Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivation

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concept:

Numerical models

Beam model and HAWC2 model

Results

Damper stroke Attainable damping Damper force Free decay

Outlook

Damping of Wind Turbine Tower Vibrations by a stroke amplifying brace concept

Mark L. Brodersen & Jan Høgsberg

Department of Mechanical Engineering Technical University of Denmark mlai@dtu.dk

> EERA Deepwind January 22-24 2014

Outline

Motivation

Implementation of dampers

Numerical models

Results

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concept:

Numerical models

Beam model and HAWC2 model

Results

Damper stroke Attainable damping Damper force Free decay

Offshore wind turbine tower vibrations

- Wind-wave misalignment
 - Larger wind turbine and deeper waters

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivation

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models

Beam model and HAWC2 model

Results

Damper stroke Attainable damping Damper force Free decay

Offshore wind turbine tower vibrations

- Wind-wave misalignment
 - Larger wind turbine and deeper waters
- Resonant dampers

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivation

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concept:

Numerical models

Beam model and HAWC2 model

Results

Damper stroke Attainable damping Damper force Free decay

Offshore wind turbine tower vibrations

- Wind-wave misalignment
 - Larger wind turbine and deeper waters
- Resonant dampers
- Dampers inside the tower

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models

Beam model and HAWC2 model

Results

Damper stroke Attainable damping Damper force Free decay

Criteria for effective damping

- Damper stroke
 - Activation of damper
 - Damper force

$$E_d = \dot{u}_d f_d$$

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivation

Offshore wind turbine tower vibrations

mplementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models

Beam model and HAWC2 model

Results

Damper stroke Attainable damping Damper force Free decay

Criteria for effective damping

- Damper stroke
 - Activation of damper
 - Damper force

$$E_d = \dot{u}_d f_d$$

- Attainable damping
 - Given by the change in frequency

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivation

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concept:

Numerical models

Beam model and HAWC2 model

Results

Damper stroke Attainable damping Damper force Free decay

Criteria for effective damping

- Tuning of dampers
 - Viscous dampers with damping parameter c

$$f_d = c \dot{u}_d$$

- Tuning for maximum damping

$$c_{opt} \simeq 2 rac{\omega_{\infty} - \omega_0}{\sum_k^N \gamma_k^2}$$

 γ is the damper stroke with respect to mode ${\bf u}_0$ for unit modal mass ${\bf u}_0^T {\bf M} {\bf u}_0 = 1$

u₀

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concept

Numerical models

Beam model and HAWC2 model

Results

Damper stroke Attainable damping Damper force Free decay

Tower modes

Side-to-side mode

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models Beam model and HAWC

Results

Damper stroke Attainable damping Damper force Free decay

Brace concepts

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models

Beam model and HAWC model

Results

Damper stroke Attainable damping Damper force Free decay

Outlook

Curvature-brace

Brace concepts

Curvature-brace

Curvature-toggle-brace

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models Beam model and HAWC2

Results

Damper stroke Attainable damping Damper force Free decay

Brace concepts

Curvature-brace

Curvature-toggle-brace

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models Beam model and HAWC2

Results

Damper stroke Attainable damping Damper force Free decay

Numerical models

• Linear beam model

- Wind turbine at standstill
- Linear Winkler type spring model
- Lumped inertia
- Stiffness matrix derived from complementary energy

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivation

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concept

Numerical models

Beam model and HAWC2 model

Results

Damper stroke

Attainable damping

Damper force

Numerical models

• Linear beam model

- Wind turbine at standstill
- Linear Winkler type spring model
- Lumped inertia
- Stiffness matrix derived from complementary energy

• HAWC2

- Blade element momentum theory
- Multi-body formulation
- Control via Dynamic Link Library (dll) interface
- External system

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concept

Numerical models

Beam model and HAWC2 model

Results

Damper stroke Attainable damping Damper force Free decay

Numerical models

Linear beam model

- Wind turbine at standstill
- Linear Winkler type spring model
- Lumped inertia
- Stiffness matrix derived from complementary energy

• HAWC2

- Blade element momentum theory
- Multi-body formulation
- Control via Dynamic Link Library (dll) interface
- External system
- Offshore Code Comparison Collaboration
 - NREL reference turbine + monopile in 20 m water

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concept

Numerical models

Beam model and HAWC2 model

Results

Damper stroke Attainable damping Damper force Free decay

Displacement of damper

 u_d for the curvature brace with respect to the fore-aft mode (dotted) and the side-to-side mode (dash-dotted) and u_d for the curvature-toggle-brace with respect to the fore-aft mode (dashed) and the side-to-side mode (solid)

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivation

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models

Beam model and HAWC2 model

Results

Damper stroke

Attainable damping Damper force

Displacement of damper

Damping of Wind

Turbine Tower Vibrations Mark L. Brodersen

 γ^2 for the curvature brace with respect to the fore-aft mode (dotted) and the side-to-side mode (dash-dotted) and γ^2 for the curvature-toggle-brace with respect to the fore-aft mode (dashed) and the side-to-side mode (solid)

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivation

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models

Beam model and HAWC2 model

Results

Damper stroke

Attainable damping

Damper force

Free decay

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models

Beam model and HAWC2 model

Results

Damper stroke

Attainable damping

Damper force

Free decay

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models

Beam model and HAWC2 model

Results

Damper stroke

Attainable damping

Damper force

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models

Beam model and HAWC2 model

Results

Damper stroke

Attainable damping

Damper force

Free decay

Damper force

 f_d for the curvature brace (dash-dotted) and f_d for the curvature-toggle-brace (solid)

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models

Beam model and HAWC2 model

Results

Damper stroke

Attainable damping

Damper force

Free decay

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models

Beam model and HAWC2 model

Results

Damper stroke

Attainable damping

Damper force

Free decay

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models

Beam model and HAWC2 model

Results

Damper stroke

Attainable damping

Damper force

Free decay

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models

Beam model and HAWC2 model

Results

Damper stroke

Attainable damping

Damper force

Free decay

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models

Beam model and HAWC2 model

Results

Damper stroke

Attainable damping

Damper force

Free decay

Outlook

Summary

- Maximize attainable damping and damper stroke
 - Installation at the bottom of the tower
 - Stroke amplifying toggle brace
 - Attainable damping: 1.3 % critical
 - Optimum tuning independent of the orientation of the rotor
 - The same tuning can be used for both critical modes

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models

Beam model and HAWC2 model

Results

Damper stroke Attainable damping Damper force Free decay

Outlook

Summary

- Maximize attainable damping and damper stroke
 - Installation at the bottom of the tower
 - Stroke amplifying toggle brace
 - Attainable damping: 1.3 % critical
 - Optimum tuning independent of the orientation of the rotor
 - The same tuning can be used for both critical modes

Ongoing work

- Physical implementation
- Experimental validation

Damping of Wind Turbine Tower Vibrations

Mark L. Brodersen

Motivatio

Offshore wind turbine tower vibrations

Implementation of dampers

Criteria for effective damping

Tower modes

Brace concepts

Numerical models

Beam model and HAWC2 model

Results

Damper stroke Attainable damping Damper force Free decay