To main content

SINTEF creates future-oriented and innovative solutions for energy efficiency in industry, transport and buildings.

Energy efficiency is a vital tool for reducing energy consumption and thus the need for new power sources. This is also an important area for reducing greenhouse gas emissions when fossil fuels are the energy source. SINTEF conducts research on energy efficiency in industry, transportation and in the construction industry. An important research area is efficiency in Norway's power-intensive industries, and the utilization of waste heat.

Expertise

Aerodynamic analysis of wind turbines and windfarms

Wind turbines are continuously growing in size, and with the increasing focus on offshore installations, accurately analysis of wind loads and intermittency is of great importance.Windfarms typically consists of a large number of such turbines, and the wind interaction between the turbines must be known to be able to optimize the windfarm with respect to electricity production and to low maintenance cost. Such optimization strongly relies on the control systems used to operate the windfarm.

Senior Research Scientist
982 83 898
Read more about this expertise

Building Physics

The activity og SINTEF Building and Infrastructure within building physics comprise moisture and heat transmission, pressure ratio, air and rain resistance in materials and constructions, as well as energy use in buildings. Our core expertise is practical building physics, by transferring new knowledge and research findings into solutions for the building industry.

Research Manager
454 28 981
Read more about this expertise

Building Ventilation

Energy efficiency and increased heating comfort has resulted in modern buildings being more airtight than previous building constructions. Tight buildings have reduced the uncontrolled ventilation, without this being sufficiently compensated through controlled ventilation. Both in existing and future buildings, it is therefore important to install ventilation plants that are satisfactory with regard to air flow rate, reliability, comfort, energy efficiency and usability.

Read more about this expertise

Catalysis

Catalysis is involved in 85-90 % of all chemicals production. SINTEF has extensive experience within both homogeneous and heterogeneous catalysis. Our projects are often directed towards understanding the operation of the catalyst and the interplay between the catalyst and its process. We work closely with partners in academia and Norwegian and international industry.

Vice President Research
930 59 166
Read more about this expertise

CO2 as working fluid for refrigeration, air conditioning, heat pump systems and power cycles

CO2 has gone through a renaissance as refrigerant due to the need to replace the chemical refrigerants with highly negative environmental impact. The main applications where CO2 systems has been commercialized so far are heat pump water heaters (heat pumps for heating of sanitary water), refrigeration systems for supermarkets and within small size commercial refrigeration. SINTEF-NTNU initiated this development in the end of the 1980s. More than 4 million systems are installed to date, corresponding to a turnover of more than 200 billion NOK.

Chief Scientist
926 06 519
Read more about this expertise

Combustion processes for CO2 capure technolgy

We have accumulated more than 15 years experience in new combustion processes based on the use of unconventional fuels (rich in hydrogen) and new oxidizers like oxyfuel mixtures which are common in power and industrial technologies with CO2 Capture and Sequestration (CCS). We also support the development of new CCS concepts and bring them to pilot testing as we do for the promising Chemical Looping Combustion (CLC) technology.

Senior Research Scientist
476 70 869
Read more about this expertise

Decision support in energy and environmental management

The management of water and energy resources is practised by public authorities at municipal, regional and national levels. In special cases, clarification may be required in addition to what is usually needed in more normal management processes. There may be a need for the assistance of experts with special qualifications with regard to a certain method or issue, or with experience from the water system in question.

Read more about this expertise

Drying of food

Drying of food (thermal processing of meat, fish, vegetables and seaweed / kelp) is the most important method of preservation in the world. Drying gives a stable product with a longer shelf life and a product that is easy to distribute. However, drying is energy-intensive, and the quality of the final product depends on the process. Researchers at Process Technology at SINTEF Fisheries and Aquaculture possesses expertise in both chemistry and technology in order best to solve interdisciplinary challenges within drying of foodstuffs. For an energy efficient and environmentally friendly drying process will reuse and utilization of waste heat using heat pumps be highly relevant. Partial drying can be combined with salting for the production of cured meat. During production of cured meat, lamb ribs, cheese and dried fish will optimal management and control of temperature and humidity in the greenhouse stock be important for quality and yield.

Research Scientist
934 11 312
Read more about this expertise

EPD - Environmental Product Declaration

An EPD (Environmental Product Declaration) is a short document that sums up the environmental strain of a product. EPDs are based on life cycle assessments of environmental data from the withdrawal of raw materials, production, application phase and disposal. EPDs are becoming increasingly important for building materials in the Norwegian market.

Read more about this expertise

Ferroalloys

Production of Ferroalloys (i.e. Ferrosilicon/Silicon- and Ferromanganese) is a strong and significant land-based industry in Norway. The results from the cooperation between the industry and academia (SINTEF/NTNU) in Norway are basic knowledge regarding thermodynamics- and kinetic-data as well as reaction mechanisms within core processes and environmental issues.

Senior Business Developer
930 59 428
Read more about this expertise

Gasification

Biomass gasification coupled with catalytic synthesis or heat and power production has been identified as one of the most promising technologies addressing the 1.5 global temperature target. In our projects we are using unique infrastructure to investigate biomass gasification, fuel synthesis and heat and power production together with both national and international industry and research partners.

Research Manager
930 04 815
Read more about this expertise

Geothermal energy systems

Geothermal energy systems cover systems for both shallow and deep geothermal wells. Shallow geothermal boreholes, 50 - 200 m, are used as heat source or sink for heat pumping systems. Deep geothermal wells, typically 1-10 km, can retrieve heat with higher temperature. Heat with high temperature can be utilised directly, e.g. for district heating, or as a heat as source for running a heat-to-power cycle.

Research Scientist
915 74 380
Read more about this expertise

Heat Exchange

We have extensive experience in developing detailed heat exchanger models for various industrial purposes. The models have a level of detail that is suitable for linking and use with various process simulation tools to study how given designs will behave and affect reliability and energy consumption under various conditions. We work with both users and manufacturers of heat exchangers and may also help in developing new concepts and use of new materials.

Research Scientist
930 07 154
Read more about this expertise

Heat Pump Technology

SINTEF has extensive and versatile competence in development of heat pump technology. We have more than 60 years' experience within research and development of heat pump technology. Through close cooperation with NTNU, engineer and researcher education is integrated in our larger, long term projects to facilitate an efficient knowledge transfer to industry and commerce.

Read more about this expertise

Heating Installations in Buildings

Installations for waterborne heating has been common in both commercial buildings and residences for many years. Such installations provide flexibility in the choice of energy source. Because of constantly stricter regulations regarding energy efficiency, modern buildings require less and less energy supply in the form of heat. One of the challenges in the future is effective operation of heating installations with low temperatures and small quantities of water.

Read more about this expertise

Hydrogen technology and energy storage

Hydrogen will be an important supplement to electricity as an energy carrier in future sustainable energy systems. In addition to being fuel for the transport sector, hydrogen will contribute to increased utilization of renewable energy sources. The need for energy storage will increase dramatically, and hydrogen will be the preferred option for large amounts of energy, and storage over longer periods.

Vice President - Marketing
926 04 534
Read more about this expertise

Improving energy efficiency in commercial buildings

SINTEF Energy Research is a leader in the field of improving energy efficiency in shops and other energy-intensive buildings by means of its participation in projects such as 'CREATIV', 'INTERACT' and 'SuperSmart-Rack', among others. Furthermore, SINTEF Energy Research is preparing new and integrated energy systems for commercial building complexes with the aim of reducing both energy consumption and operational and investment costs.

Read more about this expertise

Microgrids

A self-sustaining and secure energy system is one of the main pillars of future society. The energy system (generation, transmission, demand) will become more decentralised with production taking place closer to customers and involving technologies such as solar panels, fuel cells, micro-turbines, storage and combined heat and power systems.

Research Scientist
930 06 526
Read more about this expertise

Oil, Gas, Water Separation

We have extensive experience with developing and executing projects related to oil/gas/water separation relevant for electrocoalescence separation, the liquefaction processes of natural gas, and developing potential studies related to subsea technology. Our services assist the industry in providing detailed experiments and models in order to optimize the construction and operation of equipment with respect to efficiency and costs. Our partners include research institutions and industry, both in Norway and abroad.

Research Scientist
930 02 419
Read more about this expertise

Planning and Building Legislation

The purpose of the planning and building legislation is to promote sustainable development in favor of individuals, the society and future generations. Together with the associated regulations and guidance, the Planning and Building Act is one of the most important framing factors for the Architecture, Engineering and Construction industry (AEC). The provisions of the legislation are implemented through governmental, regional and municipal planning and building administration, and put into practice by the professional actors in the building process.

Senior Scientist
971 83 297
Read more about this expertise

Power Electronics

The conversion of electric power by means of power electronics (converters) is playing an increasingly important role in various parts of the power system. Examples include the integration of renewable power plants, high-voltage direct current (HVDC) transmission and electrification of the oil and gas sector.

Senior Research Scientist
930 03 738
Read more about this expertise

Pyrolysis

Pyrolysis of biomass has grown significantly as a research area the last decade. SINTEF carries out basic and applied research within pyrolysis of biomass for increased process understanding and production of upgraded fuels. We work together with both national and international industry and research partners to develop and improve value chains with pyrolysis oil or biocarbon (charcoal) as the main end product.

Read more about this expertise

Refrigeration systems for food processing

Because of world population growth, it is estimated that we must produce 70 % more food on the planet by 2050. In addition, it is necessary that we reduce greenhouse gas emissions dramatically. In this picture, it is important to preserve and utilize all the food being produced. One of the key elements is to gain control of the temperature immediately after harvest and capture, through processing and all the way to the end user. SINTEF Fisheries and Aquaculture is analysing, simulating, measuring and improving refrigeration systems to increase the benefit, increase product quality, reduce the negative impact on the climate, and to provide our customers with better profitability.

Read more about this expertise

Torrefaction

Torrefaction is a thermochemical process for pretreatment of biomass. The treatment results in increased heating value and increased energy density (after compaction), lower grinding energy requirement, smaller particles and narrower particle size distribution after grinding and a hydrophobic nature of the solid product. The hydrophobic nature means that the solid product has much better water repelling properties, which makes it very resistant to biodegradation. Dry torrefaction is often referred to as a mild pyrolysis (200-300 ºC) process, which means that the thermal degradation occurs at relatively low temperature and at inert conditions. Wet torrefaction is also possible, where the biomass is heated in pressurized water. The pressure is high enough to keep the water in liquid form, and lower temperatures are needed compared to dry torrefaction. The additional benefits of wet torrefaction are the possibility to use very wet biomass as well as washing out water soluble ash elements.

Research Scientist
402 31 550
Read more about this expertise

Waste-to-Energy (WtE)

The WtE sector is the backbone of the district heat network in Norway. However, WtE faces an array of challenges concerning process stability and energy efficiency, energy utilisation, environmental emissions (and carbon footprint), integration in future flexible energy systems, econimic aspects as well as public perception and regulative framework. SINTEF works on all those aspects both technically and at the value chain level.

Senior Research Scientist
454 34 084
Read more about this expertise

Laboratories

Projects

News