Metaheuristics on GPU

Thé Van Luong, Nouredine Melab and El-Ghazali Talbi

DOLPHIN Project Team

April 2010

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE EN AUTOMATIQUE

Local search on GPU: From design to implementation

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

- Parallel Local Search Metaheuristics (PLSM)
- GPU-based Design and Implementation of PLSM
- Application to the Permuted Perceptron Problem (PPP)
- Conclusion and Future Work

INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

centre de recherche

A taxonomy of optimization methods

Exploitation-oriented

Exploration-oriented

4

- Exact methods : optimality but exploitation on small size problem instances
- Metaheuristics : Near-optimality on larger problem instances, but ...
 - ... Need of massively parallel computing on very large instances

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Parallel models for LSM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Iteration-level parallel model

- Parallel Local Search Metaheuristics (PLSM)
- GPU-based Design and Implementation of PLSM
- Application to the Permuted Perceptron Problem (PPP)
- Conclusion and Future Work

INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

GPU Computing

- Used in the past for graphics and video applications ...
 - ... but now popular for many other applications such as scientific computing [Owens *et al*. 2008]
- Publication of the CUDA development toolkit that allows GPU programming in a C-like language [Garland *et al.* 2008]

In the metaheuristics field:

- Several existing works (Genetic algorithms [Wong 2006], Genetic programming [Harding *et al.* 2009], ...)
- A very light tentative for the Tabu search algorithm [Zhu *et al*. 2009]

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

centre de recherche LILLE - NORD EUROPE 8

GPU Characteristics

- Highly parallel multithreaded many-core
- High memory bandwidth compared to CPU
- Different levels of memory (different latencies)

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Objective and challenges

- Re-think the iteration-level parallel model to take into account the characteristics of GPU
 - Challenges at three layers ...
- CPU-GPU cooperative layer
 - Work partitioning between CPU and GPU
 - Data transfer optimization
- Parallelism control layer
 - Neighborhood generation control (memory capacity constraints)
 - Efficient mapping between candidate solutions and threads ids
- Memory management layer
 - Which data on which memory (latency and capacity constraints)?

NSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE EN AUTOMATIQUE

Cooperation layer: CPU→ GPU data transfer

- CPU (host) controls the whole sequential part of LSM
- GPU evaluates the neighborhood

11

- Objective
 - Optimizing the CPU→ GPU data transfer
- Issues
- Where the neighborhood is generated ?
- Two approaches:
 - **Approach 1**: generation on CPU and evaluation on GPU
 - Approach 2: generation and evaluation on GPU

INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

Performance of the two approaches

Cooperation layer: GPU→ CPU data transfer

Objective

 Optimizing the GPU→ CPU data transfer

Issues

Where is done the selection of the best neighbors ?

13

- Two approaches:
 - Approach 1: on CPU i.e. transfer of the data structure storing the fitnesses associated with the solutions
 - Approach 2: on GPU i.e. use of the reduction operation to select the best solution

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

GPU reduction to select the best solution¹⁴

- GPU reduction kernel to find the minimum of each block of threads
- Complexity: O(log₂(n))
- Cooperation of threads of a same block through the shared memory (latency: ~10 cycles)
- Performing iterations on reduction kernels allows to find the minimum of all neighbors

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE IT EN AUTOMATIQUE

Performance of the two approaches

Recommendation

- Optimizing the CPU-GPU data transfer is a must to improve the efficiency of GPU-based LSM
- $CPU \rightarrow GPU data transfer$
 - The neighborhood must be generated on GPU
 - Issue: defining an efficient mapping between the neighboring solutions and threads ids
- GPU→CPU data transfer
 - Avoid, if possible, the transfer of the whole data structure storing the neighboring fitnesses
 - Use of the thread reduction mechanism

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Objective and challenges

- Re-think the iteration-level parallel model to take into account the characteristics of GPU
 - Challenges at three layers ...
- CPU-GPU cooperative layer
 - Work partitioning between CPU and GPU
 - Data transfer optimization
- Parallelism control layer
 - Neighborhood generation control (memory capacity constraints)
 - Efficient mapping between candidate solutions and threads ids
 - Memory management layer
 - Which data on which memory (latency and capacity constraints)?

NSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Parallelism control layer

- The parallelism control layer focuses on the neighborhood generation and evaluation on GPU
- The kernel handling is dependent of the general-purpose language
- The GPGPU paradigm introduces a model of threads which provides an easy abstraction for SIMD architecture
- CUDA and OpenCL provide an application programming interface for GPU architectures

INSTITUT NATIONA DE RECHERCH EN INFORMATIQUE ET EN AUTOMATIQUE

centre de recherche LILLE - NORD EUROPE 18

Neighborhood generation control

- A kernel is launched with a large number of threads (SPMD model)
- The major issue is ...
 - ... to control the generation of the neighborhood to meet the memory capacity constraints
- Full evaluation
 - Additional duplication of the original solution for each thread dealing with a neighbor
 - \rightarrow Use incremental evaluation as possible
 - No additional allocated memory for each thread

NSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

centre de recherche LILLE - NORD EUROPE 19

Mapping ²⁰ Neighbor Id → Thread Id (1)

 According to the threads spatial organization, a unique id must be assigned to each thread to compute on different data

 The challenging issue is to find efficient mappings
 between a thread *id* and a
 particular neighbor

Representation-dependent

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Mapping Neighbor Id → Thread Id (2)

- A mapping is proposed for 3 well-known representations (binary, discrete, permutation)
- Binary representation
 - The thread with *id=i* generates and evaluates a candidate solution by flipping the *bit number i* of the initial solution
 - *n* threads are generated for a solution of size *n*
 - Fitness data structure size = *n*

NSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE EN AUTOMATIQUE

Mapping Neighbor Id → Thread Id (3)

- Finding a mapping can be challenging
- Neighborhood based on a Hamming distance of two
 - A thread *id* is associated with two indexes *i* and *j*
 - *n x (n-1) / 2* threads are generated for a solution of size *n*
 - Fitness data structure size
 = n x (n-1) / 2

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

*R*INRIA

centre de recherche LILLE - NORD EUROPE 22

Objective and challenges

- Re-think the iteration-level parallel model to take into account the characteristics of GPU
 - Challenges at three layers ...
- CPU-GPU cooperative layer
 - Work partitioning between CPU and GPU
 - Data transfer optimization
- Parallelism control layer
 - Neighborhood generation control (memory capacity constraints)
 - Efficient mapping between candidate solutions and threads Ids
 - Memory management layer
 - Which data on which memory (latency and capacity constraints) ?

Memory management layer

Memory type	Speed	Size
Global	Slow	Big
Registers	Very fast	Very small
Local	Slow	Up to Global memory
Shared	Fast	Small
Constant	Fast (cached)	Medium
Texture	Fast (cached)	Medium

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Memory management layer

- Threads SPMD model (shared generation and evaluation function code)
- Global Memory is not cached
 Accesses (read/write operations) must be minimized
 Non-coalesced accesses to Global Memory
 - → Use of Texture Memory

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Memory coalescing

Coalescing accesses to global memory (matrix vector product)

```
sum[id] = 0;
for (int i = 0; i < m; i++) {
    sum[id] += A[i * n + id] * B[id];
}
```

```
sum[0] = A[i * n + 0] * B[0]

sum[1] = A[i * n + 1] * B[1]

sum[2] = A[i * n + 2] * B[2]

sum[3] = A[i * n + 3] * B[3]

sum[4] = A[i * n + 4] * B[4]

sum[5] = A[i * n + 5] * B[5]
```


Memory access pattern

SIMD: 1 memory transaction

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Uncoalesced accesses to global memory for evaluation functions

	0	1	2	3	4	5
р	3	2	1	5	4	0

sum[0] = A[i * n + 0] * B[3] sum[1] = A[i * n + 1] * B[2] sum[2] = A[i * n + 2] * B[1] sum[3] = A[i * n + 3] * B[5] sum[4] = A[i * n + 4] * B[4]sum[5] = A[i * n + 5] * B[0]

6 memory transactions

Memory access pattern

Because of LS methods structures, memory coalescing is difficult to realize

→ it can lead to a significantly performance decrease.

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Use of Texture Memory

- Graphic cards provide also read-only texture memory to accelerate operations such as 2D or 3D mapping.
- In the case of LS algorithms, binding texture on global memory can provide an alternative optimization.

Conditions of use

- Read-only input data problems.
- Read-only candidate solution for generating neighborhood.
- Small amount of memory of input data structures to take advantage of the 8KB cache per multiprocessor of texture units.

NSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

- Parallel Local Search Metaheuristics (PLSM)
- GPU-based Design and Implementation of PLSM
- Application to the Permuted Perceptron Problem (PPP)
- Conclusion and Future Work

INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

centre de recherche LILLE - NORD EUROPE 29

Permuted Perceptron Problem (PPP)

- An ε-vector (resp. ε-matrix) is a vector (resp. matrix) with all entries being either +1 or -1
- Definition of PPP
 - Given an ε-matrix A of size m x n and a multi-set S of non negative integers of size m ...
 - find an ε -vector V of size n such that {{(AV)j / j = $\{1,...,m\}}} = S$

centre de recherche

Parameter settings

- Hardware configurations
 - Configuration 1: laptop
 - Core 2 Duo 2 Ghz + 8600M GT 4 multiprocessors (32 cores)
 - Configuration 2 : desktop-computer
 - Core 2 Quad 2.4 Ghz + 8800 GTX 16 multiprocessors (128 cores)
 - Configuration 3 : video games computer
 - Intel Xeon 3 Ghz + GTX 280 30 multiprocessors (240 cores)
- Tabu Search and PPP parameters
 - Neighborhood generation and evaluation on GPU
 - Binary representation for PPP
 - 100.000 iterations, 10 runs

NSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE I EN AUTOMATIQUE

Neighborhood based on a Hamming distance of one

Size of the neighborhood = size of V = n

Number of threads/block is not enough to cover the memory access latency

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Neighborhood based on a hamming distance of two

- Size of the neighborhood = n x (n-1) / 2
- Better acceleration

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Neighborhood based on a Hamming distance of two

• Size of the neighborhood = n x (n-1) / 2

Better acceleration

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

- Parallel Local Search Metaheuristics (PLSM)
- GPU-based Design and Implementation of PLSM
- Application to the Permuted Perceptron Problem (PPP)
- **Conclusion and Future Work**

INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

Conclusion and Future Work (1)

 GPU-based LSM requires to re-design the parallel models (e.g. Iteration-level parallel model)

- Generation of the neighborhood on the GPU side to minimize the CPU→GPU data transfer
- If possible, thread reduction for the best solution selection to minimize the GPU→CPU data transfer
- Efficient thread control: mapping neighboring onto threads ids, efficient kernel for fitness evaluation – incremental evaluation
- Efficient memory management (e.g. use of texture memory)
- For problem instances with costly evaluation function and a large neighborhood set ...

 ... speed-ups from experiments provide promising results (up to x45 with texture memory)

Conclusion and Future Work (2)

- Extensions for LSM
 - Other problems such as TSP, QAP, Q3AP or Golomb rulers (up to x15, x20, x30 and x40)
 - Other data representations and mappings
 - Other memory and thread optimizations
- Integration of the contribution in our ParadisEO software framework (http://paradiseo.gforge.inria.fr)

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

centre de recherche LILLE - NORD EUROPE 38

Conclusion and Future Work (3)

<u>Thé Van Luong</u>, Nouredine Melab, El-Ghazali Talbi. Local Search Algorithms on Graphics Processing Units. A Case Study: the Permutation Perceptron Problem. 10th European Conference on Evolutionary Computation in Combinatorial Optimisation (EvoCOP), Istanbul, Turkey, 2010 (nominated for the best paper award)

Other works on GPU

DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Extensions of PPP

<u>Thé Van Luong</u>, Nouredine Melab, El-Ghazali Talbi. Large Neighborhood Local Search Optimization on Graphics Processing Units. 23rd IEEE International Parallel & Distributed Processing Symposium (IPDPS), Workshop on Large-Scale Parallel Processing (LSPP), Atlanta, US, 2010

Extensions for LSM

- Larger neighborhoods
- Other mappings between threads and neighbors
- Measures of the effectiveness (quality of the solutions)

INSTITUT NATION DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

centre de recherche LILLE - NORD EUROPE 41

Problem	73 x 73	81 x 81	101 x 101	101 x 117
Fitness	10.3	10.8	20.2	16.4
# iterations	59184	77321	166650	260130
# solutions	10/50	6/50	0/50	0/50
CPU time	4 s	6 s	16 s	29 s
GPU time	9 s	13 s	33 s	57 s
Acceleration	x 0.44	x 0.46	x 0.48	x 0.51
Problem	73 x 73	81 x 81	101 x 101	101 x 117
Fitness	16.4	15.5	14.2	13.8
# iterations	43031	67462	138349	260130
# solutions	19/50	13/50	12/50	0/50
CPU time	81 s	174 s	748 s	1947 s
GPU time	8 s	16 s	44 s	105 s
Acceleration	x 9.9	x 11.0	x 17.0	x 18.5
Problem	73 x 73	81 x 81	101 x 101	101 x 117
Fitness	2.4	3.5	6.2	7.7
# iterations	21360	43231	117422	255337
# solutions	35/50	28/50	18/50	1/50
CPU time	1202 s	3730 s	24657 s	88151 s
GPU time	50 s	146 s	955 s	3551 s
Acceleration	x 24.2	x 25.5	x 25.8	x 24.8

Neighborhood based on a Hamming distance of one

Tabu search n x (n-1) x (n-2) / 6 iterations

Neighborhood based on a Hamming distance of two

Tabu search n x (n-1) x (n-2) / 6 iterations

Neighborhood based on a Hamming distance of three

Tabu search n x (n-1) x (n-2) / 6 iterations

Perspectives

- Variable neighborhood search for an arbitrary number of neighborhoods
 - Issue: find a mapping between threads and neighbors ...
 - ... construct efficient lookup tables on global memory for mappings

INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

Application to the Q3AP

<u>Thé Van Luong</u>, Lakhdar Loukil, Nouredine Melab, El-Ghazali Talbi. A GPU-based Iterated Tabu Search for Solving the Quadratic 3-dimensional Assignment Problem. ACS/IEEE International Conference on Computer Systems and Applications (AICCSA), Workshop on Parallel Optimization in Emerging Computing Environments (POECE), Hammamet, Tunisia, 2010

- Extensions for LSM
 - Other data representations and mappings
 - Other memory and thread optimizations
 - The GPU allows the design of an efficient and large neighborhood

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

State-of-the-art neighborhood

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

RINRIA

Comparison of the neighborhoods

Results of Q3AP

Instance	Nug12	Nug13	Nug15	Nug18	Nug22
Best known value	580	1912	2230	17836	42476
Average value	580	1918	2230	17874	42476
Max value	604	1974	2230	18026	42476
# solutions	49/50	37/50	50/50	31/50	50/50
CPU time	256 s	1879 s	1360 s	17447 s	16147 s
GPU time	15 s	64 s	38 s	415 s	353 s
Acceleration	x 17.3	x 29.2	x 36.0	x 42.0	x 45.7
ILS iteration	18	57	15	59	15

- Iterative local search (100 iters) + tabu search (5000 iters)
- Competitive algorithm
- Unpractical on CPU

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

centre de recherche LILLE - NORD EUROPE 48

Algorithmic-level: multi-GPUs

• Multi-core: OpenMP and posix threads

• Distributed: MPI

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

AUTOMATIQUE

INRIA

- Perspectives
 - To be submitted ...
 - Need a cluster of GPUs for testing MPI experiments
 - Full distribution of the algorithmic-level on GPU
 - one GPU thread = one local search (hill-climbing, simulated annealing, ...)
 - Issue for the tabu search algorithm (management of the tabu list on GPU)

INSTITUT NATIONAL DE RECHERCHI EN INFORMATIQUE T EN AUTOMATIQUE

Hybrid evolutionary algorithms

<u>Thé Van Luong</u>, Nouredine Melab, El-Ghazali Talbi. **GPU-based Parallel Hybrid Evolutionary Algorithms.** IEEE Congress on Evolutionary Computation (CEC), Barcelona, Spain, 2010

Extensions for LSM

- Combination of local searches and evolutionary algorithms
- The GPU allows to design sophisticate algorithms

INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

Hybridization scheme

CPU

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Results on QAP

Instance	tai30a	tai35a	tai40a	tai50a	tai60a	tai80a	tai100a
Best known value	1818146	2522002	3139370	4938796	7205962	13511780	21052466
Average value	1818442	2422437	3146480	4961202	7241224	13605896	21190794
# solutions	27/30	23/30	18/30	10/30	6/30	4/30	2/30
CPU time	1h15min	2h24min	3h54min	10h2min	20h17min	66h	177h
GPU time	8min50s	12min56s	18min16s	45min	1h30min	4h45min	12h6min
Acceleration	x 8.5	x 11.1	x 12.8	x 13.2	x 13.4	x 13.8	x 14.6

- 10 individuals 10 generations
- Evolutionary algorithm + iterative local search (3 iters) + tabu search (10000 iters)
- Neighborhood based on a 3-exchange operator
- Competitive algorithm

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

centre de recherche LILLE - NORD EUROPE 55

Perspectives

- Full distribution of the hybrid evolutionary algorithm on GPU
 - Issue for the tabu search algorithm (management of the tabu list on GPU)
 - Does it worth parallelizing ?

Percentage of the total running time

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUT<u>OMATIQUE</u>

GPU-based island model for EAs

<u>Thé Van Luong</u>, Nouredine Melab, El-Ghazali Talbi. **GPU-based Island Model for Evolutionary Algorithms.** Genetic and Evolutionary Computation Conference (GECCO), Portland, US, 2010

- Extensions for EAs
 - 3 schemes of the island model for evolutionary algorithms
 - EAs well-suited for continous optimization problems

INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

Island model for EAs

- Need to re-design on GPU:
 - Exchange topology
 - Emigrants selection policy
 - Replacement/Integration policy
 - Migration decision criterion

INSTITUT NATION DE RECHERCI EN INFORMATIQU ET EN AUTOMATIQU

Parallel evaluation of each island

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Full distribution on GPU

GPU

- One threads block represents one island
- Possible issues
 - Sort the population of each island
 - Find the minimum of the population of each island
 - Threads synchronization (synchronous migration)
 - Generation of random numbers

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

centre de recherche LILLE - NORD EUROPE 60

Migration on GPU

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

centre de recherche LILLE - NORD EUROPE 61

Results for the Weierstrass function (1)

Varying the dimension of the problem (64 islands – 128 individuals per island)

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

RINRIA

Results for the Weierstrass function (1)

Varying the dimension size of the problem (64 islands – 128 individuals per island)

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE **MINRIA**

Results for the Weierstrass function (2)

Varying the number of islands (dimension of the problem: 2 – 128 individuals per island)

Results for the Weierstrass function (2)

Varying the number of islands (dimension of the problem: 2 – 128 individuals per island)

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE RINRIA

Weierstrass-Mandelbrot function (3)

Measures of the quality of the solutions (dimension of the problem: 10 – 64 islands – 128 individuals per island)

Pros and cons

Algorithm	Parameters	Limitation of the local population size	Limitation of the instance size	Limitation of the total population size	Speed
CPU	Heterogeneous	Not limited	Very Low	Very Low	Slow
CPU+GPU	Heterogeneous	Not limited	Low	Low	Fast
GPU	Homogeneous	Size of a threads block	Low	Medium	Very Fast
GPU Shared	Homogeneous	Limited to shared memory	Limited to shared memory	Medium	Lightning Fast

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Perspectives

- Define sophisticate island topologies
- Multi-GPU approach for the island model for EAs
- Extension of the island model for estimation of distribution algorithm (EDA) and particle swarm optimization (PSO)

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

THANK YOU FOR YOUR ATTENTION

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

centre de recherche LILLE - NORD EUROPE 69