Wind coherence measurement by a single pulsed Doppler wind lidar

Etienne Cheynet^a, Jasna Bogunović Jakobsen^a, Benny Svardal^b, Joachim Reuder^c, Valerie Kumer^c

^aUniversity of Stavanger, Norway ^bChristian Michelsen Research AS, Norway ^cUniversity of Bergen, Norway

Fraunhofer

OBLEX-F1. Offshore boundary layer experiment at FINO1.

Instrumentation: Windcube 100S

Instrumentation: Windcube 100S

- Simultaneous radial measurements
- Radial velocity measured in a volume
- Range used: from 50 m to 2 km

RHI Scan

Fixed azimuth angle Multiple elevation angles

RHI Scan

Fixed azimuth angle Multiple elevation angles

Approximation for small elevation angles:

$$V_r = U\cos(\alpha) + W\sin(\alpha) \approx U$$

 $\overline{V}_r \approx \overline{U}$ (err <1 % with α = 4°)

 $I_{v_r} \approx I_u$ (err ≈ 4 % with $I_w = 0.6I_u$ and $\alpha = 4^\circ$)

RHI Scan with small elevation angles

2

- fs = 0.19 Hz
- Averaged over 84 «snapshots»

Ζ

٠

y

10.8

0.044

X -

CNR > -23 dB•

PPI Scan

Fixed elevation angle Multiple azimuths

PPI Scan

Fixed elevation angle Multiple azimuths

Approximation for small elevation angles:

$$V_r = U\cos(\beta) - V\sin(\beta) \approx U$$

 $\overline{V}_r \approx \overline{U}$ (err <1 % with β = 3°)

 $I_{v_r} \approx I_u$ (err ≈ 5 % with $I_v = 0.9I_u$ and $\beta = 3^\circ$)

Wind stationarity

Cross-wind turbulence length scales

IEC reference root-coherence model

Here z = 90 m

Lateral and vertical root-coherence

Lateral and vertical root-coherence

Conclusions

Summary:

- A single pulsed Doppler wind lidar is used to record wind time histories (PPI & RHI scan)
- This requires a particular configuration (small angles relative to mean wind direction)
- The measured coherence showed a rather good agreement with the IEC model

Challenges and prospects:

- The alignment of the lidar beam with the mean wind direction is done manually.
- Multiple samples should be used for coherence estimation.

