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_ Tri-Floater design

= Wind turbine NREL 5MW
= Hub height above SWL 90 m
= Control system ECN

= Radius to column centre 36.0m

"= Column width 8.0m

= Design draft 13.2m
= Air gap to deck structure 12.0m
= Displacement 3627t

= Catenary mooringlines 3 x750m
* Chain diameter 100 mm
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Tri-Floater design

operational survival
rated above rated  cut-out parked
significant wave height [m] 4.5 4.5 6.5 9.4
wave peak period [s] 7.5-10 7.5-10 9-12 11-14
wind velocity at hub [m/s] 11.4 14.0 25.0 42.7
current velocity [m/s]| 0-0.6 0-0.6 0-0.6 0-1.2
= QOperational inclination <10 deg
= QOperational nacelle acceleration <3 m/s?
= Safety factor mooring line >1.7
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_— Simulation approach

= Verify design requirements
motions and mooring loads

= Concept design stage, so
minimized computational effort

= Simulation duration: 1 hour

= Weibull distribution fitted to
50 % highest extremes

= Expected maxima determined
for 3 hours by extrapolation

= Time step and seed dependency
studied
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= Software and numerical model

AQWA (Ansys)
= Hydrodynamics (1t and 2" order)

= Mooring

= PHATAS (ECN)

= Rotor aerodynamics
= Rotor and tower structural dynamics
= Drive-train and control systems

= Benchmarked with OC3 spar

= Hydrodynamic model validated
with model tests
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Software and numerical mode
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=  Frequency domain motion analysis
® Coupled simulations in regular waves

A Model test in white noise
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Simulation results

Floater surge
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Simulation results

Nacelle heave acceleration

Nacelle surge acceleration
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i Simulation results

operational survival
rated above rated cut-out parked
floater inclination [deg]
mean 3.5 2.9 1.7 3.4
3-hour extreme (90%) 7.4 8.5 6.1 11.1
nacelle hor. acceler. [m/s?]
mean 0.7 0.6 0.6 0.8
3-hour extreme (90%) 2.4 2.5 3.0 3.1
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—_— Conclusions

= Tri-Floater fulfills design criteria

= Low frequency motions are dominant

= Wave frequency motions are well
predicted by uncoupled frequency
domain motion analysis

= Such analysis is useful to assess global &
floater motions in early design stages
and optimize the floater design

= Coupled simulations are however
indispensible in later design stages
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