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= Background
= Problem description

= Modelling

" FRT control for DFIG

®" FRT control for DFIG and FRC-WT

® Conclusions



Government Targets

Scottish Targets -
e 80% of power from Renewables by 2020
 Interim target of 31% by 2011
Currently at 25% (2008 figure)
20% of primary energy by 2020
Emission reduction target of 80% by 2050
Interim target of 42% by 2020

UK Targets —
e 32% of power form renewables by 2020
e Currently at 7%
* 15% of primary energy by 2015

« Emission reduction target 80%
by 2050
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£90Bn Capex Invest
UK ROUND 3 OFFSHORE WIND over the next 10 years =
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Fault Ride-Through Capability

" lLarge-capacity wind farms must remain connected to the network even in ﬁgﬂgﬂ;ﬂyﬂe

event of faults in the high-voltage network

"  FRT requirements are different from country to country
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FRT depends on turbine concept

=" FRT capability varies by different wind ]
turbine concept =)=

=Major wind turbine concepts in the market Turbine

> (a) fixed speed wind turbine: high
damping, low efficiency

» (b) DFIG wind turbine: partially —
coupled to grid, low damping, low FRT gk
capability = ?m

MNetwork

> (c) PMG wind turbine: totally ' ot convare

decoupled from grid, high FRT
:| AC J_ oC
|——@ AT QO)—

capability.
DFIG dominates current wind turbine Gesrbox  Generator  PWMconverter  Network
market Turbine
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Doubly-fed induction generator (DFIG) o
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Voltage sags and FRT solutions o
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= Voltage sags can be typical classified based on the cause, e.g.!
= Fault related
= Large induction motor start

= Large induction motor re-acceleration

" DFIG-FRT problem solutions may be:
= Modification of conventional controller
= Active crowbar control

= Application of dynamic breaking resistors



FRT Issues — holistic approach needed
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=Mechanical

» Consistent operation, no protection triggered

> Loads alleviation

= Electrical

» High voltage/current protection
» Reactive power support

» Stable torque generation to avoid wind turbine rotor
speed-up



DFIG control during fault — crowbar with

variable resistance g";";;‘t‘i;'c
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= Advantages

» Wind turbine stays connected during grid fault

»Wind turbine keeps generating power during grid fault

» Rotor speed acceleration and drive-train oscillation are
prevented

®| imitations

» Fault level: the power generation is not possible under
extremely low grid voltage

» High power loss during fault



Crowbar with variable resistance o
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= During grid fault, converters are blocked, DFIG operates
in SCIG mode. DFIG torque is calculated as:

3 prrIr2
2 sw

S

T

= Applying Kirchhoff’s current law to SCIG equivalent circuit, The
torque is expressed as

pf Rer2
R 2

S, KRS +rj +(L, + Lr)z}
S

= Torque is expressed in terms of rotor resistance

T2
2



Crowbar with variable resistance — T/Slip
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= Torque-slip curve of induction machine changes under
different rotor resistance and grid voltage

Torgue (pu)
Torgue (pu)

0.8 ;

= By controlling the rotor resistance, reference torque can be
produced under certain grid voltage



Implementation
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= Switching by grid voltage level

= Normal operation: external resistor bypassed

= Fault case: IGBT switched to connect variable resistor to DFIG rotor
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Control implementation — Flow Chart
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Test model construction
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Model construction (const)

(AN
Universityof S

Strathclyde

Engineering

="Wind Turbine Model
» Dynamic model of rotor, tower and drive-train
"DFIG Model
» Induction machine model

» DFIG controller in d-q frame
="Grid Model

» Generic network model comprising wind farm,
conventional power plant with AVR, PSS and etc,
Local Grid



Simulation results
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Fully-Rated Converter-based wind turbine
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Network

= Uses either an induction generator or a synchronous generator (it can either be an
electrically excited synchronous generator or a permanent magnet machine.

= The converter completely decouples the generator from the network, enabling
variable-speed operation.

* The rating of the power converter in this wind turbine corresponds to the rated power of

the generator.
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Doubly Fed Induction Generator
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Results
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Without Protection After applying Protectio




Conclusions
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dThe multi technology wind farm eliminate
the need of STATCOM at the point of
common coupling (PCC).

JProposed strategy Is applied to multi-
technology wind farm to eliminate current
and voltage transients during grid faults.

dThe DC Ilink voltage and high rotor
currents are controlled within limits after
applying the protection scheme.
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