The GICON[®]-TLP for wind turbines

Experimental Studies and numerical Modelling of structural Behavior of a Scaled Modular TLP Structure for Offshore Wind turbines

J. Großmann, F. Dahlhaus, <u>F. Adam</u>, B. Schuldt

Main partners:

GICON® ESG Edelstahl und Umwelttechnik

Motivation

- Globally found wind resources present a great and ecological opportunity for power generation
- Floating foundations are economical for water depths > 60 m [Musial et al, 2006]
- Founding depths for the GICON[®]-TLP are:

Outline

GICON®

GICON® Group

- Revenue
- Partners

GICON®-TLP

- Path of development
- Design (2.0 MW, 6.0 MW, comparison)

Scaled tests (2.0 MW)

 HSVA (Feb. 2012), MARIN (June 2013), VWS (Sep. 2013)

Conclusion and Outlook

GICON® Group

© GICON

An independent engineering and consulting group

1994:

GICON – Grossmann Ingenieur Consult GmbH established in Dresden, Germany, as a privately held engineering company with 20 employees by CEO Prof. Jochen Grossmann

Today:

The GICON Group's 300 full-time employees across 12 companies Average revenue growth 10 % p.a.; 23.4 Mio €. ↗

On average 30 ongoing applied R+D projects in all departments

Over 80 German and international patent applications for processes or technology have arisen from research conducted by GICON engineers

Sample of national and international cooperation partners:

GICON®-TL

GICON

A development of private industry in cooperation with academic institutions

Path of development

\rightarrow the development comprises: 10 Patent families in 22 countries

First concept HSVA tank model high redundancy principle tests

~ 1500 t

MARIN tank model optimized design high redundancy test of dynamic behavior of the pilot plant ~ 1200 t pilot plant modified design adequate redundancy economical solution ~ 670 t

The concept of the GICON®-TLP in general

GICON®

Advantages of the GICON®-TLP:

- Deployable from 20 meters to 300 meters
- Portside assembly and transport of the entire structure to the deployment location
- Modular construction resulting in more flexibility in the supply chain
- Depending on the geology anchoring via piles, micro piles or gravity foundations

Wind Turbine	Weight/MW
2.0 MW	≈ 291 t /MW
4.0 MW	≈ 248 t /MW
6.0 MW	≈ 214 t /MW

Concept for prototype (2.0 MW)

GICON®

Components of the platform:

- cylindrical buoyancy bodies (BB)
- horizontal pipes (HP) for structural base
- vertical pipes (VP)
- cantilever beam (CB)
- transition piece (TP)

Dimensions (L x B x H)	32m x 32m x 28m
Displacement	2070 m ³
TLP Weight incl. sec. Steel	≈ 670 t (590t + 80t)
Total weight incl. WT	≈ 972 t
min. # of Anchor points	4

Concept for prototype (2.0 MW)

GICON®

Characteristics:

- Modular construction
- Structure width < PanMax
- Also usable for 4.0 MW
- Fabrication: 2 TLP per week (one shipyard)

Comparison of both concepts (2.0 and 6.0 MW)

Scaled tests

GICON

HSVA Hamburg, MARIN Wageningen, TU Berlin

HSVA – Operation and transit 2.0 MW (Feb. 2012)

- Scaling after FROUDE
- Scaling factor $\lambda = 25$
- Incoming flow angle 0.0°, 22.5° and 45.0°
- Only wave loads
- Depth of water 30 m
- Testing conditions:

h _s in m	$T_{ ho}$ in s
1	4.5
2	5.9
3	6.9
4	8.0
6	9.8

HSVA – Comparison eigenfrequencies 2.0 MW GICON®

Details on the calculation model: Adam et al: "GICON®-TLP for wind turbines - Validation of calculated results". Proc. ISOPE 2013 Anchorage.

MARIN – Operation 2.0 MW (June 2013)

- Scaling after FROUDE
- Scaling factor $\lambda = 37$
- Incoming flow angle 0°, 22.5° and 45°
- Exposure to wind, wave and coupled wind/wave loads
- Fixed (α = 35 °; θ = 90 °) and towing states
- Water depth 20 m

v _w in m/s	<i>h</i> _s in m	T _p in s
12.0	2.30	0.83
25.0	4.72	1.00
36.5	5.30	1.44

• Comparison eigenfrequencies for $h_s = 4.72$ m

Comment	#	f_m in Hz	<i>f_c</i> in Hz	<i>f_m/f_c</i> in %
Surge	<i>f</i> ₁	0.637	0.625	1.9
Sway	f_2	0.637	0.625	1.9
Heave	f ₃	2.111	1.955	8.0
Roll	f ₄	1.150	1.160	0.9
Pitch	<i>f</i> ₅	1.150	1.160	0.9
Yaw	f ₆	1.308	1.304	0.3

- good agreement
- added mass coefficients differ from those stated by [Clauss, 1988]
- $c_{tube} = 0.6$
- $c_{bb} = 0.2$

VWS – Transit 2.0 MW (Sept. 2013)

GICON®

- Scaling after FROUDE
- Scaling factor $\lambda = 37$
- Incoming flow angle 0° and 45°
- Water depth 20 m
- Regular waves
- Towing velocities 3.5, 5.3 and 7.0 kn

• Testing conditions:

h _s in m	T_p in s
0.0	0.0
2.3	6.5
3.8	7.2

VWS – Transit 2.0 MW (Sept. 2013)

Towing power for 5.3 kn and different sea states

Outlook and next steps

- 2012 First tank tests (HSVA)
- 2013 Tank tests with modified design (MARIN/VWS)
- 2013 Optimizing design for pilot plant (optional: additional tests 2014)
- 2014/15 Prototype (2.0 MW) in the German Baltic Sea
 2015/16 Prototype (6.0 MW) in the
- 2015/16 Prototype (6.0 MW) in the German North Sea
- 2017/18 Serial production (6.0 MW)

Adam et al.: "Non-Linear Dynamic of a TLP for Wind Turbines – Verification of Calculated Results". Proc. NWC 2013 Salzburg.

Adam et al.: "GICON®-TLP for wind turbines - Validation of calculated results". *Proc. ISOPE 2013 Anchorage*.

Adam et al.: "Evaluation of internal force superposition on a tlp for wind turbines (accepted: 08.01.2014)". Journal Paper Renewable Energy 2014.

Adam et al.: "Scale tests of the GICON®-TLP for wind turbines (submited: 06.01.2014)". Proc. OMAE 2014 San Francisco.

Adam et al.: "Scale tests of the GICON®-TLP for wind turbines (submited: 20.01.2014)". Proc. ISOPE 2014 Busan.

Myland et al.: "Flowting scale tests of the GICON®-TLP for wind turbines (submited: 06.01.2014)". Proc. OMAE 2014 San Francisco.

Hedwig et al.: "Flowting scale tests of the GICON®-TLP for wind turbines (submited: 20.01.2014)". Proc. ISOPE 2014 Busan.

The GICON®-group

Prepared by:

Project TEAM Floating Offshore Foundation GICON Group Department: Floating Offshore Foundation Tiergartenstraße 48 D-01219 Dresden Phone: +49 (0) 351 47878 – 0 web: http://www.gicon.de/en/geschaeftsbereiche/gte/sof.html

Acknowledgements

We like to express our special gratitude to the German Federal State of Mecklenburg-Vorpommern, for the financial support provided to ESG GmbH, a member of the GICON-group.