

New Generator Technology for offshore wind turbins

Presented by : Professor Rober Nilssen (NTNU)

Deepwind 2014

www.ntnu.edu

zhaoqiang.zhang@elkraft.ntnu.no

Totally five types of generators are used in offshore wind farms

- Doubly-Fed induction Generator (DFG),
- Squirrel-Cage induction Generator (SCG),
- Wound-Rotor induction Generator (WRG),
- Permanent Magnet synchronous Generator (PMG)
- Electrically-Excited synchronous Generator (EEG)

www.ntnu.edu

4

Usage of generators

zhaoqiang.zhang@elkraft.ntnu.no

Still focus on Direct Drives

NTNU – Trondheim Norwegian University of Science and Technology

Integrated designs in focus

	Behind tower	Between blades&tower			No nacelle		
	Ra	idial flux with iron cores		Axial-flux with iron cores		Ironless (air core)	
	Inner rotor,	Integrate	ed machine	"stand-	Integrated	1 rotor,	2 rotors,
	"stand-alone"	Inner rotor	Outer rotor	alone"	with blades	1 stator	1 stator
Companies \rightarrow	GE, TheSwitch	Leitner, Vensys, Harakosan	TheSwitch, Siemens	Jeum	iont	NGe	nTech
Cooling ↓ Stator							
Liquid cooling	x	x	х	х	x	х	x
Slits for air flow & air pumped through	x						
Heat to carrying struc- ture then to the wind	х	x				x	x
External air flow		x				x	
Rotor							
Internal air circulation	x	x		x	x		
External air flow		x	x		x	x	х

Characterization

NTNU – Trondheim Norwegian University of Science and Technology

www.ntnu.edu

zhaoqiang.zhang@elkraft.ntnu.no

Some conclusions

- Drive trains with PM generators have the best efficiency
 - Especially without gear (direct drive) and 1-stage gear
- <u>However</u>, there are other characteristics to take into account:
 - Weight
 - Cost
 - Power factor
 - Lifetime

. . .

- Reliability
- Manufacturability

Design means finding a trade-off between various criteria

11

Efficiency of different drive trains

- Components included: gearbox, generator, converter, transformer
 - Direct driven PM generator solution gives the best efficiency at speeds below rated

12

Estimated weight for DD PM generators

NTNU – Trondheim Norwegian University of Science and Technology

Direct driven generators are comming,

 but are they in the focus of commercial manufacturers?

"Secret" design from Siemens Januar 2010

Expectations

Multiple disc axially magnetized machines for wind applications?

Compact designs - 3 times the power to volume ratio

Norwegian University of Science and Technology

What about SWAY?

ndheim niversity of echnology Torque calculation:

$$T = \begin{cases} \frac{\sqrt{2}}{8} k_{w1} k_{le} m n_s I_{ph_s} N_1 B_{p1} D_o^2 (1 - \sigma^2), & AFPMSG \\ \frac{1}{\sqrt{2}} k_{w1} k_{le} m n_s I_{ph_s} N_1 B_{p1} l D_a, & RFPMSG \end{cases}$$

Modeling (3)- rotor sizing

24

Test setup

	backEMF	Inductance
Calculation	78V	1.94mH
Measurement	82.3V	1.8mH

1 stage, 48 pole, 23.2kW

25

Simulation results(1)

- Parametric study
- Free variables
 - Outer diameter
 - Pole numbers
 - Fundamental flux density in the airgap
 - ratio of PM width over pole pitch
- Constrains (see specification)
- Objective: mass, efficiency, and cost

Simulation results (2)

- The plots of efficiency only correspond to the designs that give lowest active mass
- The first point on the left side of each curve shows the first feasible design as the outer diameter grows with a step of 2 m.

Simulation results (3)

- Proper cooling plays vital role in the investigated type of machine.
- Higher current density leads to the thinner winding and smaller air gap. Consequently the permanent magnets do not need to be thick, and the cost is reduced.
- It is not free to cool the winding in the two surfaces that are vertical to the shaft because of the increased air gap.
- The empty space after removing the coils for segmentation and the end coil region provide an operational room for better cooling.

Magnetic vibration challenges

Maxwell's stress tensor:

$$f_r = \frac{1}{2\mu_0} (B_r^2 - B_t^2)$$
$$f_t = \frac{1}{\mu_0} (B_r B_t)$$

- Magnetic flux density distribution is computed using time-stepping FE analysis
- Radial magnetic force density wave:

$$f_r(\theta, t) = f_{r,max} \cos(m\theta - k\omega t)$$

- The dominant vibration mode is the lowest spatial harmonic in radial force density distribution.
- The lowest mode of vibration is 4 for the prototype machine.

www.nthu

Prototype generator

- 120slot/116pole
- Single-layer concentrated windings
- Nominal speed around 50 rpm

WP2 Meeting - 33.10.2013

Magnetic simulations

• Time-stepping FE analysis

WP2 Meeting - 33.10.2013

www.nthu.

Structural analysis

- Modal analysis
- Static force analysis

WP2 Meeting - 33.10.2013

Multiple Airgap Machine

120slot/112pole double-stator single-rotor PM machine

magnetic rotor yoke

WP2 Meeting – **3**3.10.2013

Multiple Airgap Machine

120slot/112pole double-stator single-rotor PM machine

non-magnetic rotor yoke

WP2 Meeting - 33.10.2013

Publications in 2013

- Influence of Slot Harmonics on Radial Magnetic Forces in Low-Speed PM Machine with Concentrated windings, *ICEMS 2013, Korea*.
- Analysis of a PM Wind Generator with Concentrated Windings in Eccentricity Conditions, *ICEMS 2013, Korea*.
- Influence of Pole and Slot Combinations on Magnetic Forces and Vibration in Low-Speed PM Wind Generators, *under review*, *IEEE Transactions on Magnetics*.

- Slot Harmonic Effect on Radial Magnetic Forces in Low-Speed PM Machine with Concentrated windings, to be submitted to IEEE Transactions on Industry Applications.
- Effects of Loading on Radial Magnetic Forces in Low-Speed Permanent Magnet Machine with Concentrated Windings, *to be submitted to IEEE Transactions on Magnetics*.

WP2 Meeting - 33.10.2013

www.nthu