Optimal Transmission Voltage for Very Long HVAC Cables

Til Kristian Vrana Olve Mo

Outline

- Introduction
- Approach
- Results
- Conclusion

Introduction Definition

• What is *optimal*?

Transmission voltage is optimal,... ...when it enables for maximal power transfer capability

• What is *very long*?

A HVAC cable can be considered very long,... ...when the optimal transmission voltage is LOWER than rated voltage (This is usually for lengths beyond 100-200 km)

(depending on cable type)

Introduction Motivation

- Why considering very long HVAC cables?
 - Used to be seen as economically inferior to HVDC solutions
 - Economic Break-Even-Length (usually referred as 50-100 km)

Introduction Motivation

- Why considering very long HVAC cables?
 - Used to be seen as economically inferior to HVDC solutions
 - Economic Break-Even-Length (usually referred as 50-100 km)
- Offshore HVDC has proven to be more expensive than expected (German Bight)
- L>100 km becoming interesting

Introduction State of the Art

Introduction Background

- HVAC cables are operated at rated voltage
- Longest HVAC cables are around 100km (Malta, Ibiza,...)
- European standard voltage (400 kV) not applied for long cables.
- Applied: 220 kV, 155 kV, 132 kV, 110 kV
- Cable capacitance setting the limits.

Soon to come: Martin Linge Cable (162km, 55MW)

Introduction

Today's Approach

- See what cables are available
- Check which cable fits best for the purpose
- Aways operate at rated voltage

Operation voltage (for a given cable) is taken as given and not as parameter

Introduction New Systematic Approach

Rated voltage is NOT the operating voltage

Rated voltage is the upper boundary for operating voltage

• Why not use a cable with lower voltage rating? (instead of lowering the operating voltage)

- Why not use a cable with lower voltage rating? (instead of lowering the operating voltage)
- 1. Optimal voltage might lay between available voltage levels

- Why not use a cable with lower voltage rating? (instead of lowering the operating voltage)
- 1. Optimal voltage might lay between available voltage levels
- 2. Power transfer capability is not the same!
 - Lower rated cables have thinner insulation.
 - Thinner insulation gives more capacitance.
 - Power transmission length limited by capacitance.

-> degrades long distance transmission capability

- Comparison of 4 cables
 - I = 200 km
 - U = 132 kV

Insulation thickness influences power transfer capability

Introduction New Systematic Approach

Rated voltage is NOT the operating voltage

Rated voltage is the upper boundary for operating voltage

Introduction New Systematic Approach

Rated voltage is NOT the operating voltage

Rated voltage is the upper boundary for operating voltage

Great, but... ...how to we make the choice?

Outline

- Introduction
- Approach
- Results
- Conclusion

Approach Calculation

- Purely analytical approach was chosen
- Focus: Deriving the basic equations
 - Cable length
 - Cable parameters
 - Power transmission capability
 - Operation voltage
 - Losses
 - Efficiency

Approach Degree of Detail

- Lumped model
 - Resistive losses
 - Capacitance

heavily simplified approach!

- Only a starting point / first step
- Focus: Solvable equations

Approach

Simplification issues

- Voltage profile Higher midpoint voltage
 - Using lower U_max
- Current profile Lower current in the middle / higher in the ends
 - Ok for losses
 - Problematic for current limit
- Resistive voltage drop
 - Lower charging current @ receiving end
- Losses of reactive compensation equipment
 - Efficiency for cable only
 - Optimum efficiency voltage too high

Approach Cable Type Example

- Three-core cable
- Copper conductor
- $A = 1000 \ mm^2$
- XLPE insulation
- With armour
- 50 % reactive compensation on each end (symmetric compensation is also a simplification)

Approach

Cable Data Example

- Data taken from manufacturer brochures: (ABB, NKT, (Prysmian))
- Data used for calculations here:
 - $C' = 0,18 \, \mu F / km$
 - $R' = 0,0275 \ \Omega/km$
 - $I_{max} = 825 \ kV$
 - $U_{max} = 275 \ kV$

Outline

- Introduction
- Approach
- Results
- Conclusion

Results Equations 1

• Power Transmission Capability

• Maximum Length at Rated Voltage

Graphic Visualisation 1

Equations 2 – Optimal Voltage

• Optimal operating voltage

• Technical Break-Even-Length

Optimal operating voltage

Graphic Visualisation 2 – Optimal Voltage

Equations 3 – Maximal Power Transfer

• Maximal power transfer

• Maximal length and resistance

• Maximal power transfer

Graphic Visualisation 3 – Maximal Power Transfer

Results Graphic Visualisation 1+2+3 in 3D

Equations 4 - Efficiency

• Fixed voltage

• Optimal voltage

Graphic Visualisation 4 - Efficiency

Results Implications 1

Maximal power transer capability (for all HVAC cables)

Results Implications 1

Maximal power transer capability (for all HVAC cables)

(Would require unfeasibly high voltage for non-very-long cables)

Results Implications 2

- I < 130 km
 - Business as usual
- 130 km < l < 184 km
 - Voltage reduction increases power transfer capability
- 184 km < l
 - Voltage reduction inevitable ($P(U_{rated}) = 0$)

Outline

- Introduction
- Approach
- Results
- Conclusion

Conclusion Summary 1

- Very long HVAC cables have received very little attention
 - Operating at rated voltage always made sense (until now...)
 - Trend goes towards longer and longer HVAC cables
 - Break-Even-Length is in reach
- Operating voltage becomes a constrained parameter

Conclusion Summary 2

- Analytical equations help to understand phenomena
- Matlab tool gives quick look on long-distance properties
 - Get cable data
 - Calculate:
 - Break-even length
 - Maximal length at rated voltage
 - Maximal length (at optimal voltage)
 - Maximal resistance and maximal length
 - Get a first impression

• Use of generic cable model

- More advanced analytical calculations
 - Inductance
 - Distributed parameters

- Numerical calculations for verification
 - First step indicated valididy of approach
 - Detailed study neccessary

 Loss-optimal operation with variable power transfer (variable voltage / constant cos(φ))

The End

