Turbulent Structure underneath Air-Sea Wavy Interface: Large-Eddy Simulation

Mostafa Bakhoday Paskyabi

Geophysical Institute, University of Bergen (Mostafa.Bakhoday@uib.no)

Introduction

Stokes drift

http://en.wikipedia.org/wiki/Wind_wave

Stokes drift

Lagrangian description 1. **Eulerian description** 2.

From Bakhoday-Paskyabi 2014

Turbulence (compressible flow)

- Reynolds Averaged modelling (RANS)
- capture only the ensemble statistics
- Direct numerical simulation (DNS) capture all eddies
- Large eddy simulation (LES) intermediate method

Wave-tubulence interaction (RANS)

Decomposition

$$T' \ll \tilde{T} \ll \bar{T}; \text{ and } X = X' + \widetilde{X} + \overline{X},$$

$$u = \overline{u} + u'$$

$$p = \overline{p} + p'$$

$$\overline{\frac{\partial u}{\partial t}} = \frac{1}{T} \int_{0}^{T} \frac{\partial u}{\partial t} dt = \frac{u(T) - u(0)}{T}$$

$$\overline{\frac{\partial u}{\partial t}} = -\frac{\partial(\overline{u'w'})}{\frac{\partial z}{\partial t}} + f_{cor}(v + v_s) + F_x,$$

$$\frac{\partial v}{\partial t} = -\frac{\partial(\overline{v'w'})}{\frac{\partial z}{\partial t}} - f_{cor}(u + u_s) + F_y,$$

LES

Wave-Averaged Large-Eddy Simulation

Spatially filtered and temporal filtration for wave decomposition

Wave-current-turbulence interaction

In coupled wave-turbulence system, Stokes drift introduces

1. Coriolis-Stokes force and modification of momentum.

2. Langmuir turbulence and enhanced/suppressed upper ocean mixing.

Figure 1 Diagram tracing water through Langmuir circulation cells.

Example og Mixed layer Evolution

Experiment site: Havsul

Forcing condition

from October 25 to 30, 2011. During the field work, the wind speed ranged from 1 to 15 m s–1 with direction typically confined within from southeast and southwest from which the wind is emanating.

MATS SHEAR PROBE

Day of Year 2011

General Ocean Turbulence Model (GOTM)

LES result

There is a slight time-lag between GOTM & LES in this fig.

Application: Langmuir Circulation

General characterestics:

- > Although depth of Langmuir cells is about 4-6 m, it can be extended up to 200 m.
- Cells spatial separation is about 10-50 m.
- > The length of cells is ranged from few meters long to many kilometers.
- > The cell axes are typically aligned with wind, but may vary as much as 20 degrees.
- Clles try to be aligned with wind and in the case of wind change of direction, they need 15-20 minutes to be aligned in new direction.
- Downwelling velocitties are important for mixed layer implications, biological systems, and particle tracking.
- The mixed layer can be deepend (up to 200 m) in the presence of LC.
- The LC effects can be remained still strong from a few minutes to several hours after cells develop.
- > To generate LC, Wind speeds must typically reach 3 m/s.

Conclusions

- 1. LES gives promising estimate of turbulent fluxes near the wavy surface.
- 2. The closure problem in LES needs further investigation.
- 3. Wave breaking inclusion using dissipation source term will be included.

Acknowledgment

Author of this work is grateful of **Joachim Reuder**, **Alastair D. Jenkins**, **Ilker Fer**, **P. Sullivan**, **Ramsay Harcourt**, **J. Liang, and Martin Flugge** for all their supports and help throughout this investigation.

References

[1] Mostafa Bakhoday Paskyabi and Ilker Fer, Turbulence structure in the upper ocean: a comparative study of observations and modeling, Ocean Dyn., 64, 611-631, 2014. The article is available at: http://hdl.handle.net/1956/8684.

[2] Bakhoday Paskyabi M., S. Zieger, A.D. Jenkins, A.V. Babanin, and D. Chalikov: Sea Surface Gravity Wave-wind Interaction in the Marine Atmospheric Boundary Layer, Energy Proc., Volume 53, 2014, Pages 184-192.

[3] Mostafa Bakhoday Paskyabi and Ilker Fer, The influence of surface gravity waves on the injection of turbulence in the upper ocean, Nonlin. Proc. Geophys., 21, 713-733, 2014. The article is available at: http://hdl.handle.net/1956/8685

[4] Ilker Fer and Mostafa Bakhoday Paskyabi, Autonomous ocean turbulence measurements using shear probes on a moored instrument, J. Atmos. Ocean. Tech., 31, 474–490, 2014. The article is available at: http://hdl.handle.net/1956/8678

[5] M. Bakhoday Paskyabi, Small-scale turbulence dynamics under sea surface gravity waves, PhD dissertation, 2014.

[6] Harcourt, R. R., 2013: A second moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 43, 673–697.

[7] Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. Part i. direct numerical simulations. *J. Fluid Mech.*, 507.

[8] Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: largeeddy simulation with vortex force and stochastic breakers. *J. Fluid Mech.*, 593, 405–452.

[9] Sullivan, P. P., L. Romero, J. C. McWilliams, and W. K. Melville, 2012: Transient evolution of Langmuir turbulence in the ocean boundary layers driven by hurricane winds and waves. *J. Phys. Oceanogr.*, 42, 1959–1979.