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INTRODUCTION

FOWT modelling research primarily focuses on hydrodynamics and
mooring line dynamics

L eading Question for this Study

= What is the impact of Aerodynamic Model Fidelity on Rotor Loads
during Floating Offshore Wind Turbine Motions?

Presented work is related to

= OFFWINDTECH Project within EU KIC Framework _ ert
. . . ~ KIC InnoEnergy
and associated PhD projects in Stuttgart .
. . . OFFWINDTECH
= Similar questions related to model fidelity are also |
investigated in ongoing EU project, e.g. LIFES50+ \ LIFES50+
= (no results from LIFES50+ are presented) /w

SN 4ES Presented results were generated primarily at Stuttgart Wind Energy



INTRODUCTION

Aerodynamic effects on a floating offshore wind turbine
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INTRODUCTION

= Complex 3d viscous & rotational effects

Radius [m]
Normalized PSD

= Complex rotor interaction with

» tower & nacelle

» turbulent atmospheric boundary layer
» (half) wake

» Structure

1 L L
-4 -35 -3 =25 -2 -15 -1 -05 0

OC3 Hywind @ rated wind speed
Contour: normalized a PSD over radius
Curves: PSD of platform motions

= Wave & wind induced platform motion

» unsteady aerodynamic effects Percentage of aerodynamically unsteady

(k > 0.05) to total energy from o PSDs:

Below Rated 0.3 % 18.0 %
Rated 1.7 % 17.9 %
Above Rated 0.1 % 17.9 %

*Thomas Sebastian, “THE AERODYNAMICS AND NEAR WAKE OF AN
OFFSHORE FLOATING HORIZONTAL AXIS WIND TURBINE”, UMASS
Dissertation, 2012




APPROACH



APPROACH

REFERENCE MODEL
Modification of Blades & Controller:

Platform & Tower: o
OC3 Hywind Spar Buoy = Recalculated airfoil tables

Turbine: modified 5MW NREL WT » XFOIL (pqqel &_BL code} ggnerated to ensure
comparability with new airfoils

» Applied Viterna extrapolation, Snel 3D
corrections & DS parameters for use in BEM

= Changed aerodynamic & structural

twist angle

» Goal: At rated wind speed, a lift coefficient
close to todays high performance blade
designs

c, > 1.1 (from c, > 0.95)
= Changed generator torque controller

constant
» Adjusted for blade modifications
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APPROACH
AERODYNAMIC MODELS

BEM: Blade Element Momentum Theory AeroDyn 13
= State-of-the-art in aero-servo-hydro-elastic FOWT load simulation (NREL)
= Basic idea: Balance of forces in axial (and tangential) directions from AeroModule
global momentum balance with Forces at the local blade element
= Encompasses various assumptions & semi-empirical correction models BEM (ECN)
LLFVWM: Lifting Line Free Wake Vortex Method (Potential Flow) WInDS
= vorticity in the volume is lumped into vortex lines (UMASS)
»  Blade: Lifting Line (airfoil tablesreq.) » Wake: Free surface of shed vortices AeroModule
= dynamic wake effects and local blade aerodynamics are inherently AWSM (ECN)
represented
CFD: (U)RANS (Unsteady Reynolds-Averaged Navier-Stokes) FLOWER
= State of the art for complex turbulent flow simulations (not yet in wind) (DLR/IAG)
= Turbulence models are applied to solve the NSE ANSYS CEX

(for validation)
RAMBOLL




APPROACH
CFD MODEL

» Extended Block-structured Code « Background mesh
FLOWER (DLR) e 400m x 400 mx 520 m
e Axyz=2m

* 14 components « Approx. 30 million cells

«  CHIMERA overlapping mesh technique _ 0.014s time-step size (=1° )

RAMBOLL e k-w turbulence model




APPROACH
AERODYNAMIC ANALYSIS

1. Model Setup in 5 different aerodynamic codes,

covering 3 methodologies using SIMPACK as

structural WT model
2. Verification of baseline onshore loads

3. Selection of Floating Cases

a) Extreme motions for CFD analyses for limited conditions

b) IEC operating DLCs for inflow condition analysis

4. Performing load cases a) & b)

5. Analyzing extreme loads & inflow conditions
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Aerod. Rotor Thrust T [N]

RESULTS
VERIFICATION OF ONSHORE LOADS
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 Parametric correction model study performed
to identify causes for large >12% torque deviations

« Significant influence from turbulent wake state (Glauert) correction
observed due to high rotor induction level

RAMBOLL a, = 0.2



RESULTS
TURBULENT WAKE STATE CORRECTION

av

e Turbulent wake state correction is
an empirical modification for high
induction factors, where the
momentum equation breaks down

Annulus averaged axial induction factor a
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RESULTS

EXTREME MOTION ANALYSIS - THRUST
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RESULTS

EXTREME MOTION ANALYSIS - TORQUE
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EXTREME MOTION ANALYSIS — DYNAMIC INFLOW

RESULTS
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RESULTS ki
FLOW FIELD ANALYSIS
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RESULTS
INFLOW CONDITIONS
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CONCLUSION

« Study on aerodynamic model fidelity influence on FOWTs
« Models setup for BEM, FVM and CFD methods

Dynamic Inflow TWS correction
with important influence Is important for rotors
on thrust and torque loads operating at high induction

and timeshifts for FOWTs levels, as likely for FOWTs

Other unsteady effects Inflow conditions
Local blade loads Design point not-influenced

influenced by flow Design range increased
separation & BVI

« Use Dynamic Inflow models with appropriate time const.
e Critical assessment of local blade loads




CONCLUSION

Upcoming IEC 61400-3-2

“IEC 61400-3-1 clause 7.3.3 is generally applicable. The aerodynamic
interaction between the airflow and the FOWT is of special importance
due to their additional compliance and increased dynamic response.
The interaction of potentially large translational and rotational motions
of the floating sub-structure with the aerodynamic loading of the RNA
and tower shall be considered, including aeroelastic effects and the
associated global and local dynamic and unsteady aerodynamic
effects (e.g. dynamic inflow, oblique inflow, skewed wake,
unsteady airfoil aerodynamics including dynamic stall, blade-
vortex interaction). Wind loads on the floating sub-structure shall
also be considered, where relevant.”
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