

182818284

PossPOW

Estimation of Possible Power in Offshore Wind Farms during Downregulation

Tuhfe Göçmen Bozkurt PhD Student DTU Wind Energy Risø, Denmark

Co-authors: Gregor Giebel, Pierre-Elouan Réthoré, Mahmood Mirzaei

DTU Wind Energy

Department of Wind Energy

DTU

Contents

- What is 'PossPOW' ?
 - Background & Aim of the Project
- Project Workflow
 - Rotor Effective Wind Speed Estimation
 - Real time wake model re-calibration for single wake case
 - Hypotheses & Future Work
- Conclusion & Acknowledgements

PossPOW – Background & Aim of the Project

PossPOW – Background & Aim of the Project

- "Reserve Power" of offshore wind farms (i.e. how much the wind farm is down-regulated) can be traded on the grid services markets
- Estimation of possible (or Available) power of a downregulated single turbine is straight-forward & widely known
- ...but when it comes to the wind farm scale:
 - $\sum Possible Power_{single turbines} > Possible Power_{wind farm}$
 - Simply because a turbine in the wake of a downregulated turbine sees more wind than usual —> decreased wake effect
- Energinet.dk, UK National Grid and other Transmission System Operators (TSOs) have no real way to determine the available power of a whole down-regulated wind farm
- Therefore, PossPOW aims —>verified & internationally accepted way to estimate the available power of downregulated offshore wind farms.

PossPOW – Wind Speed Estimation (Procedure)

- Nacelle Anemometer \longrightarrow
 - not always available + high inaccuracy
- Power Curve method \longrightarrow
 - no longer applicable due to downregulation
- Backward verification of wind speed

$$P = \frac{1}{2}\rho A_{rotor} c_P(\theta, \lambda) U_{eff}^3$$

- Power + rotor speed + pitch angle \longrightarrow incoming wind speed

• Estimation of $C_P(\lambda, \theta) \longrightarrow$ analytical model by Heier(1998) $C_P(\lambda, \theta) = c_1 \left(\frac{c_2}{\lambda_i} - c_3 \theta - c_4 \theta^{c_5} - c_6 \right) exp \left(\frac{-c_7}{\lambda_i} \right)$

Where

$$\lambda_i = \left[\left(\frac{1}{\lambda + c_8 \theta} \right) - \left(\frac{c_9}{\theta^3 + 1} \right) \right]^{-1}$$

PossPOW – Wind Speed Estimation (Procedure)

– Nacelle Anemometer \rightarrow

not always available + high inaccuracy

6 DTU Wind Energy, Technical University of Denmark

20-Jan-14

Zahle, F. and Sørensen, N. N., 2011, Characterization of the unsteady flow in the nacelle region of a modern wind turbine. Wind Energy, 14: 271–283

PossPOW – Wind Speed Estimation (Procedure)

- Nacelle Anemometer \longrightarrow
 - not always available + high inaccuracy
- Power Curve method \longrightarrow
 - no longer applicable due to downregulation
- Backward verification of wind speed

$$P = \frac{1}{2}\rho A_{rotor} c_P(\theta, \lambda) U_{eff}^3$$

• Power + rotor speed + pitch angle \longrightarrow incoming wind speed

• Estimation of $C_P(\lambda, \theta) \longrightarrow$ analytical model by Heier(1998) $C_P(\lambda, \theta) = c_1 \left(\frac{c_2}{\lambda_i} - c_3 \theta - c_4 \theta^{c_5} - c_6 \right) exp \left(\frac{-c_7}{\lambda_i} \right)$

Where

$$\lambda_i = \left[\left(\frac{1}{\lambda + c_8 \theta} \right) - \left(\frac{c_9}{\theta^3 + 1} \right) \right]^{-1}$$

PossPOW – Wind Speed Estimation (Single Turbine)

- Case Study : Horns Rev I \rightarrow 80 Turbines & Vestas V80 2 MW-Offshore
 - Constants in C_P equation
 - 2 different second-wise datasets
 - Normal Operation : below cut-in to above rated wind speed

- Poor agreement in C_P for low wind speeds
- Over-estimation near transition region (control strategies)
- Nacelle anemometer seems to be measuring slightly higher

PossPOW – Wind Speed Estimation (Wind Farm)

PossPOW – Wind Speed Estimation (DownRegulation)

• Downregulation: Horns Rev I Dataset

- App. 30% of downregulation
- Different control strategies applied
- Power Curve approach no longer applicable

PossPOW – Wind Speed Estimation (DownRegulation)

• Downregulation: NREL 5MW¹ Simulations

11 DTU Wind Energy, Technical University of Denmark

1 Jonkman, J., Butterfield, S., Musial, S. and Scott G., Definition of a 5-MW Reference Wind Turbine for Offshore System Development. NREL/TP-500-38060 National Renewable Energy Laboratory, Golden, CO, 2007

PossPOW - Wake modelling

- After the flow speed is estimated during down regulation;
 - Wake effects are to be considered as if the turbine is operating ideally to achieve the available power
 - No wake models are to be developed
 - However, the wake models are tuned to give good average wake losses, not instantaneous ones → Real time implementation of the existing wake model(s)
 - Re-calibration of GCLarsen
- The modeled wind speed for upstream turbines, i.e. without any "reduced" wake effect will be input to the integrated wake model to obtain Available Power during downregulation

DTU

PossPOW - Wake model re-calibration (for real time)

- GCLarsen wake model
 - Simple and robust
 - Implemented in WindPro
 - Performs relatively well also on offshore
- 2 parameters to adjust in single wake case

$$u_{x}(x,r) = -\frac{U_{\infty}}{9} (c_{T}A(x_{0} + \Delta x)^{-2})^{\frac{1}{3}} \left\{ r^{\frac{3}{2}} \left(3c_{1}^{2}c_{T}A(x_{0} + \Delta x) \right)^{-\frac{1}{2}} - \left(\frac{35}{2\pi} \right)^{\frac{3}{10}} (3c_{1}^{2})^{-\frac{1}{5}} \right\}^{2}$$

- » All data filtered for wind direction 90±10°
 » Nonlinear Least Squaresfitting
 - R²=0.96 & RMSE=0.41
- » Model was tested using the downregulated dataset
 - Modeled wind Speed < Downregulated dataset

PossPOW - Wake model re-calibration (for real time)

- Modeled wind Speed < Downregulated dataset as expected
- High quality data has been requested
- 14 DTU Wind Energy, Technical University of Denmark

PossPOW – Future Work

- Improve the recalibration of GCLarsen model for single wake case
 - Validation using normal operational dataset
- Re-parameterization for Wind Farm Scale
 - Dynamic factors
 - Wind direction variability \longrightarrow upstream turbines
 - Meandering
 - 'Sweeping' \longrightarrow row by row application of the model
- Consideration of other DTU Wake Models:
 - Dynamic Wake Meandering Model
 - Fuga
- The developed algorithm will be verified on some of the large offshore wind farms
 - Dedicated experiments are planned

PossPOW – Conclusion & Acknowledgements

- We are looking for a verified and accepted way to estimate the possible (or available) power of down-regulated offshore wind farms
 - Aerodynamic models for wind turbines
 - Wake modelling of large offshore wind farms
 - Stochastic model estimation & computer simulations
- First period of the project
 - ✓ The estimation of wind speed using power, pitch & rotational speed
- Second period
 - Real-time implementation of the wake model(s) & finalized algorithm
- Third period
 - □ Measurements & verification of the algorithm

 The partners of the PossPOW project are Vattenfall, Siemens, Vestas, and DONG

PossPOW is a PSO project sponsored by Energinet, Contract ForskEL 10763

Thank you for your attention!