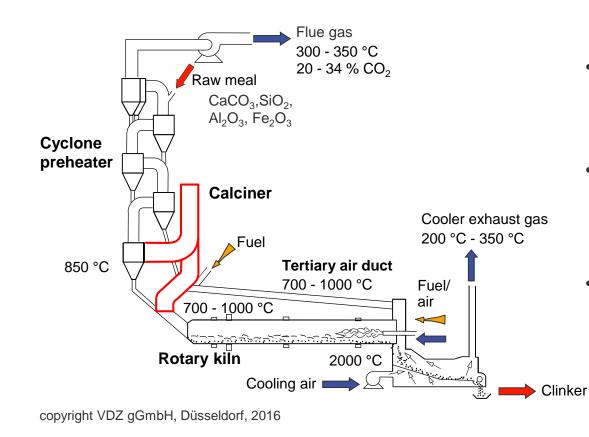


University of Stuttgart

Institute of Combustion and Power Plant Technology Prof. Dr. techn. G. Scheffknecht

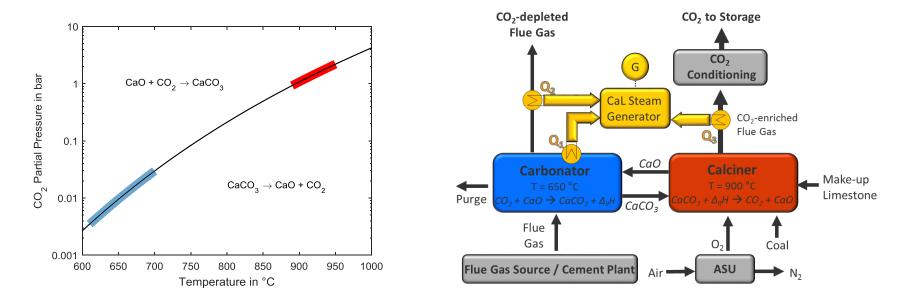
Experimental investigation on emission-free cement production by Calcium Looping post combustion CO_2 capture


Matthias Hornberger, Reinhold Spörl, Günter Scheffknecht

7th HTSLCN Meeting, 4th to 5th September 2017, Luleå

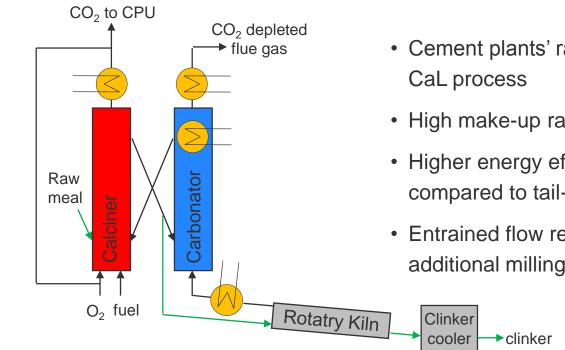
ıfk

Clinker manufacturing



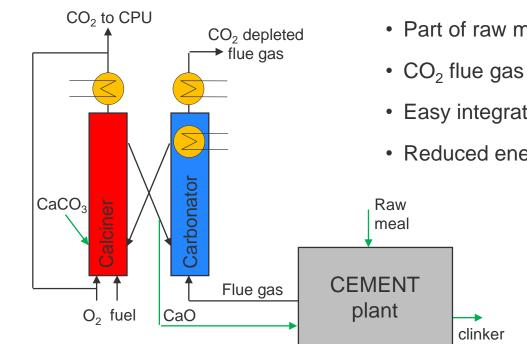
- Cement production constitute
 ~5 % of global anthropogenic
 CO₂ emissions
- CO₂ emissions:
 - 60 % by raw materials
 - 40 % by fuel
- Reduction of CO₂ emissions:
 - 56 % CCS
 - 44 % by increase of energy efficiency, alternative fuels, reduction of clinker share

Calcium – Looping


Calcium Looping – General Process Description

- CO₂ capture by cyclic calcination and carbonation of Calciumcarbonat (CaCO₃)
- High energy efficiency due to high temperature level

Calcium Looping – Cement Plant Integration


Integrated CaL

- Cement plants' raw meal completely calcined by
- High make-up ratio realizable
- Higher energy efficiency and higher complexity compared to tail-end
- Entrained flow reactors or CFB reactors with additional milling step if necessary

Calcium Looping – Cement Plant Integration

Tail-end CaL

- Part of raw meal calcined in CaL process
- CO₂ flue gas concentration ~ 20 35 %
- Easy integration
- Reduced energy efficiency

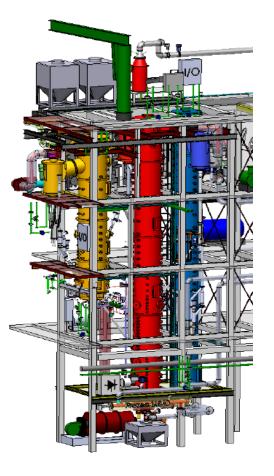
Experimental results

Experimental results – Experimental facility

200 – 230 kW_{th} pilot scale facility (3 reactors)

Bubbling bed reactor (1x)

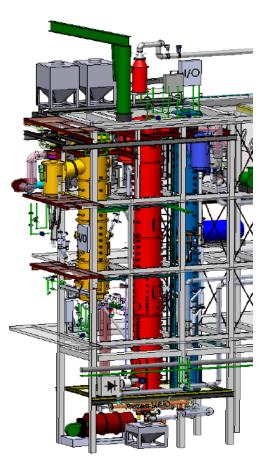
- diameter: 330 mm
- height: 6 m

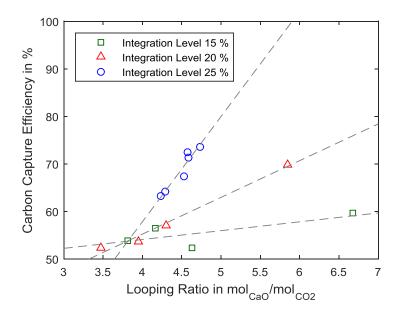

Circulating fluidized bed reactor (2x)

- diameter: 200 mm
- height: 10 m

Possible reactor configuration: CFB-CFB, BFB-CFB

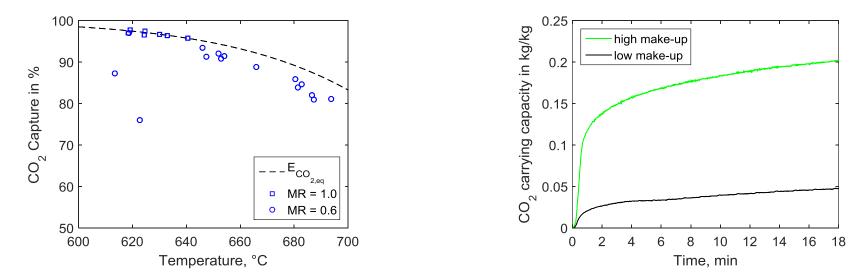
No electrical heating (heated by combustion)

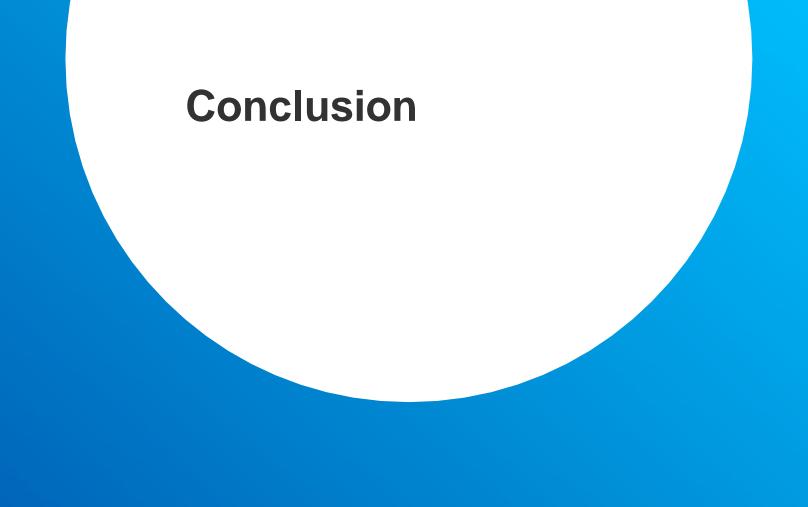

Gas analysis (H₂, CO, CH₄, O₂, CO₂, C_xH_y, SO₂, NO_x)


Experimental results – Experimental conditions

	Integrated CaL option	Tail-end CaL option
y _{CO2}	15 %	20 35 %
$\dot{N}_{CaO,0}$ / \dot{N}_{CO_2}	0.6* , 1.0*	0.08 0.34
\dot{N}_{CaO} / \dot{N}_{CO_2}	8 20	0 9
T _{Calciner}	~ 910 °C	~ 910 °C
T _{Carbonator}	~ 650 °C	~ 650 °C

* limited by experimental facility – actual make up rate of ~ 4 mol_{CaO}/mol_{CO_2}


Experimental results – Tail-end CaL Option


- CO₂ capture increases with increasing makeup ratio
- Strong influence of looping ratio upon CO₂ capture in Tail-end configuration
- Influence of looping ratio increases with increasing make-up rate / integration level

Experimental results – Integrated CaL Option

- CO₂ capture was limited by the equilibrium CO₂ capture
- High CO₂ capture rate above 90 % reached
- High sorbent activity due to high make-up flows

University of Stuttgart - Institute of Combustion and Power Plant Technology - M. Sc. Matthias Hornberger

Conclusion and Outlook

CaL CO₂ capture:

- Beneficial Calcium Looping operation conditions due to reutilization of sorbent in cement plant
- High CO₂ capture rate >90 % CO₂ capture achieved over a wide range of parameters
- CO₂ capture adjustable by looping ratio, integration level

Tail-end CaL configuration:

- easy to integrated
- reduced energy efficiency
- minor technical uncertainties

Integrated CaL configuration:

- complex integration
- high energy efficiency
- research upon raw meal sorbent performance and entrained flow carbonator sizing

Thank you for your attention!

Acknowledgement

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 641185

www.sintef.no/cemcap

Twitter: @CEMCAP_CO2

Thank you!

Matthias Hornberger

e-mail Matthias.Hornberger@ifk.uni-stuttgart.de phone +49 711 685-67801 fax +49 711 685-63491

University of Stuttgart Institute of Combustion and Power Plant Technology Pfaffenwaldring 23 • 70569 Stuttgart • Germany

