To main content

SINTEF has decades of research experience in environmentally friendly and energy- and cost-effective bioenergy

SINTEF's expertise helps industry, government and other organizations to assess and implement the use of biomass and waste for energy purposes. Putting these energy sources to work requires the knowledge that SINTEF can provide to ensure bioenergy is both environmentally friendly and highly efficient.

Expertise

Biofuels

Biomass is the only renewable carbon source and can therefore be used for production of renewable fuels and chemicals. Biofuels are foreseen as a promising alternative to today's fossil fuels, given their potential to substitute fossil fuels in the existing energy supply infrastructure. In contrast, intermittent renewables such as wind and solar energy are clearly more challenging considering the ways energy is distributed and consumed, particularly in the heavy transport sector.

Research Scientist
917 02 404
Read more about this expertise

Catalysis

Catalysis is involved in 85-90 % of all chemicals production. SINTEF has extensive experience within both homogeneous and heterogeneous catalysis. Our projects are often directed towards understanding the operation of the catalyst and the interplay between the catalyst and its process. We work closely with partners in academia and Norwegian and international industry.

Vice President Research
930 59 166
Read more about this expertise

CFD - Computational Fluid Dynamics

The CFD group at SINTEF Energy Research has more than 30 years of experience in performing numerical modelling of chemically reactive processes in laminar and turbulent flows consisting of single-phase (gaseous fuels combustion) or multi-phase (solid fuels combustion) configurations. Depending on the specific needs and time constraints of our customers, we are able to perform numerical simulations that boast a wide range of accuracies, geometric complexity and computational cost.

Senior Research Scientist
905 52 134
Read more about this expertise

Chemical engineering unit operations and process plants

At SINTEF we work with the development of new chemical processes, separation sequences, process intensification and optimization of unit operations and complete plants. The activities span from the analysis of chemical properties and building of bench scale testing equipment to the design and commissioning of large scale pilot plants. Process modelling and simulation are integral activities of this work.

Read more about this expertise

Combustion Technology

Combustion of fuels such as gases, wood, gasoline and coal are a main source of heat, steam and power, both in industrial processes as well as in our private lives (wood stoves, transport). Combustion is a main source of emissions to the atmosphere, such as NOx, SOx, CO, CO2 and soot and particulates. The combustion group at SINTEF Energy Research has extensive experience within analysis, measurements, optimization and design of combustion processes. We work with users, manufacturers and authorities in order to improve combustion technology and generate new concepts and design. Our work is motivated by the need for more sustainable and efficient use of fuel resources with emissions as low as possible.

Research Scientist
930 14 291
Read more about this expertise

Environmental Biotechnology and Microbiology

Microbial bioprocesses is an important research area at SINTEF Materials and Chemistry. Department of Biotechnology and Nanomedicine has for the last ten years worked with microbial processes related to environmental technology. Examples are conversion of various types of feedstock to biofuel and platform chemicals, expertise within degradation of crude oil and other unwanted and recalcitrant chemicals in nature and bioreactors, and microfouling/biofilm formation on various surfaces from water systems to ship hulls.

Research Scientist
930 85 978
Read more about this expertise

Fuel Characterization and Emissions

Fuel characterization is the primary and a critical step in the evaluation of biomass and waste feedstocks' suitability for a thermal conversion process. Detailed and accurate characterization is especially important for proper utilization of inhomogeneous and low quality biomass and waste feedstocks, to prevent operational related problems, optimize conversion processes and design conversion systems.

Research Scientist
480 64 531
Read more about this expertise

Functional metagenomics and enzyme technology

Functional Metagenomics R&D is a relatively new and rapidly growing research area at SINTEF. Building on a long tradition of Marine Bioprospecting at SINTEF and NTNU, it aims at accessing and exploiting the metabolic potential of the entire microbial biodiversity in natural habitats, including the great majority of microorganisms that cannot be readily cultivated under laboratory conditions.

Senior Research Scientist
932 00 776
Read more about this expertise

Gasification

Biomass gasification coupled with catalytic synthesis or heat and power production has been identified as one of the most promising technologies addressing the 1.5 global temperature target. In our projects we are using unique infrastructure to investigate biomass gasification, fuel synthesis and heat and power production together with both national and international industry and research partners.

Research Manager
930 04 815
Read more about this expertise

High throughput screening

SINTEF has advanced facilities for high throughput screening and is working with lab automation and high throughput screening in a range of projects. The robotic screening facility at SINTEF has state of the art equipment for efficient automation of assays and cultivation in microplate format. Several thousands of samples and cultures are processed per day on a regular basis in the screening facility.

Research Manager
915 44 429
Read more about this expertise

Hydrogen technology and energy storage

Hydrogen will be an important supplement to electricity as an energy carrier in future sustainable energy systems. In addition to being fuel for the transport sector, hydrogen will contribute to increased utilization of renewable energy sources. The need for energy storage will increase dramatically, and hydrogen will be the preferred option for large amounts of energy, and storage over longer periods.

Vice President - Marketing
926 04 534
Read more about this expertise

Hydrothermal liquefaction - HTL

The HTL conversion process occurs in liquid phase, with water used as the reactive medium. During the process, the feedstock decomposes forming solids, a liquid phase, consisting of aqueous and oily streams and a small amount of gas. It is ideal for processing wet biomass since large thermal energy savings can be achieved by avoiding the drying step that is required in conventional thermal processes. Moreover, the energy used to heat up the feedstock in the HTL process can be recovered effectively from product streams. This leads to high energy efficiencies from raw feedstock to the biocrude of the HTL step.

Research Scientist
917 02 404
Read more about this expertise

Mass spectrometry and separation science in Biotechnology

Biological and biotechnological systems are often very complex, containing a large number (hundreds to thousands) of distinct chemical compounds. The use of mass spectrometry (MS) coupled to chromatographic separation (GC, LC, IC, FFF) allows for sensitive and robust quantification (ng/ml and below) of one or several selected compounds. This can be done even when the compound(s) of interest is present at very low concentration and in complex mixtures with closely related molecules. No other analytical technique can provide the same combination of sensitivity, selectivity and specificity for biological systems.

Read more about this expertise

Pyrolysis

Pyrolysis of biomass has grown significantly as a research area the last decade. SINTEF carries out basic and applied research within pyrolysis of biomass for increased process understanding and production of upgraded fuels. We work together with both national and international industry and research partners to develop and improve value chains with pyrolysis oil or biocarbon (charcoal) as the main end product.

Read more about this expertise

Systems and synthetic biology

SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine has been and currently is coordinating and participating in several transdisciplinary national and international projects aiming at systems scale understanding of microbial cells. The aim is to develop them into efficient microbial cell factories by means of metabolic engineering and applying top-down Synthetic Biology and metabolic engineering approaches.

Senior Research Scientist
932 00 776
Read more about this expertise

Torrefaction

Torrefaction is a thermochemical process for pretreatment of biomass. The treatment results in increased heating value and increased energy density (after compaction), lower grinding energy requirement, smaller particles and narrower particle size distribution after grinding and a hydrophobic nature of the solid product. The hydrophobic nature means that the solid product has much better water repelling properties, which makes it very resistant to biodegradation. Dry torrefaction is often referred to as a mild pyrolysis (200-300 ºC) process, which means that the thermal degradation occurs at relatively low temperature and at inert conditions. Wet torrefaction is also possible, where the biomass is heated in pressurized water. The pressure is high enough to keep the water in liquid form, and lower temperatures are needed compared to dry torrefaction. The additional benefits of wet torrefaction are the possibility to use very wet biomass as well as washing out water soluble ash elements.

Research Scientist
402 31 550
Read more about this expertise

Waste-to-Energy (WtE)

The WtE sector is the backbone of the district heat network in Norway. However, WtE faces an array of challenges concerning process stability and energy efficiency, energy utilisation, environmental emissions (and carbon footprint), integration in future flexible energy systems, econimic aspects as well as public perception and regulative framework. SINTEF works on all those aspects both technically and at the value chain level.

Senior Research Scientist
454 34 084
Read more about this expertise

Laboratories

Projects

News