

Fault ride-through enhancement of multitechnology offshore wind farms

Arshad Ali Fan Zhang Olimpo Anaya-Lara

> EERA Deepwind 2014 23 January 2014, Trondheim, Norway

Outline of presentation

- Background
- Problem description
- Modelling
- FRT control for DFIG
- FRT control for DFIG and FRC-WT
- Conclusions

Government Targets

Scottish Targets -

- 80% of power from Renewables by 2020
- Interim target of 31% by 2011
- Currently at 25% (2008 figure)
- 20% of primary energy by 2020
- Emission reduction target of 80% by 2050
- Interim target of 42% by 2020

UK Targets –

- 32% of power form renewables by 2020
- Currently at 7%
- 15% of primary energy by 2015
- Emission reduction target 80% by 2050

£90Bn Capex Investment Over the next 10 years SITES - 32GW

6,800 wind turbines

Fault Ride-Through Capability

- Large-capacity wind farms must remain connected to the network even in the high-voltage network
- FRT requirements are different from country to country

»Voltage characteristic for Eire 'ride through' requirement

»Voltage characteristic for GB 'ride through' requirement

University o

(c)

FRT depends on turbine concept

 FRT capability varies by different wind turbine concept

Major wind turbine concepts in the market

(a) fixed speed wind turbine: high damping, low efficiency

(b) DFIG wind turbine: partially coupled to grid, low damping, low FRT capability

(c) PMG wind turbine: totally decoupled from grid, high FRT capability.

DFIG dominates current wind turbine market

Doubly-fed induction generator (DFIG)

Voltage sags and FRT solutions

- Voltage sags can be typical classified based on the cause, e.g.
 - Fault related
 - Large induction motor start
 - Large induction motor re-acceleration
- DFIG-FRT problem solutions may be:
 - Modification of conventional controller
 - Active crowbar control
 - Application of dynamic breaking resistors

FRT Issues – holistic approach needed

Mechanical

Consistent operation, no protection triggered

Loads alleviation

Electrical

- High voltage/current protection
- Reactive power support

Stable torque generation to avoid wind turbine rotor speed-up

DFIG control during fault – crowbar with variable resistance

Advantages

Wind turbine stays connected during grid fault

Wind turbine keeps generating power during grid fault

Rotor speed acceleration and drive-train oscillation are prevented

Limitations

Fault level: the power generation is not possible under extremely low grid voltage

High power loss during fault

Crowbar with variable resistance

During grid fault, converters are blocked, DFIG operates in SCIG mode. DFIG torque is calculated as:

$$T = \frac{3}{2} \frac{p_f R_r I_r^2}{s \omega_s}$$

Applying Kirchhoff's current law to SCIG equivalent circuit, The torque is expressed as

$$T = \frac{3}{2} \frac{p_f R_r V_s^2}{s \omega_s \left[\left(R_s + \frac{R_r}{s} \right)^2 + \left(L_s + L_r \right)^2 \right]}$$

Torque is expressed in terms of rotor resistance

Crowbar with variable resistance – T/Slip curve

Torque-slip curve of induction machine changes under different rotor resistance and grid voltage

By controlling the rotor resistance, reference torque can be produced under certain grid voltage

Implementation

- Switching by grid voltage level
- Normal operation: external resistor bypassed
- Fault case: IGBT switched to connect variable resistor to DFIG rotor

Control implementation – Flow Chart

Test model construction

System Generator

Model construction (const)

- Wind Turbine Model
 - Dynamic model of rotor, tower and drive-train
- DFIG Model
 - Induction machine model
 - DFIG controller in d-q frame
- Grid Model

Generic network model comprising wind farm, conventional power plant with AVR, PSS and etc, Local Grid

Simulation results

Solid line: with normal crowbar protection

Dashed line: with variable resistance crowbar control

Fully-Rated Converter-based wind turbine

University o

- Uses either an induction generator or a synchronous generator (it can either be an electrically excited synchronous generator or a permanent magnet machine.
- The converter completely decouples the generator from the network, enabling variable-speed operation.
- The rating of the power converter in this wind turbine corresponds to the rated power of the generator.

Block Diagram of Proposed System

Without Protection

After applying Protection

- The multi technology wind farm eliminate the need of STATCOM at the point of common coupling (PCC).
- Proposed strategy is applied to multitechnology wind farm to eliminate current and voltage transients during grid faults.
- □The DC link voltage and high rotor currents are controlled within limits after applying the protection scheme.

The University of Strathclyde is a charitable body, registered in Scotland, with registration number SC015263