FSI-WT: A COMPREHENSIVE DESIGN METHODOLOGY FOR WIND TURBINES

Espen Åkervik¹, Jørn Kristiansen², Adil Rasheed³, Runar Holdahl³, Trond Kvamsdal³

¹Norwegian Defense Research Establishment, ²MET Norway, ³Applied Mathematics SINTEF ICT

SIMRA-SWAN coupled to HARMOINE-WAM / WP3 model A Multiscale approach to model the entire event from mesoscale meteorology, ____ through microscale fluid-struct are interaction meteorology deta led En En Grange to the aerodynamics of transi ional flow wind turbine blades ----) -vir interaction wave load HARMONIE-WAM **FSI-WT** hydrodynamic load

Global-Meso coupling

Isogeometric finite element code to simulate fluid-structure interaction of a rotating turbine

Boundary conditions: Wind and Turbulence for FSI simulation

Bessaker Wind Farm

Sheringham Shoal Wind Farm

Microscale simulation of a wind farm in complex terrain Output: Power production forecast and detailed 3D wind, temperature and turbulence field

Planned work: Microscale simulation of an offshore wind farm: Power production forecast and detailed 3D wind field

Improved parameterization for modeling of air-sea interaction

Near shore characterization of waves

Computed from the numerical simulation of Marine Boundary Layer

Large Eddy Simulation to capture wave effects on turbulent boundary layers

Advanced Finite Volume code on unstructured grid

SWAN results, Meteorological data, and observation data to set up cases for detailed LES

Effects of waves on turbulence in atmospheric boundary layer modeled in detail

Improve parameterization of the sea-atmosphere interface in wave models

Planned work:

Include stratification effects

Two way coupling of air-sea using Volume of Fluid and/or Level Set method

The authors acknowledge the financial support from the Norwegian Research Council and the industrial partners of the FSI-WT-project (216465/E20) | Contact: espen.akervik@ffi.no, adil.rasheed@sintef.no

