

Measurement of wind profile with a buoy mounted lidar

Jan-Petter Mathisen

Date: 24 January 2013

Contents Menu

- History
- Project description
- Lidar technology
- Onshore motion test
- Description of field test
- Results and discussion
- Conclusions

History

First Automatic Wind Turbine 1887 Maykirk Scotland

First Norwegian Wind Mill at Fram

Partisipants

Fugro OCEANOR

University of Bergen

CM Instrumentation

Christian Michelsen Research

Statoil

Marintek

Project tasks

- Formulation of requirement and specification of the system
- Concept study
- Development of a prototype including hydrodynamic simulations
- Development of a compensation algorithm for the buoy motion
- Building of a prototype buoy
- Field test of the buoy

Present technology

FINO1 German Bight

Price NOK 50 mil

Measurement system

Wavescan buoy

ZephIR 300 lidar

ZephIR 300 lidar from Natural Power

- Wind profile, meteorological parameters, waves, current profile and other parameters can be measured from one single buoy
- The ZephIR can measure wind at 10m which is according to the WMO standard
- No recalibration is required for the ZephIR
- The Wavescan buoy is lightweight and small and is therefore easy to deploy and recover from vessels
- A standard single point mooring system is used

Test location Titran

Testing of Lidar buoy off the wind test centre

Preliminary results without compensation

Wind speed and direction

Scatter plott

All data

Strong wind (before 5th April)

Further work

- Comparing the buoy lidar data with the wind sensors at the met mast
- Include fuel cells for powering of <u>Lidar</u> Methanol cartridges to be located in wells below the solar panels Consuming 2 litres of methanol per day 8 carriages from EFOY: Operational time 112 days 4 special designed cartridges: Operational time 180 days
- Interfacing Geni to the Lidar
- Include compensation software in Geni
- Include "slam" Lidar
- Interfacing with the small scale wind model at Kjeller Vindteknikk

<u>Move</u>

Fuel cell from EFOY

SEAWATCH Wind Lidar Buoy

