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Introduction

i

Large scale VAWT development

Past: Sandia 34m test bed, Eole 4MW, FloWind 19m
Present-Future: SMW DeepWind concept, Nenuphar Vertiwind

Need to set the minimum design requirements for the structural integrity
of VAWTs according to IEC/standardisation.
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Wind turbine minimum design requirements

e J[EC 61400-1 ed.3 standard sets minimum structural requirements for
onshore wind turbines

— The Design Load Cases (DLCs) are a combination of external
conditions and wind turbine states

e DNV-GL similar criteria

Main research question
Are the IEC 61400-1, ed.3 DLCs applicable for vertical-axis wind turbines?
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Wind turbine minimum design

Design load cases

e Design situations
» Normal power production
» Emergency shut down
> Parked rotor

e Not considered
» Power production plus occurrence of fault
» Start up and normal shut down
» Transportation, assembly, maintenance
and repair

5 DTU Wind Energy, Technical University of Denmark
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Design situation DL Wind condition Other conditions
C
1) Power production 11 NTM I < Phyp < Fow For extrapolation of
extreme events
1.2 NTM I < Phub < Fout
1.3 ETM  Fip < Fhup < Vot
14 | ECD Py, =F,-2mis, T,
V,+2 mls
15 EWS Fip < Fhub < Vout
2) Power production 21 NTM  Fip < Fhub < Vout Control system fault or
plus occurrence of loss of electrical network
fault 22 NTM  Fip < Fhup < Vout Protection system or
preceding infernal
electrical fault
23 EOG Fyyp = V22 mis and External or internal
Vout electrical fault including
loss of electrical network
2.4 NTM i < Fhup < Vour Control, protection, or
electrical system faults
including loss of
electrical network
3) Start up 31 NWP I < Phub < Fout
32 | EOG Fhp=Ti, V22 mis
and Ty,
33 EDC Ty = Fin. Ve 2 mis
and Ty,
4) Normal shut down 41 NWP T, < Thup < Vour
42 EOG Ty =T+ 2 mis and
I'CII.H
5) Emergency shut 51 NTM T =T+ 2 m/s and
down Vaut
6) Parked (standing 6.1 EWM 50-year recurrence
still or idling) period
62 EWM 50-year recurrence Loss of electrical
period network connection
6.3 | EWM 1-year recurrence Extreme yaw
period misalignment
6.4 NTM  Fhup < 0,7 Prer
7) Parked and fault 71 EWM 1-year recurrence
conditions period
8) Transport, 81 NTM I 5ne to be stated by
assembly, the manufacturer
maintenance and
repair
82 EWM 1-year recurrence
period
IEC 61400-1,ed.3 DLCs
19 January
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Wind turbine minimum design requirements

Considerations of the IEC 61400-1 ed.3 for VAWTs

1. The hub-height where the wind reference values are applied

> In this study the rotor swept area (projected area) centre location at
nominal rotor speed
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Wind turbine minimum design requirements

Considerations of the IEC 61400-1 ed.3 for VAWTs

1. The hub-height where the wind reference values are applied
» The rotor swept area (projected area) centre location at nominal rotor

speed D
1o : Stanlding still‘ | ; !
20l Rated speed | } D !
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E 80
N 60 I/ A\
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| 1
20 -
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Darrieus-VAWT

2. The rotor diameter is used in equations for the definition of the wind
characteristics

> The largest rotor diameter of the wind turbine at nominal rotor speed
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Wind turbine models and aeroelastic code

e

VAWT HAWT

Model Modified DeepWind NREL reference wind
rotor turbine

Rated electrical power 5 MW 5 MW

Number of blades 2 3

Power regulation Stall Pitch

143m

170m

| 153m

90m

e Simulation Tool: HAWC2 aeroelastic code
e Outputs: Turbine base bottom BM, blade root BM, blade deflection
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Simulation results =

Power production under NTM

« Extrapolated 50 year return period extremes VAWT-HAWT
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1. Larger turbine base BM for VAWT
2. VAWT blade upper root BM similar with HAWT blade root
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Blade Root Flapwise Bending Moment [kKNm]

Simulation results

Power production under NTM

Blade equivalent 1Hz fatigue VAWT-HAWT
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2. VAWT edgewise BM much larger at high winds
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Simulation results

Extreme Operating Gust VAWT

, 20
3000 ‘ Flapwise BM hub |
-2000 - TN T s
-7000 \/ \/ I
-12000 ' L ' ' 10
220 230 240 250 260 270
T T T 20
3000 f 1
2000 | )C’\ N N
27000 | \/ \/ ]
-12000 : J : ‘ 10
220 230 240 250 260 270
. 1 20
3000 -
-2000 ./ ,\/‘7[ ~ N\ T s
7000 [ \ \/ 1
-12000 ' J ' : 10
220 230 440 250 260 270
360 ‘ : :
240 -
120 -
0 | Il 1 Il
220 230 240 250 260 270
Time [s]

[m/s]

[m/s]

[m/s]

[kNm] [kNm] [kNm]

Rotor Azimuth [deg]

R g
ey
o>
15000 20
10000 - J Edgewise BM Viub
5000 £ / \ A /\ " 415
o W T
-5000 : : : : 10
220 230 240 250 260 270
15000 T T 20
10000 [ a
5000 k£ / SGV/\ /A /\ A 15
of OO T~ T~
-5000 : : : : 10
220 230 240 250 260 270
15000 T T T 20
10000 1
5000 [\ /\ é A No 15
NUVEARY; AVEAVAIVEASY
-5000 : . : . 10
220 230 240 250 260 270
360 T
240
120
0 1 1 1 1
220 230 240 250 260 270
Time [s]

e Loads depend on the rotor orientation during the gust passage (rotor extends in 3-

dimensions)
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Simulation results —
=P

Emergency Shut Down VAWT

e Mechanical brake
e Emergency shut down at 220s Set-up
e 0.5s before grid loss (zero generator torque)
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Simulation results

VAWT Parked Rotor under 50-year EWM

1. Idling rotor - non reaching equilibrium rotor speed
2. Forced rotor rotation at low rotor speed - Possible
3. Standing still (locked rotor at different orientations) - Blade instabilities

Blade 1 I

Yalobal

-
ey

«— wind

Xaglobal
gohal Wy Blade 2

13 DTU Wind Energy, Technical University of Denmark 19 January
2016

i



Bending Moment [kKNm]

—
P2

-
=]

co

=)

B

M

Simulation results

VAWT Parked Rotor under 50-year EWM

1.

Idling rotor - non reaching equilibrium rotor speed
2. Forced rotor rotation at low rotor speed - Possible
3. Standing still (locked rotor at different orientations) - Blade instabilities
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Simulation results

VAWT Parked Rotor under 50-year EWM

1. Idling rotor - non reaching equilibrium rotor speed

2. Forced rotor rotation at low rotor speed - Possible

3. Standing still (locked rotor at different orientations) - Blade instabilities
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e Sensitivity analysis on blade stiffness and damping for the standing still
case - Instabilities present
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Design Load Case

W

Simulation results

Comparison of DLCs VAWT-HAWT
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1. VAWT extreme loads emerged from DLC 1.1 higher than the transient wind events
2. HAWT load results from transients more severe (DLC 2.3)
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Conclusions

VAWT DLCs

1. The examined DLCs of IEC 61400-1, ed.3 are applicable for VAWTs

2. Definitions of equivalent hub height and rotor diameter were specified

3. The loads emerged from EOG depend on the rotor orientation - gust
passage combination (3D rotor in space)

4. Parked standing still rotor under extreme winds (DLC 6.2) led to blade
instabilities for specific rotor orientations and seems be design driver for

VAWTSs
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Conclusions

VAWT-HAWT load comparison

1. Under power production with NTM both VAWT ultimate and 1 Hz fatigue

base bottom bending moments were higher compared to the HAWT

2. The blade root loads are of similar magnitude at low and moderate

winds between the two wind turbines under normal power production

3. DLC 1.1 simulations returned the highest base bottom and blade root
loads for the VAWT where the DLC 2.3 and 5.1 for the HAWT
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