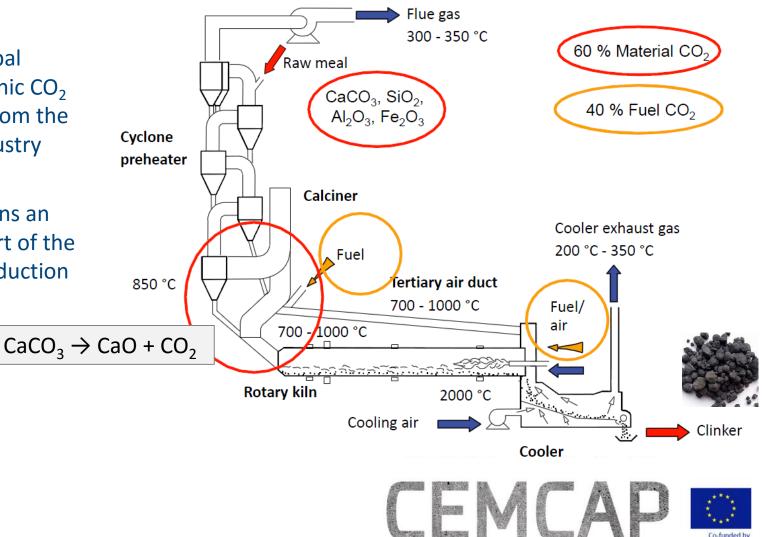


Preparing the ground for CCS in the European cement industry – CEMCAP status

Presented by Rahul Anantharaman¹

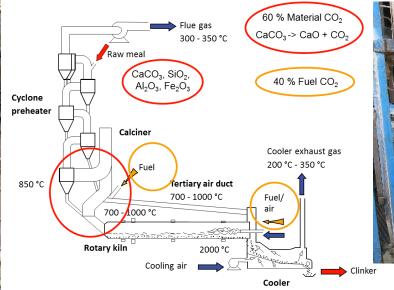
Kristin Jordal¹, Sigmund Størset¹, Helmut Hoppe², Mari Voldsund¹, Simon Roussanaly¹, Giovanni Cinti³, Per Brevik⁴, Juliana Montero⁵, Armin Jamali², Francisco Carrasco⁶, Eike Willms⁷, Manoj Paneru⁷, Marco Lindemann Lino², Simon Becker⁸, Rob van der Meer⁹, Francisco Perezcalvo¹⁰, Ola Augustsson¹¹, David Berstad¹, Matthias Hornberger⁶

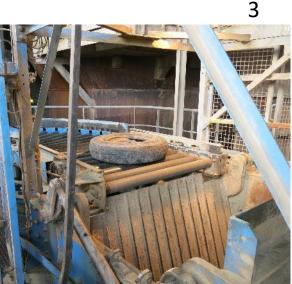

¹SINTEF Energy Research, ²VDZ GmbH, ³Italcementi, ⁴Norcem, ⁵TNO, ⁶IFK – University of Stuttgart, ⁷ThyssenKrupp Industrial Solutions, ⁸IKN, HeidelbergCement, ¹⁰ETH Zürich, ¹¹GE Power Sweden

Background

- 6-7% of global anthropogenic CO₂ emissions from the cement industry
- CO₂ emissions an inherent part of the cement production process

the European Union


2

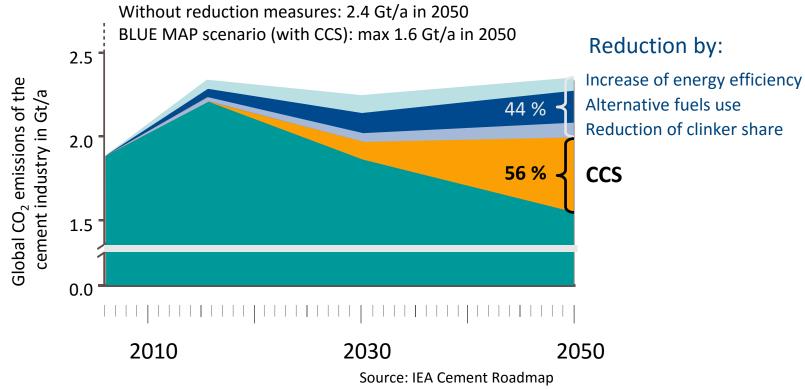

Cyclone preheaters

Some pictures

from the HeidelbergCement plant in Lixhe, BE

Calciner fuel feed

Rotary kiln



Burner

Co-funded by the European Union

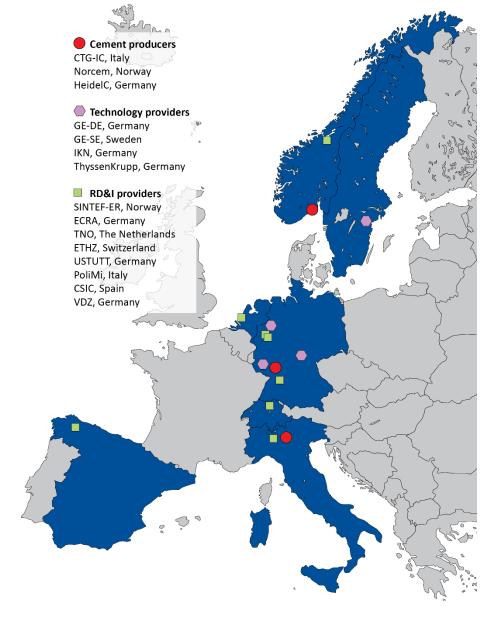
The need for CCS in Cement production

- IEA target for 2050: 50 % of all cement plants in Europe, Northern America, Australia and East Asia apply CCS
- Cement plants typically have a long lifetime (30-50 years or more) and very few (if any) are likely to be built in Europe \rightarrow **Retrofit**

The CEMCAP project – CO₂ capture from cement production

The **primary objective of CEMCAP** is to prepare the ground for large-scale implementation of CO₂ capture in the European cement industry

- Project coordinator: SINTEF Energy Research
- Duration: May 1st 2015 October 31st 2018 (42 months)
- Budget: € 10 million
- EC contribution € 8.8 million
- Swiss government contribution: CHF 0.7 million
- Industrial in-kind ~€ 0.5 million
- Number of partners: 15


CEMCAP Consortium

<u>Cement Producers</u> Italcementi, IT Norcem, NO HeidelbergCement, DE

<u>Technology Providers</u> GE Carbon Capture (GE-DE), DE GE Power Sweden (GE-SE), SE IKN, DE ThyssenKrupp Industrial Solutions, DE

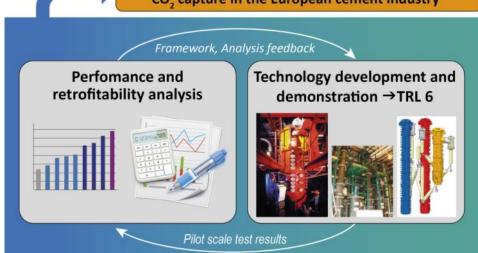
Research Partners SINTEF Energy Research, NO ECRA (European Cement Research Academy), DE TNO, NL EHTZ, CH University of Stuttgart, DE Politecnico di Milano, IT CSIC, ES VDZ, DE

Strategic techno-economic decision basis for CO, capture in the European cement industry

CEMCAP approach: iteration between analytical and experimental research

Analytical work

Framework document


Capture process simulations

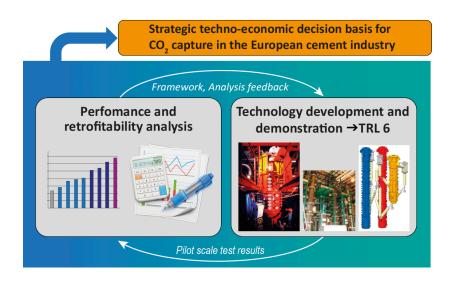
Simulations of full cement plants (kilns)

with CO₂ capture

Cost estimations/benchmarking

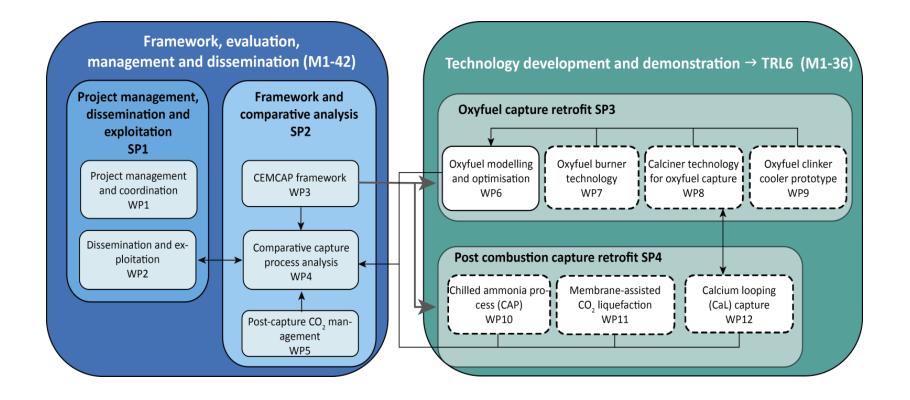
Retrofitability analysis

Experimental work


Testing of three components for oxyfuel capture (linked to ECRA CCS project) Testing of three different postcombustion capture technologies ~10 different experimental rigs

CEMCAP concept and outcome

Strategic techno-economic decision basis for CO₂ capture in the European cement industry Subjective Subjective Strategic techno-economic decision basis industry


Capture technologies in CEMCAP:

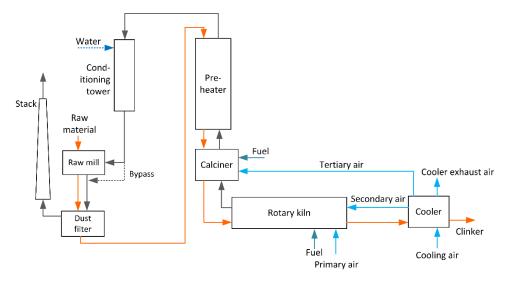
- Oxyfuel capture
- Chilled ammonia process
- Membrane-assisted CO₂ liquefaction
- Calcium looping

Retrofitability: cement plants differ in construction, raw material, fuel et.c. E.g. the capture technology suitable for Norcem in the Norwegian full-scale project is not suitable for all other cement plants

CEMCAP structure

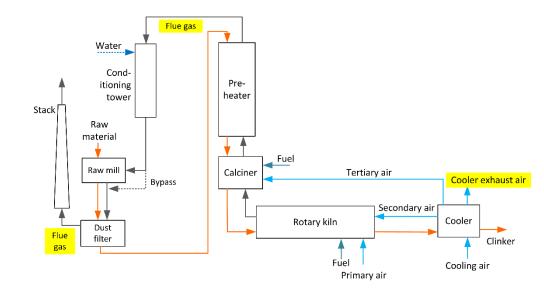
WP3: CEMCAP framework – finished and ready for sharing!

- For consistent comparative assessment of capture technologies
- Provides information relevant for experimental and simulation work
- Defines:
 - A reference cement burning line
 - Specs for standard process units
 - Utilities description, cost and climate impact
 - Extent of capture and CO₂ specs
 - Economic parameters
 - Key performance parameters



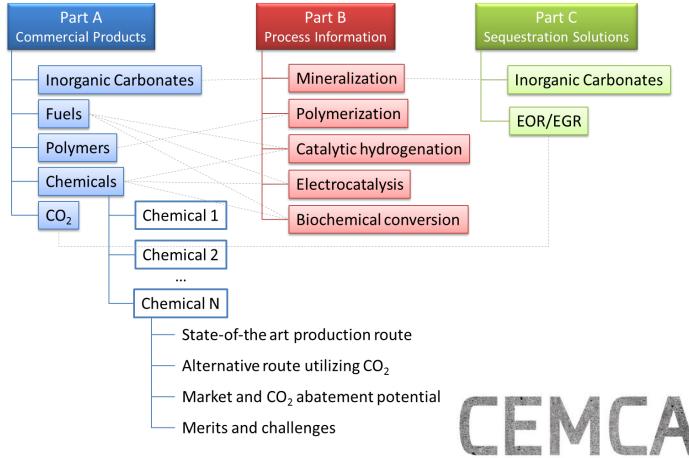
CEMCAP
Grant Agreement Number: 641185
Action acronym: CEMCAP
Action full title: CO2 capture from cement production
Type of action: H2020-LCE-2014-2015/H2020-LCE-2014-1
Starting date of the action: 2015-05-01 Duration: 42 months
D3.2 CEMCAP framework for comparative techno-economic analysis of CO ₂ capture from cement plants
Due delivery date: 2017-01-31 Actual delivery date: 2017-05-11 Organisation name of lead participant for this deliverable: SINTEF-ER
Project co-funded by the European Commission within Horizon2020 Dissemination Level x PU Public x CO Confidential, only for members of the consortium (including the Commission Services) x

Reference cement burning line


- All cement burning lines are different: 14-35 vol% CO₂ (dry basis)
- Reference cement burning line
 - Based on reference cement kiln of ECRA
 - 3,000 tonne clinker per day
 - Assumed BAT technologies
 - Defines
 - raw material
 - fuel properties
 - process components
 - etc.

Utilities: Steam

- No steam generated at the plant
- Small amount of waste heat


- Assume required steam is generated by:
 - Waste heat recovery
 - And either
 - Natural gas fired boiler (base case)
 - External CHP

Steam source	Climate impact [kg _{CO2} /MWh _{th}]	Cost (2014) [€/MWh _{th}]
Waste heat available on the plant	0	8.5
Natural gas boiler	224	25.3
External CHP steam plant at 100°C	101	7.7
External CHP steam plant at 120°C	136	10.3
External CHP steam plant at 140°C	170	13.0

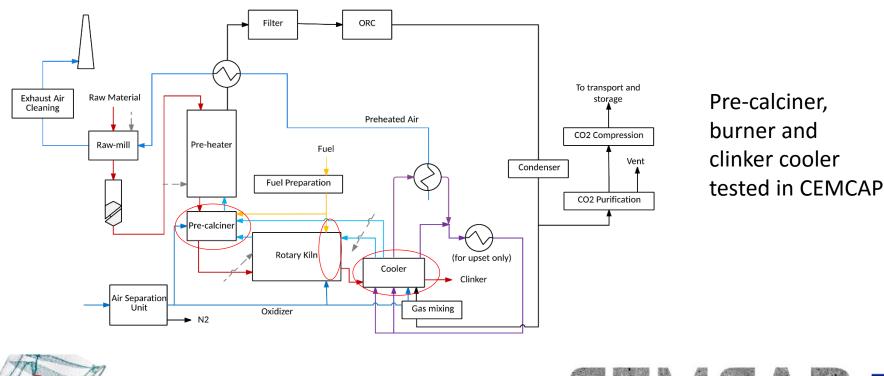
WP5: Post-capture CO₂ management - options for the cement industry

the European Union

WP5: Post-capture CO₂ management - options for the cement industry

Market size 2017 and forecasts

Thermodynamics Energy demand

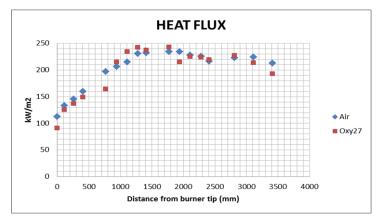

- 1. $CaCO_3$
- 2. Aggregates
- 3. Carbonated cement
- 4. Methanol
- 5. DMF
- Hydrocarbons (liquids) 6.
- 7. Methane
- 8. Ethanol
- 9. Isopropanol
- 10. Biodiesel
- 11. <u>Poly(Propylene Carbonate)</u>
- 12. <u>Polyols</u>
- 13. Cyclic carbonates
- 14. Formic acid
- 15. CO₂

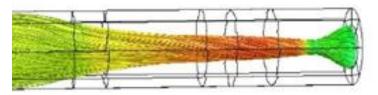
WP6: Oxyfuel modelling

Purpose: Optimization of the oxyfuel clinker burning process based on process modeling verified by prototype results
Oxyfuel principle: Air is replaced by recirculated CO₂ in the plant, to enable capture of highly concentrated CO₂

Oxyfuel research in CEMCAP is closely connected to the ECRA CCS project

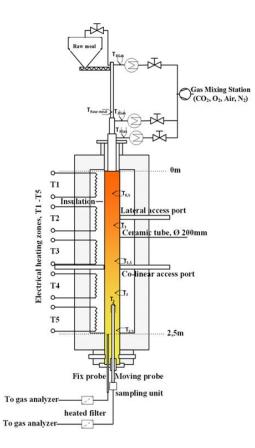
15


WP7: Oxyfuel cement burner tests


Oxyfuel burner design by ThyssenKrupp for cement plant operating conditions

Oxyfuel burner testing at IFK, University of Stuttgart

Measurements of incident total heat flux to the furnace wall during second test campaign.

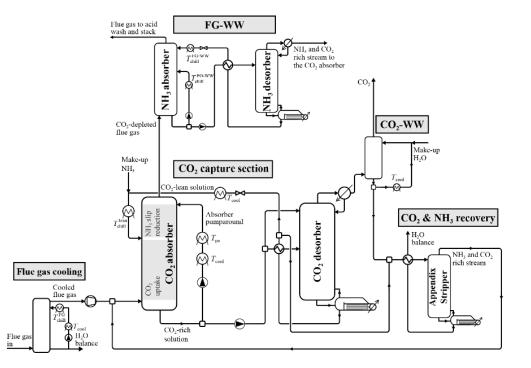

Result from the SINTEF CFD simulation of the oxy-fuel case tested in the second campaign showing streamlines coloured by temperature.

WP8: Calciner technology for oxyfuel capture

- An electrically heated 50 kW entrained flow reactor test facility (University of Stuttgart) modified for oxyfuel calcination tests, experimental investigation of entrained flow calcination is concluded.
- Purpose: experimental investigation of suspension calcination under industrially relevant oxy-fuel conditions
- Aim: to verify sufficient calcination of the raw material before its entering into the rotary kiln
- CEMCAP prototype tests show the direct interference of degree of calcination, temperature and residence time for oxyfuel entrained flow calciners.

WP9: Oxyfuel clinker cooler – designed, built, tested

Clinker cooler prototype and recirculation system installation at HeidelbergCement in Hannover


Hot commissioning of the oxyfuel clinker cooler and first oxyfuel clinker samples

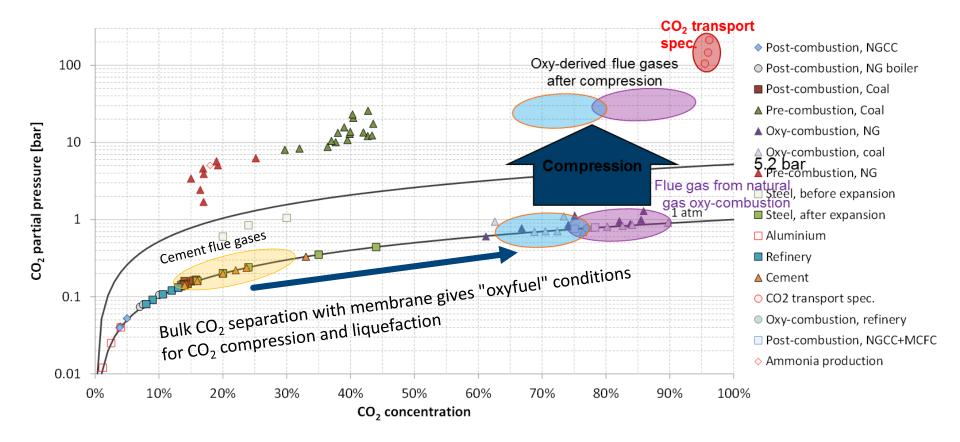
A clinker cooler film is under prepration, will soon be published on YouTube

WP10: Chilled ammonia for cement plant CO₂ capture

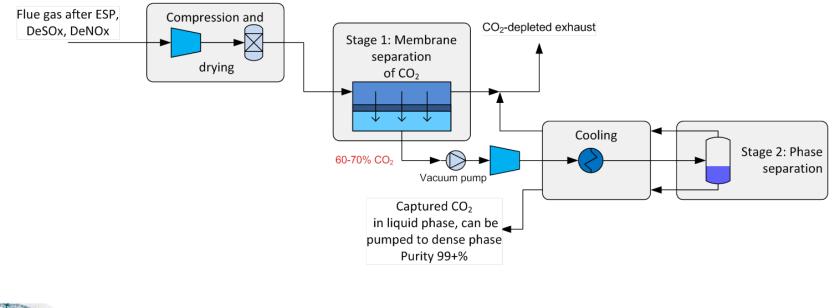
ETHZ has simulated and adapted the CAP system to different cement-plant flue gases; a new rate-based model was developed and used to validate full-scale CAP simulations for cement plants.

Chilled ammonia process (CAP) for cement plants

- An existing CAP pilot plant (1 tonne CO₂/day) at GE Power Sweden has been adapted for CEMCAP conditions (up til 34% CO₂ concentration)
- Absorber, Direct Contact Cooler and water wash sections have been tested at cement like conditions

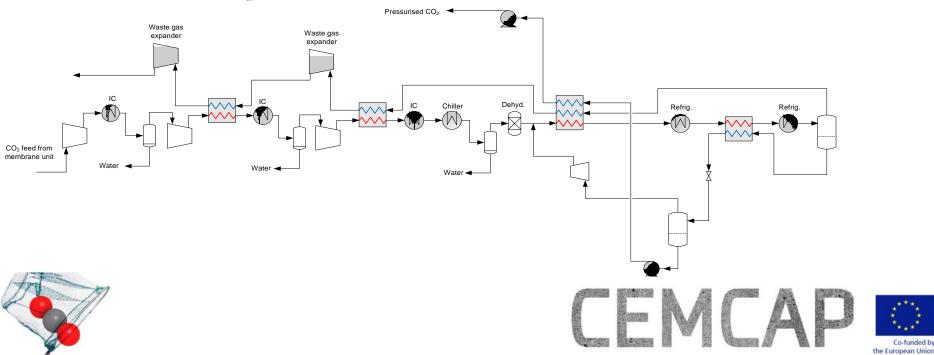

CAP pilot plant used for CEMCAP tests (photo by GE Power Sweden)

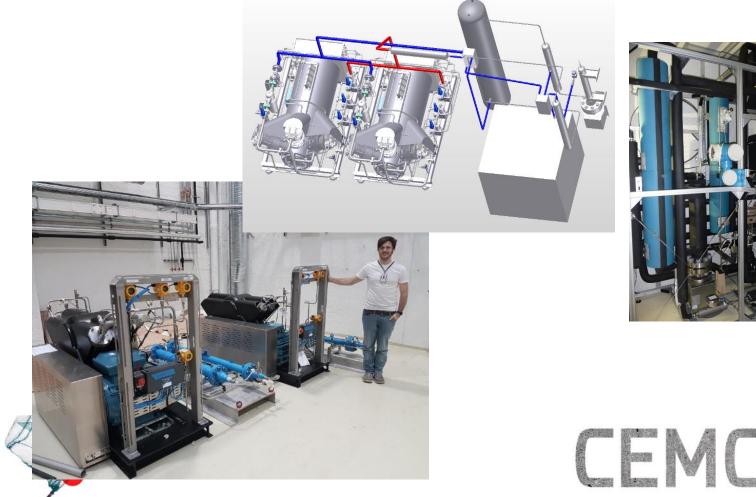
WP 11: Membrane-assisted CO₂ liquefaction


Is there a role for CO2 liquefaction in post-combustion capture from cement?

Membrane assissted liquifaction

- End-of-pipe technology
- No fuel input, only power

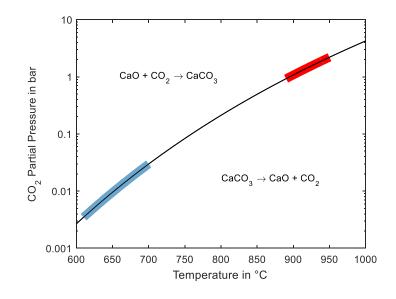


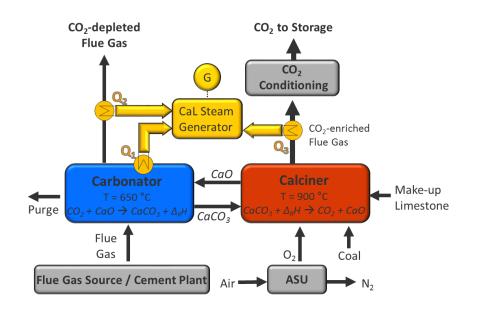


CO₂ separation and liquefaction unit - simulation

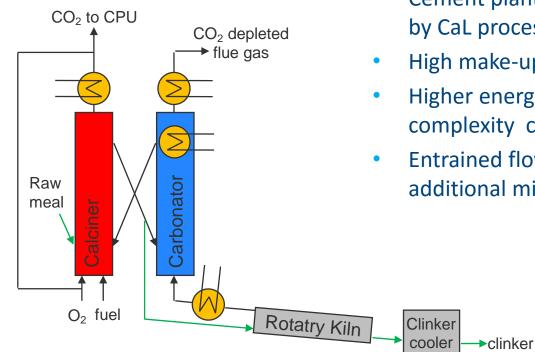
- Compression (3 stages with intercooling)
- Dehydration (bulk separation after each compression stage + final mol sieve dehyd.)
- Cooling and condensation
- Phase separation
- Heat recovery, CO₂ pumping and waste gas expansion

Operating conditions for CO₂ capture ratio and CO₂ purity to be tested in a 10-ton_{co2}-per-day lab pilot rig at SINTEF



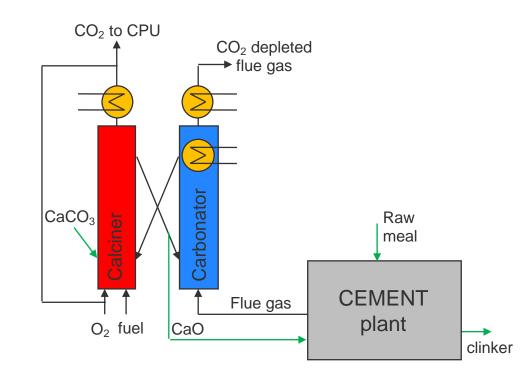


WP12: Calcium looping – General process description


- CO₂ capture by cyclic calcination and carbonation of Calcium carbonate (CaCO₃)
- High energy efficiency due to high temperature level

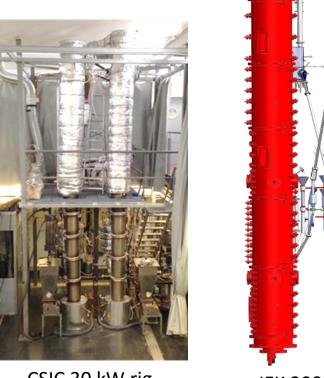


Cement plant integration - Integrated Ca-looping



- Cement plants' raw meal completely calcined ۲ by CaL process
- High make-up ratio realizable
- Higher energy efficiency and higher complexity compared to tail-end
- Entrained flow reactors or CFB reactors with additional milling step if necessary

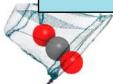
Cement plant integration - End-of-pipe Ca-looping


- Part of raw meal calcined in CaL process
- CO₂ flue gas concentration ~ 20
 35 %
- Easy integration
- Reduced energy efficiency

Experimental research on Ca-looping in CEMCAP

- Two rigs adapted to operate under cement plant conditions: 200 kWth pilot rig at IFK, University of Stuttgart and 30 kW rig at CSIC
 - 200 KW rig: Stable calcium looping operation with CO₂ capture rates above 95% has been reached, using high limestone make up flows and a synthetically mixed flue gas.
 - 30 KW rig: experimental campaigns were conducted, investigating the influence of various process parameters upon CO₂ capture rate. Various raw materials for cement production tested and analysed.

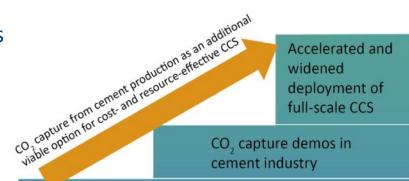
CSIC 30 kW rig


IFK 200 kW rig

Characteristics of technologies included in CEMCAP

		Post combustion capture technologies		
	Oxyfuel capture		Membrane-	
		Chilled ammonia	assisted CO ₂	Calcium Looping
			liquefaction	
CO ₂ capture	Combustion in oxygen	NH ₃ /water mixture used	Polymeric membrane for	CaO reacts with CO_2 to
principle	(not air) gives a CO ₂ -rich	as liquid solvent,	exhaust CO ₂ enrichment	from CaCO ₃ , which is
principie	exhaust	regenerated through	followed by CO ₂	regenerated through
		heat addition	liquefaction	heat addition
Cement plant	Retrofit possible through	Retrofit appears simple,	No cement plant	Waste from capture
-	modification of burner	minor modifications	modifications. Upstream	process (CaO) is cement
integration	and clinker cooler	required for heat	SOx, NOx, H ₂ O removal	plant raw material
		integration	required	
Clinker quality	Maintained quality must	Unchanged	Unchanged	Clinker quality is very
	be confirmed			likely to be maintained
CO ₂ purity and	CO ₂ purification unit	Very high CO ₂ purity, can	High CO ₂ purity (minor	Rather high CO ₂ purity
	(CPU) needed. High	also capture NOx, SOx.	CO ₂ impurities present).	(minor/moderate CO ₂
capture rate	capture rate and CO ₂	High capture rate	Trade-off between	impurities present).
	purity possible (trade-off	possible.	power consumption and	High capture rate.
	against power		CO ₂ purity and capture	
	consumption).		rate.	
Energy integration	Fuel demand unchanged.	Auxiliary boiler required	Increase in electric	Additional fuel required,
0, 0	Waste heat recovery +	+ waste heat recovery.	power consumption, no	enables low-emission
	electric power increase.	Electricity for chilling.	heat integration.	electricity generation.

To conclude: CEMCAP – aiming to be a visible project with an impact


 CEMCAP framework: a useful reference for any study on CO₂ capture from cement
CEMCAP will deliver strategic conclusions for how to progress CO₂ capture from cement plants from pilot-scale testing to demonstration

Recommendations will be given for different scenarios (i.e. different types of cement plants at different locations in Europe)

Focus is on retrofit – very few new cement plants are foreseen to be built in Europe

CEMCAP oxyfuel results will be directly exploited in the ECRA CCS project, Ca-looping results in CLEANKER project

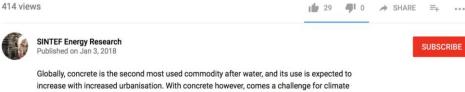
> Cement industry commitment to climate protection: ECRA and Norcem CCS projects

CEMCAP: Maturing CO₂ capture from cement to TRL6 Enhanced and effective Providing a descision base for cost-and resource-effective CCS in industry

and effective cooperation in CCS R&I

FP6 and FP7 CCS projects for the power sector:

- Available laboratory resources
- Extensive knowledge and competence


the European Unio


Cemcap on the tube

CEMCAP, CO2 capture from cement production

Globally, concrete is the second most used commodity after water, and its use is expected to increase with increased urbanisation. With concrete however, comes a challenge for climate protection: Cement is a main constituent of concrete, and its production currently generates SHOW MORE

https://www.youtube.com/watch?v=fVaqFwhBEQI

To follow CEMCAP:

- Public deliverables are uploaded to our website: <u>www.sintef.no/cemcap</u>
- On twitter (@cemcap_co2) we announce newly published deliverabes, newsletters, blogs and other CEMCAP-related info and events
- Subscribe to newsletters: send an e-mail to <u>cemcap@sintef.no</u>
- **Open workshop** about CEMCAP results, organised jointly with ECRA:
 - October 17th 2018 in Brussels (final CEMCAP/ECRA workshop)
 - Updates on workshop will be announced on the website, in newsletters and on Twitter

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 641185

This work was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0160

www.sintef.no/cemcap

Twitter: @CEMCAP_CO2

Newsletter subscription, inquiries: cemcap@sintef.no

