

Scaled Hardware Implementation of a Full Conversion Wind Turbine for Low Frequency AC Transmission

Dr. Ronan Meere

EERA DeepWind 2016 Trondheim Norway

Ismail Ibrahim, Jonathan Ruddy, Cathal O'Loughlin and Terence O'Donnell

Ronan Meere (Senior Researcher Power Systems) Electrical Engineering Department (Electricity Research Centre) (Energy Institute) University College Dublin Ireland ronan.meere@ucd.ie

- Background to LFAC transmission for offshore wind
- Design of an LFAC grid compatible wind turbine
- Onshore VSC design

Why Low Frequency AC?

Onshore Frequency Changer

Back to Back VSC converter – Decoupled AC – DC – AC conversion

Ruddy et al. 2016 "Low Frequency AC transmission for offshore wind power: A review"
Fischer et al. 2012 "Low frequency high voltage offshore grid for transmission of renewable power"
Jafar et al. 2014 "Low Frequency AC Transmission for Grid Integration of Offshore Wind Power"
Olsen et al. 2014 "Low Frequency AC Transmission on large scale Offshore Wind Power Plants, Achieving the best from two worlds?"

- Real Time Simulation (RTS) UCD
- <u>Step 1</u> : Can you design a full conversion WT at 16.7 Hz ?

- Fixed speed and DFIG wind turbine configurations larger generators to overcome start-up transients
- Full conversion WT ability to reconfigure the converter to synchronise to the 16.7 Hz grid
- Design of the WT Trafo needs to be relocated on the platform or tower

Lab Setup

Generator Side VSC Control

- VSC control maintains a $(T_e \alpha \ \omega^2_r)$ relationship for the generator so that MPPT (Maximum Power Point Tracking) is guaranteed
- The VSC can set both stator frequency of the generator to control speed and also stator current i_s to control the electrical torque T_e

$$T_e = \frac{3}{2} \frac{L_m}{1 + \sigma_r} \hat{i}_{mr} i_{sq}$$

- Torque control maintains i_{mr} (magnetising current) <u>constant</u> to a fixed value while using i_{sq} to set T_e
- A <u>flux observer</u> is used to estimate the magnetising current *i_{mr}*

Flux/Torque Compensator

• The flux/torque compensator block receives a reference value for the magnetizing current reference i_{mrref} and an electrical torque reference T_{eref} as inputs and then outputs reference values for the stator d and q currents, i_{sdref} and i_{sqref} which in turn serve as inputs to the inner dq current controller

$$\hat{i}_{mrref} = \sqrt{\frac{2}{3}} \frac{V_{sn}}{(1 + \sigma_s)L_m\omega_0}$$

Grid Side VSC Control

- PLL is utilized to synchronize the converter with the offshore 16.7 Hz grid
- The DC bus voltage controller maintains a constant DC-link voltage

Pictures of the Actual Setup

MG SET 16.7 Hz Grid

Back To Back VSC Converter

SCIG-Dynamometer Set

Opal-RT Real Time Simulator Control (Software)

Test Procedure

Generator Side

Grid Side

DC voltage Grid Side Converter Measured

Measured Power Export Test

Grid - Side Phase Lock Loop at 16.7 Hz

centre

• <u>Step 2</u> : Onshore VSC Back/Back step 16.7 Hz to 50 Hz

• Poster covers this is detail :

Other Work in Progress for LFAC

- <u>Transformer Optimisation</u>
 <u>16.7 Hz</u>
 - 2 2.5 times the gross weight of a 50 Hz transformer for the same power
- Hypothetic Nord Sea Grid *Istvan Erlich "16.7 Hz – The Missing Link"* Meshed **North Sea Grid**

• LFAC is a real alternative to VSC-HVDC

Demonstrated an operational LFAC connected WT

• Build the onshore BtB converter in hardware

 Evaluate the system under grid connection conditions

Ronan Meere is funded under the Third Level Institutions (PRTLI), Cycle 5 and co-funded under the European Regional Development Fund (ERDF).

Terence O'Donnell, Cathal O'Loughlin and Jonathan Ruddy are both funded under the SFI funded SEES Cluster.

Investing in Your Future

Questions?