Innovations in Offshore Wind through R&D

John Olav Giæver Tande Director NOWITECH Senior Scientist SINTEF Energy Research John.tande@sintef.no

NOWITECH in brief

- A joint pre-competitive research effort
- Focus on deep offshore wind technology (+30 m)
- Budget (2009-2017) EUR 40 millions
- Co-financed by the Research Council of Norway, industry and research partners
- 25 PhD/post doc grants
- Key target: innovations reducing cost of energy from offshore wind
- Vision:
 - Iarge scale deployment
 - internationally leading

Research partners:

- SINTEF ER (host)
- ▶ IFE
- NTNU
- MARINTEK
- SINTEF ICT

partners:

MIT

► NREL

TU Delft

Nanyang TU

► SINTEF MC

Associated research

Michigan Tech Uni.

Fraunhofer IWES

Uni. Strathclyde

► DTU Wind Energy

Industry partners:

- ► CD-adapco
- DNV GL
- DONG Energy
- ► EDF
- Fedem Technology
- Fugro OCEANOR (TBC)
- Kongsberg Maritime
- Rolls Royce SmartMotor
- Statkraft
- Statnett
- Statoil

Associated industry partners:

- Devold AMT AS
- Energy Norway
- Enova
- Innovation Norway
- ► NCEI
- NORWEA
- NVE
- ► Wind Cluster Mid-Norway

A large growing global market for offshore wind

- Battle climate change
- Security of supply

Figure 1.10

Industry value creation

Stern Review (2006): ...strong, early action on climate change far outweigh the costs of not acting.

Fuel mix in electricity generation, by scenario

Key pointDiversification of fuels and increased use of low-carbon sources in the 2DS achieves a
high degree of decarbonisation in electricity generation by 2050.2012 installed wind

Copy from IEA Energy Technology Perspectives 2012

Norwegian Research Centre for Offshore Wind Technology

2012 installed wind: Total 282 GW incl 5 GW offshore 2050 2DS wind: 6000 TWh/3000 h = 2000 GW Required annual installations to reach 2DS goal for wind: 2000 GW / 40 y = 50 GW/y + end of lifetime replacements

Main challenge: Reduce Cost of Energy

Graphics from: The Crown Estate (2012) Offshore wind cost reduction pathways study

4

Norwegian Research Centre for Offshore Wind Technology

From R&D to innovations to cost reductions

Reducing uncertainties by better models

- Integrated models simulate the behavior of the complete turbine with substructure in the marine environment: SIMO-RIFLEX (MARINTEK) and 3DFloat (IFE)
- Model capability includes bottom fixed and floating concepts
- Code to code comparison in IEA Wind OC3 and OC4
- Model to measurements comparison in progress

Cost savings by optimising spar buoy design

Integrating structural dynamics, control and electric model

HVDC generator avoiding need for large sub-station

Norwegian Research Centre for Offshore Wind Technology

Lab-scale implementation of multi-terminal HVDC grid connecting offshore wind farm

Norwegian Research Centre for Offshore Wind Technology

Optimization of the offshore grid

Mainland grid

- New market solutions are required
- New technology (HVDC VSC, multiterminal, hybrid HVDC/HVAC, ...)
- Protection, Fault handling, Operation, Control, Cost, Security of Supply

O&M and logistics cost analysis

Coatings for offshore wind turbine blades - Protection against rain droplet

Investigation by

- Erosion testing
- Material characterization
- Numerical modelling

Erosion evaluated by weight loss measurements

Water droplets

Coating

Substrate

HDPE sample after 3 hours of erosion test

Remote presence reduce O&M costs

It is costly and sometimes impossible to have maintenance staff visiting offshore turbines

Remote presence:

- Remote inspection through a small robot on a track in the nacelle equipped with camera / heat sensitive, various probes, microphone etc.
- Remote maintenance through robotized maintenance actions

Norwegian Research Centre for Offshore Wind Technology

NOWITECH 10 MW reference turbine

Initial design parameters

- Nominal power output 10.0 MW
- Design wind velocity 13.0 m/s
- Tip speed ratio 7.7
- Hub height 93.5 m
- Turbine diameter 141.0 m
- Design water depth 60.0 m
- Wind & waves ala Doggerbank
- (work in progress!)

The NOWITECH 10 MW reference turbine introduces a new generator and support structure concept

SEAWATCH Wind Lidar Buoy

- Cost efficient and flexible compared to offshore met mast
- Measure wind profiles (300 m), wave height and direction, ocean current profiles, met-ocean parameters
- Result of NOWITECH "spin-off" joint industry project by Fugro OCEANOR with Norwegian universities, research institutes and Statoil.

Relevant labs on campus

Wind tunnel

Material testing

SmartGrids lab

NOWITECH Norwegian Research Centre for Offshore Wind Technology

Strong field facilities for R&D in development

Recruitment and education

- 25 PhD and post doc students are granted by NOWITECH to be finished in 2014-2015
- Some +30 PhD students are funded through other projects and some hundred MSc have specialized within wind energy
- The Erasmus Mundus European Wind Energy Master (EWEM) programme gives further weight to the wind education at NTNU and NOWITECH

NOWITECH achievements

- NOWITECH is about education, competence building and innovations reducing cost of energy from offshore wind
- Significant budget and duration: EUR 40 millions (2009-2017)
- Strong consortium with leading research and industry parties
- Excellent master and PhD programme: 25 PhD & post doc grants
- Strong scientific results: good number of peer-reviewed publications
- R&D results give value creation and cost reductions
- Innovation process is enhanced through TRL
- Two new business developments (Remote Presence + SiC coatings)
- Strong infrastructure in development: NOWERI, WindScanner, ++
- A high number of spin-off projects: total volume EUR 125 millions
- Vision: large scale deployment & internationally leading

We make it possible

NOWITECH is a joint 40M€ research effort on offshore wind technology.

- Integrated numerical design tools
- New materials for blades and generators.
- Novel substructures (bottom-fixed and floaters)
- Grid connection and system integration
- Operation and maintenance
- Assessment of novel concepts

www.NOWITECH.no

