Turbulence Intensity Model for Offshore Wind Energy Applications

Konstantinos Christakos, Martin Mathiesen, Ole Henrik S. Holvik, Anja K. Meyer Metocean Group

Outline

- Motivation
- Wind Parameters
- Offshore Standards: ISO 19901-1:2005
- Turbulence Intensity Model (TIM)
- Estimation of Gust Factor based on TIM
- Further Studies
- Summary

Motivation

Offshore standards:

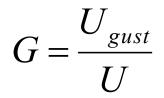
- Use: Design of offshore structures
- Focus: High wind speed

Need of a model

Valid for:

- All wind conditions
 Can be used for:
- Design
- Operation and Fatigue Analysis

Wind Parameters


Mean Wind Speed:

U

Turbulence Intensity:

 $I = \frac{\sigma_U}{II}$

Gust Factor:

Offshore Standard: ISO 19901-1:2005

Wind Profile:

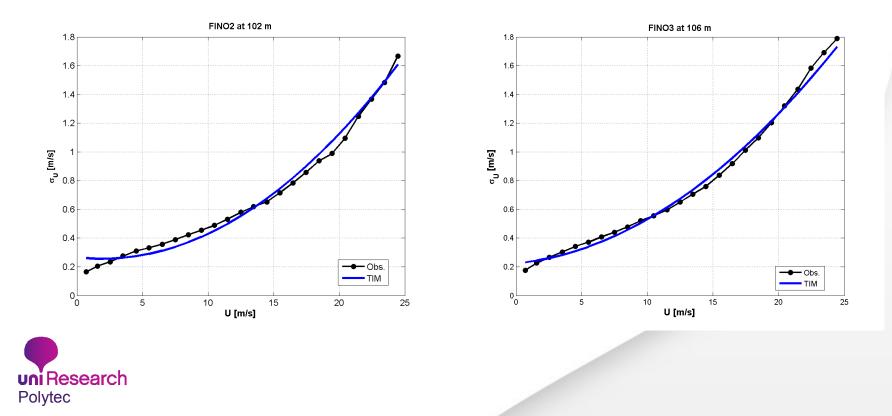
$$U(z) = U_0 \cdot \left[1 + C \cdot \ln\left(\frac{z}{z_r}\right) \right]$$

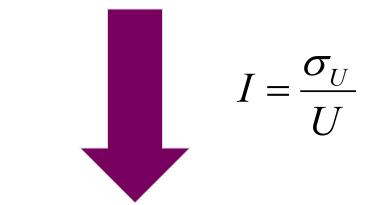
$$C = 5.73 \cdot 10^{-2} \cdot \left[1 + 1.5 \cdot \frac{U_0}{U_{ref}} \right]^{\frac{1}{2}}$$

Turbulence Intensity:
$$I = 0.06 \cdot \left[1 + 0.43 \cdot \frac{U_0}{U_{ref}}\right] \cdot \left(\frac{z}{z_r}\right)^{-0.22}$$

Z_r:

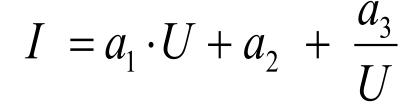
t₀ :

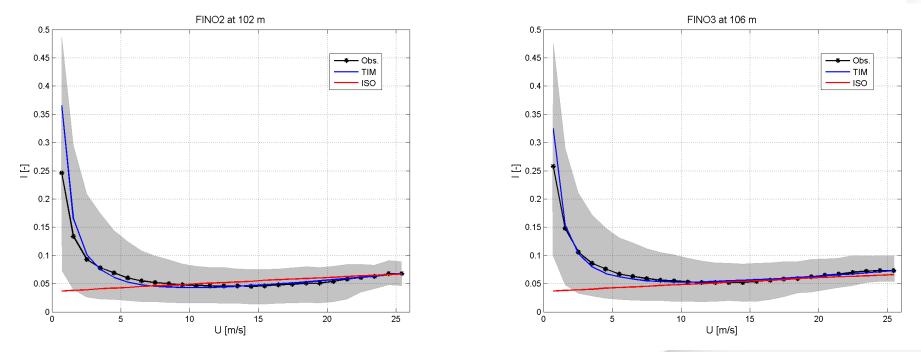

Wind Gust:
$$U_{gust}(z,t) = U(z) \cdot \left[1 - 0.41 \cdot I(z) \cdot \ln\left(\frac{t}{t_0}\right) \right]$$


Reference elevation above mean sea level, $z_r = 10$ m U_o: 1 hour mean wind speed at the reference elevation z_r U_{ref} : Reference wind speed, $U_{ref} = 10 \text{ m/s}$ 1 hour

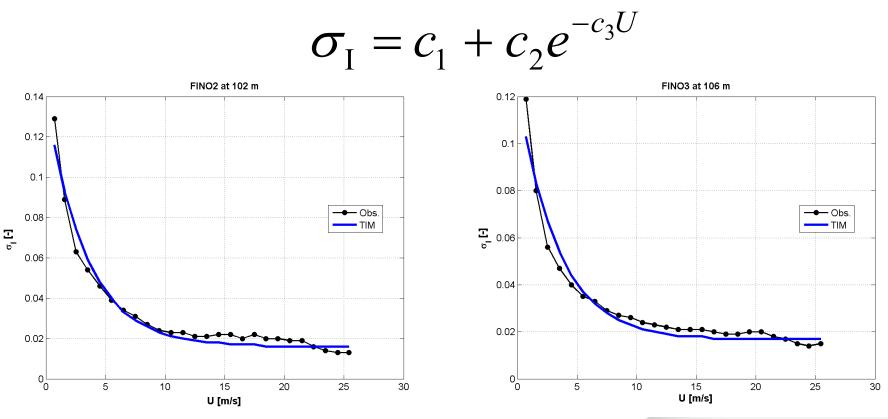
Based on offshore wind statistics at FINO platforms, the standard deviation of wind speed is modelled as a function of wind speed using a 2nd order polynomial:

$$\sigma_U = a_1 \cdot U^2 + a_2 \cdot U + a_3$$




$$\sigma_U = a_1 \cdot U^2 + a_2 \cdot U + a_3$$

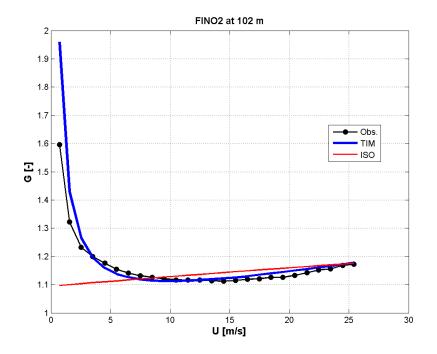
$$I = a_1 \cdot U + a_2 + \frac{a_3}{U}$$

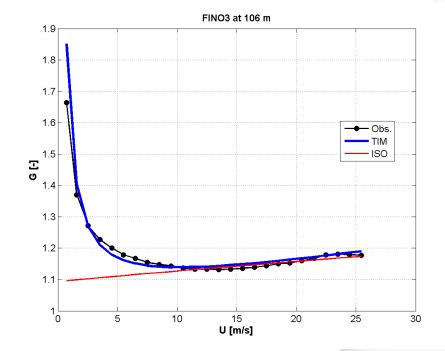


uni Research Polytec

Grey Area: P05 – P95 curves

For wind speed higher than 2 m/s, the standard deviation of turbulence intensity (σ_I) is modelled by:


Estimation of Gust Factor based on TIM


ISO Wind Gust:

$$U_{gust}(z,t) = U(z) \cdot \left[1 - 0.41 \cdot I(z) \cdot \ln\left(\frac{t}{t_0}\right) \right]$$
$$I = a_1 \cdot U + a_2 + \frac{a_3}{U}$$
$$G = \frac{U_{gust}}{U}$$

Estimation of Gust Factor based on TIM

Further Studies

Apply the TIM to

- other offshore locations
- different heights (higher)

Investigate the possible relation between the TIM and

- atmospheric stability
- wind shear
- sea surface roughness (e.g. effect of waves)

Summary

- Propose a model for:
- I (valid for all wind conditions)
- σ_1 (valid for wind speed > 2m/s)
- Modelled turbulence intensity corresponds to ISO standards for high wind speed
- Model has been tested with good results using data from several locations including FINO 1,2 and 3

Acknowledgement

Wind data provided by BMWi (Bundesministerium fuer Wirtschaft und Energie, Federal Ministry for Economic Affairs and Energy) and the PTJ (Projekttraeger Juelich, project executing organisation)

Thank you

$$I = a_1 \cdot U + a_2 + \frac{a_3}{U}$$

Location	Height	Coefficients		
	[m]	<i>a</i> 1[(m/s) ⁻¹]	<i>a</i> ₂	<i>a</i> ₃[m/s]
Fino 1	100	0.0021	0.0104	0.2545
	33	0.0020	0.0351	0.1976
Fino 2	102	0.0027	-0.0102	0.2660
	30	0.0025	0.0252	0.1599
Fino 3	106	0.0021	0.0092	0.2233
	30	0.0025	0.0300	0.1794

$$\sigma_{\mathrm{I}} = c_1 + c_2 e^{-c_3 U}$$

Location	Height	Coefficients		
	[m]	C ₁	C ₂	c ₃ [(m/s) ⁻¹]
Fino 1	100	0.019	0.101	0.237
	33	0.016	0.094	0.166
Fino 2	102	0.016	0.123	0.301
	30	0.012	0.126	0.270
Fino 3	106	0.017	0.107	0.299
	30	0.015	0.123	0.285

