdeen, Scotland

Average 1980-2013 accessibility: 23.7 % (87 days/year)

- Large monthly variation
- More variability in summer than in winter

- Small spreading for small (<1 m) and large Hs (>2 m)
- Intermediate region indicates sensitivity to Tp and θm

Need for reliable and long-term metocean data

000

bria

Conclusions

Conclusions

- Developed methodology to evaluate walk-to-work accessibility of floating turbine
 - Frequency domain approach: linearization of non-linear actions
 - Definition of access criteria
 - No-slip conditions at fender
 - Small relative rotations at fender
 - Calculation of short-term extreme responses
- Evaluated combined response of CTV and OC4 floating platform
 - Largest forces shifted from natural periods
 - Vessel response affected by platform response
- Evaluated long-term accessibility at Kincardine
 - Hindcast data 1980-2013: large climate variability (seasonal, year-by-year), mostly winter.
 - Average accessibility: 23.7 %. Large variability (seasonal, year-by-year), mostly summer.
 - Influence of wave period and direction for Hs between 1 m and 2 m

THANKS FOR YOUR ATTENTION!

Probabilistic assessment of floating wind turbine access by catamaran vessel

Michele Martini*, Alfonso Jurado, Raul Guanche**, Iñigo Losada

*michele.martini@unican.es **raul.guanche@unican.es

Environmental Hydraulics Institute "IH Cantabria" C/Isabel Torres 15, 39011 Santander (Spain)

