
Scrum and IEC 60880

Tor Stålhane
Norwegian University of Science and Technology

+47 73594484, stalhane@idi.ntnu.nol

Vikash Katta
Norwegian University of Science and Technology and OECD Halden Reactor Project,

+47 45464323, vikash.katta@hrp.no

Thor Myklebust
SINTEF ICT

+47 95779869, thor.myklebust@sintef.no

Abstract

Agile development has already proven to be a big success in several areas of application. It started
in areas like web development but has now even moved into safety critical domains – e.g. air traffic
management, automotive. Companies working with industrial automation – e.g. ABB – are
considering using an agile development process. The main reason for this is that requirements
changes are more frequent than before plus acceptance of the fact that requirements seldom are
finished when the application development starts. To quote Daniel M. Barry “…it might be that the
only solution is to identify requirements, to carry out a design sufficient to get a black-box
description of the system, to identify and analyse hazards, and then to begin the lifecycle again
with changed requirements”.

NTNU – IDI has, together with SINTEF ICT, defined a process called Safe Scrum plus a process to
handle the challenges posed by relevant standards. This process has already been applied to agile
development using ISO 9001 and IEC 61508. For the proposed paper we will apply the same
process to the standard IEC 60880 which is used in the nuclear power plant domain.

Important issues discussed in the proposed paper will be documentation, planning and proof of
conformance. These three areas are important in the development of all software that shall be
certified. In addition, they are the three areas where agile and plan-driven development is most
different.

1. Introduction

Agile development is an idea, not a method. It is summed up in the agile manifesto as follows:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

The agile movement can be seen as a reaction to the strong focus on documents and plans that

was, and in many cases, still is prevailing in software development organizations. Many developers

saw this as a straight-jacket and that it focused on fulfilling the plans at the expense of satisfying

the customers.

2. What is Agile development and what is Scrum

There is no such thing as “The agile development process”. People who implement the agile

manifesto have met this challenge in different ways. Examples of processes are XP, Lean Software

development and Scrum. Based on what we have seen in industry we will focus on Scrum since

this method already has been implemented or is about to be implemented in several large

companies – also in the safety critical area. The standard Scrum process is shown in figure 1.

Avinor and Autronica already use Scrum in safety-critical application development while ABB is

starting to consider it.

In addition, several companies are evaluating Scrum for possible, later implementation.

There are two main views on agile development - the believers’ view and the sceptics’ view. The

following list is taken from a presentation by Geir K. Hanssen [1] and the items are summarized

below.
 The believers:

 Agile development is cheaper because:
 Only what is needed will be developed
 Misunderstandings and errors are discovered early
 Communication is more efficient

 Better conditions for creativity
 Changes cannot be controlled. Thus, it is better to emphasize change responses and

change control
 Self-organizing groups perform better

 The sceptics

 Customer attention is luxury
 Customer will not accept ”no plan – no estimates”
 Small releases will only fit small problems and small projects
 Agile development does not fit in traditional project management framework
 Compliance with important standards such as IEC 61508

The Scrum process is one way to realize an agile process. The process is described by a Scrum
process, a set of artefacts and three roles - see [1].

 The Scrum process

 The Sprint planning meeting – select requirements for the next sprint

 Sprints – also called iterations, where the implementation and testing is done. A sprint

most often takes one week to one month. The work in each sprint can be viewed as a

mini-waterfall development project.

 The daily Scrum meetings – what did we do yesterday, which problems did we

encounter and what will we do today?

 Sprint review meetings. What did we achieve in this sprint, showing real, working

code?

 Sprint retrospectives – what went well in the previous sprint and what should be

improved? How shall we change the process to realize the improvements?

 Artefacts

 The product backlog – the requirements that have been identified but not yet

implemented

 Sprint backlog – the requirements to be implemented in the coming sprint

 The wall – a set of charts (e.g. the burn-down chart) showing the current project

status.

 Roles

 Product owner – customer representative

 Scrum team – those who do detailed design and coding. The team typically consists of

five to ten persons who work full time on the project

 Scrum master – “project manager”. His main jobs are to facilitate development and to

remove impediments

Figure 1: The standard Scrum process

3. Why should the Safety-Critical Industry consider Scrum

The part of the industry that develops safety-critical software has for a long time been plan-driven

and methodically conservative. Several changes in the environment have, however, affected this:

 The tempo with which new technology is introduced in the marketplace. This holds both for

new products (what we develop) and for new components (what we uses) – e.g. sensors.

 Increased focus on flexibility. This is partly a consequence of the first bullet point.

 There is a growing realization that the plan-driven development paradigm is too much

focussed on writing and rewriting plans that are not used and on producing documents that

are not read.

 The industry’s general focus on lean development and production. Whatever that does not

contribute to the product’s final value should be removed.

There is no reason to believe that the tempo of inventions and innovations will slow down and

those who do not follow will quickly get into trouble. In addition, more and more developers are

using agile development. It remains to be seen if these programmers will be interested in working

in a development environment based on plan- and document-driven development methods. To

quote from our IEC 61508 paper [2], the key benefits that comes from this combination of a safety-

oriented approach and a process model for agile software development are that the process

enables

 Continuous feedback both to the customer, the development team and the independent test

team.

 Re-planning, based on the most recent understanding of the requirements and the system

under development.

 Mapping of functional and safety requirements.

 Code-requirements traceability.

 Coordination of work and responsibilities between the three key roles; the development

team, the customer and the assessor.

 Test-driven development of safety critical systems.

All of these points will help us to get a more visible process and thus better control over the

development process, which again will help us to deliver on time and within budget.

4. Challenges when using Scrum

First and foremost – Scrum is a software development method. As a consequence of this, we need

to single out software development in a separate activity. This does not mean that the software

should be developed in isolation from the rest of the project but that it should be organized as a

separate activity.

The nuclear industry and any other industry that is dependent on safe operation of complex control

systems will have one or more standards that shall help the industry in focussing on and achieving

safe operation. These standards, however, mirror a traditional, plan- and document-driven view on

software development. Changing these standards to also accommodate the agile development

paradigm will take considerable time – e.g. five to ten years. There is also a real risk that the

changes in software development paradigms will outrun the standards ability to change in order to

incorporate such changes.

Thus, in order to start using an agile development method – in this case Scrum – we need to

explore two options:

 Changes to Scrum – e.g. add-ons to cater to the traceability requirements

 Alternative interpretations of requirements in the applicable standards – e.g. what should be

accepted as proof of conformance for an activity?

Both approaches are useful. The first and third author have used them both successfully in two

cases – (1) Scrum and ISO 9001 [3] and (2) Scrum and IEC 61508 [2] – and we will use parts of

both options later in this paper

5. A Method for Scrum adoption

We present a method for Scrum adopted to address the needs of development of safety system.

This method was used in [2] and [3], it is simple and our experience so far is that it is highly

efficient.

1. Collect a team containing a software expert, a domain expert and an assessor for the

standard(s) under consideration

2. Identify all requirements in the standard related to software development

3. Go through all the requirements, asking the question “Will this requirement be fulfilled if we

use Scrum?” This delegate each requirement to one of the following categories:

a. Is fulfilled also if we use Scrum as is

b. Is partly fulfilled if we use Scrum as is. Will need adding extra activities to the Scrum

process

c. Cannot be met if we use Scrum as is.

4. Use the two strategies identified in section 4 to sort out the problems – con-compliances

This approach leaves us with two challenges – (1) have we identified all relevant requirements and

(2) different assessors have different opinions of what should count as proof of conformance.

Especially challenge (2) is problematic since it has no final solution. One possible way out of this is

to involve the assessor from day one and ask questions such as “If we use approach X here, will

this be accepted?” This approach must, however, be used with care so that we do not hold the

assessor hostage to out choice of development process. If we need to ensure assessor

independency, we can use one assessor as a “sparring partner” during the project and another one

– preferably from the same organization – for certification.

6. IEC 60880 and Scrum

6.1 Relevant standard requirements

We have taken sections 5 to 10 of IEC 60880 [4] as our main starting point. In addition, we have

consulted IEC 62138 [5] and tables 2 and 3, section 1.11 in the document “Licensing of safety

critical software for nuclear reactors” for guidance. From the diagram below, taken from IEC 60880,

we see that the software implementation only concern a small part of the total process. It is only

this part that is touched by Safe Scrum, the rest is Scrum independent.

Figure 2: Activities in the system safety life cycle

We studied sections 5 to 10 of IEC 60880 in details. Based on the requirements stated in these

sections, we selected the following areas for a closer scrutiny:

 5.3 – Software development approach. This section has no references to processes or

procedures and is thus by default, also applicable to Scrum

 5.4 – Software project management. In this section, the standard states that the

development process may be iterative, provided that certain requirements in clause 6 in IEC

61513 [8] are fulfilled. This part of IEC 61513 makes requirements to the system safety

lifecycle, which have to be fulfilled outside Scrum. In addition, this section in sub-section

5.4.9 states that each phase should generate a set of documents according to annex F in

this standard.

 5.5 – Software quality assurance plan, which also include security assurance and safety

assurance. This section says that there should exist a quality assurance plan. This plan may,

however, be “adapted for individual product phases or particular software

components…provided the principles defined in this standard are addressed “, and that “Any

deviation from the requirements of this standard and its normative annexes shall be

identified and justified”. Thus, it is up to the assessor what he is willing to accept. It is

practical to have a company QA plan which can be reused, in whole or in parts, from one

project to the next. In addition, other company specific standards will influence our solution.

 7 – Design and implementation. The most important provisions in this section are that there

should be (1) a program structure based on decompositions, that this structure should be

simple to understand, (3) that a top down approach should be preferred to a bottom-up

solution and that (4) a conceptual model of the software architecture should be adopted at

the beginning of each software project. In addition, the two clauses 7.1.2 and 7.1.3 are

discussed in some more details below – see sections 6.2 and 7.2.

Since Scrum and all other agile methods are specifically made to handle problems related to the

specification and changing of requirements section 6 is an important part of the standard when we

want to adapt to agile development. We have thus selected 6.1 – Specification of software

requirements – for a closer look.

As a consequence of the reference to annex F in IEC 60880, we also include sections 8.2.2 and

8.2.3 for a closer look.

6.2 A closer look

We have singled out the following sections of the standard for a closer look:

 5.4 – Software project management

 9 requirements are OK

 2 requirements need a closer look – 5.4.9, which invokes annex F and 5.4.10.

 6.1 – Specification of software requirements.

 13 requirements are OK

 2 requirements need a closer look – 6.1.4 and 6.1.5, which invokes annex A

 7.1.2 – Implementation of new software in general-purpose languages

 4 requirements are OK

 1 requirement needs a closer look – 7.1.2.5, which invokes annex B

 7.1.3 – Implementation of new software in application-oriented languages

 4 requirements are OK

 0 needs a closer look

 8.2.2 – Design verification

 7 requirements are OK

 0 needs a closer look

 8.2.3 – Implementation verification

 11 requirements are OK

 1 requirement needs a closer look – the intro, which invokes table E.4.2

This gives us a To-Do list of six requirements. The rest – 48 requirements – do not need any

special treatment or consideration when we use Scrum – 11%. To put these numbers into

perspective, we had to have a closer look on 15 of 183 requirements when assessing Scrum for

IEC 61508 – 8%. We found no requirements in the standard that could definitively not be fit into the

Scrum process.

7. A workable solution

7.1 Safe Scrum

We have observed that the safety requirements are quite stable, while the functional requirements

can change considerably over time. The most important sources of changes for safety

requirements are changes in relevant standards, which happen only seldom, and the discovery of

new hazards during RAMS (Reliability, Availability, Maintenance and Safety) validation. This is

taken care of in Safe Scrum with the possibility for revising the backlog after RAMS validation – see

figure 3 below.

Development with a high probability of changes to requirements will favour an agile approach.

Usually, each backlog item also indicates the estimated amount of resources needed to complete

the item – for instance the number of developer work hours. These estimates can be developed

using simple group-based techniques like ‘planning poker’, which is a popularized version of

wideband-Delphi [6].

All the risk and safety analyses on the system level are done outside the Safe Scrum process,

including the analysis needed to decide the safety level. Software is considered during the initial

risk analysis and all the later analysis – on per iteration. Just as for testing, safety analysis also

improves when it is done iteratively and for small increments – see [7].

Due to the focus on safety requirements, we propose to use two product backlogs, one functional

product backlog, which is typical for Scrum projects, and one safety product backlog, which is used

to handle safety requirements. Adding a second backlog is an extension of the original Scrum

process and is needed to separate the frequently changed functional requirements from the more

stable safety requirements. With two backlogs we can keep track of how each item in the functional

product backlog relates to the items in the safety product backlog, i.e. which safety requirements

that are affected by which functional requirements. This can be done by using simple cross-

references in the two backlogs and can also be supported with an explanation of how the

requirements are related if this is needed to fully understand a requirement.

Figure 3: Safe Scrum process

7.2 Scrum adaptations
 5.4.9 – Annex F in IEC 60880, lists a recommended set of documents to be generated at the

end of each phase. Since each sprint is a miniature V-model, each sprint will contain

activities from several phases. The relevant points in the annex F table are 8.2.2 and 8.2.3 –

both related to verification. Each phase will need a set of documents generated at the end of

a phase to prove that the activities are done according to the standard. It is up to the

assessor what he will accept as proof of conformance. This thus needs to be discussed and

agreed upon at the start of the project. Note that these documents will have to be (partly)

rewritten when one or more requirements changes. The three documents needed at the end

of each sprint are

 Software test specification document. Given the dynamic nature of requirements

handling in Scrum, this report has to be written when handling each requirement,

based on the tests designed for this requirement.

 Software code verification report – written at the end of each sprint

 Software test report – written at the end of each sprint.

 5.4.10 – “Each phase shall be systematically terminated by a review...” Based on the way a

project phase is described in section 5.4, we will consider the end of a sprint as the end of a

set of phases. Scrum already has a review at the end of each sprint but this may need to be

extended in order to meet the assessor’s requirements.

 6.1.4 – “...the process of laying down software requirements shall be rigorous”. It is up to the

assessor to decide what he will accept as rigorous. As a minimum the organization needs to

propose a definition which should be company-wide, not project specific. It is common in

Scrum to elaborate the requirements when they are taken out of the sprint backlog. This will,

however, not be sufficient in our case and we must adapt Scrum as follows: all requirements

must be rigorously defined when they are

 Inserted into the backlog

 Taken out of the sprint backlog

 Revised and reinserted into the backlog

 6.1.5 – Annex A is related to the software safety life cycle. This annex describes how to

handle requirements. Part of this – e.g. A.2.1: Description of constraints between hardware

and software – is handled outside Safe Scrum, while other parts – e.g. A.2.2: Self-

supervision – is taken care of by requirements in the safety product backlog.

 7.1.2.5 – Annex B is related to requirements handling. The first part handles the design

process, which is outside Scrum – often called Scrum iteration 0. Part 2 handles the software

structure, which should be part of the coding standard and will not affect the choice of

development process. The same holds for part 3 – Self-supervision and part 5 – Language

dependent recommendations.

Part 4 is about subroutines and goes a long way towards recommending test-driven

development, albeit without actually using this term. The important challenge is found in

B4gc which requires that “A formal description of the test inputs and results (test protocol)

should be produced.” This is an extension of the common way of doing testing in Scrum and

we thus need to insert this into the develop-and-test part of the development process.

 8.2.3 – Table E.4.2: Testing methods. This table describes types of tests that should be

performed – e.g. path testing, data movement testing and timing testing – and should thus

be included into a test procedure description.

8. Threats to validity

When discussion the relevance of our conclusions, four things are important – have we understood

certification, the standard, have we touched all relevant parts and have we understood agile

development in general and especially Scrum? We will briefly discuss each of these requirements

below.

 Have we understood the right way to do certification? One of the authors has been working

with safety certification of safety-critical systems for a long time. His experience and insight

give confidence that our discussions and conclusions are sound.

 Have we understood IEC 60880? One of the authors has been working in the nuclear

industry for a long time and knows the relevant standards and how they are used in nuclear-

related software development. Thus, this part is OK.

 Have we touched all relevant items? We have scrutinized the standard and identified all

parts where the term “software” has been used. The requirements handled in sections 6.3

and 7.3 thus cover all relevant items.

 Have we understood agile development – especially Scrum? We have already done

extensive research on the application of Scrum in two other standards – ISO 9001 and IEC

61508. IEC 60880 contains no problems that have not already been discussed in relation to

the two previous standards.

 Our claim to validity is based on the three preceding bullet points. Based on the discussion

above, we are confident that the adaptation described in section 7 will make it possible to

use Scrum as a development process and still be IEC 60880 compliant.

9. Conclusions and Further work

First and foremost; while there are problems with the application of Scrum-as-is together with IEC

and IEC 60880 – e.g. traceability – these and all other problems identified in section 6 above are

taken care of when using our Safe Scrum.

In addition – the assessor need to be involved from day one of the development. We have already

identified several sections in relevant parts of the standard where the standard itself leaves the

requirements open to interpretation. It is the development organization’s duty to make a relevant

interpretation of each requirement in the standard but it will ease the final certification process

tremendously if these interpretations are accepted by the assessor before development starts.

As should be expected, the majority of Scrum problems handled by Safe Scrum are related to the

handling of software requirements and to testing – test specifications, the test methods used and

the final test report for each requirement.

The next step in this work is to try and identify a small but real project in the nuclear industry where

we can try Safe Scrum in a real environment. As always, the proof of the pudding is in the eating.

10. References

 [1] Hanssen, G.K.: Agile software development and safety critical systems. Presentation at

Autronica, January 9, 2013.

[2] Stålhane, T., Myklebust, T., and Hanssen, G.K.: The application of Safe Scrum to IEC 61508

certifiable software. ESREL 2012, Helsinki, Finland, June 2012

[3] Stålhane, T. and Hanssen, G.K.: The application of ISO 9001 to agile software development.

PROFES08, Monte Porzio Catone, Italy, June 2008

[4] CEI/IEC: IEC 60880 Nuclear power plants – Instrumentation and control systems important

to safety – Software aspects for computer-based systems performing category A functions.

Second edition, 2006

[5] CEI/IEC: IEC 62138 Nuclear power plants – Instrumentation and control important for safety

– Software aspects for computer-based systems performing category B or C functions. First

edition, 2004

[6] B. Boehm: Software Engineering Economics. Prentice-Hall Inc., Englewood Cliffs, New

Jersey, 1981, ISBN 0-13-822122-7

[7] R. Morsicano, R. and Shoemaker B.: Tutorial: Agile Methods in Regulated and Safety-

Critical Environments. ShoeBar Associates

[8] CEI/IEC: Nuclear Power Plans. Instrumentation and control important to safety. General

requirements for systems. Second edition, 2011.

