

Adaptation of Control Concepts for the Support Structure Load Mitigation of Offshore Wind Turbines

B. Shrestha*, M. Kuehn

Research Group Wind Energy Systems

ForWind - Center for Wind Energy Research, University of Oldenburg, Germany

Objective

- To develop an adaptive control that selects the most effective individual control concept for the given load event in consideration of its respective collateral effect.

- To take advantage of controller concepts without having considerable collateral effect.

Fig 1: Flowchart of the steps followed for the selection of the most effective controllers

Analysis

Controllers used for NREL 5MW offshore turbine at 25 m water depth (MSL) at North Sea site founded on a monopile (f = 0.28 Hz):

- 1. Baseline controller (BLC)
- 2. Tower foreaft (TFA) controller to reduce fore-aft bending moment
- 3. Active Generator Torque (AGT) controller- to reduce tower side to side bending moment

Collateral effects:

- TFA : increased pitch activity given by pitch Actuator Duty cycle (ADC)
- AGT : varying generator torque and hence increased power fluctuation

Load cases selected: mean wind speed of 14 m/s; IT = 14.2 %; wind-wave misalignment of 0°, 45°, 90° and 135°; 3 to 4 different wave heights per case; 6 seeds.

The optimization result of trade-off between tower fore-aft damage equivalent load (DEL_TMy) reduction and the increase in ADC is shown in Fig 2a.

Fig 2: Optimization results for different controller settings and constraining factors for mitigation of a) pile fore/aft, b) pile side to side, c) pile Mxy bending moment at mudline

If 60 % of the total possible increase in pitch ADC is the constraint, the DEL_TMy is reduced by 1.5 % which is 78 % of the total achievable load reduction by operating the TFA for 53 % of time. The similar results in Fig 2b and Fig 2c shows that it is possible to considerably reduce the load when limiting the collateral effect for the given sea state.

Acknowledgement

This work was partially funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) in the scope of the RAVE (Research at Alpha Ventus) - OWEALoads project (contract No. 0325577B).

Acknowledgement is given to David Schlipf, University of Stuttgart for providing the controller for NREL 5MW turbine and Adrian Jimenez for assisting in data handling.

> Binita Shrestha Tel: +49 441 798 5067 binita.shrestha@uni-oldenburg.de

