To main content

SINTEF is a renowned global research player in CO2 sequestration

The purpose of CO2 capture and storage (CCS) is to minimize CO2 emissions from fossil fuels, which are still needed by our energy system. SINTEF conducts research on the whole value chain for CO2 capture, transport and storage.

Executive Vice President Sustainability - SINTEF



Catalysis is involved in 85-90 % of all chemicals production. SINTEF has extensive experience within both homogeneous and heterogeneous catalysis. Our projects are often directed towards understanding the operation of the catalyst and the interplay between the catalyst and its process. We work closely with partners in academia and Norwegian and international industry.

Vice President Research
930 59 166
Read more about this expertise

CCS Value Chain

CCS chains are case and scenario sensitive, and each case often requires individual design for reaching the optimal solution. The main objective is to develop a consistent and transparent methodology and simulation tool for integrated techno-economic and environmental CCS chain assessment. The ambition is to enable selection of the most promising alternatives for CO2 chains and reduce uncertainty by improving knowledge and by developing adequate solutions for managing risk in CCS

Read more about this expertise

CFD - Computational Fluid Dynamics

The CFD group at SINTEF Energy Research has more than 30 years of experience in performing numerical modelling of chemically reactive processes in laminar and turbulent flows consisting of single-phase (gaseous fuels combustion) or multi-phase (solid fuels combustion) configurations. Depending on the specific needs and time constraints of our customers, we are able to perform numerical simulations that boast a wide range of accuracies, geometric complexity and computational cost.

Senior Research Scientist
905 52 134
Read more about this expertise

Chemical engineering unit operations and process plants

At SINTEF we work with the development of new chemical processes, separation sequences, process intensification and optimization of unit operations and complete plants. The activities span from the analysis of chemical properties and building of bench scale testing equipment to the design and commissioning of large scale pilot plants. Process modelling and simulation are integral activities of this work.

Read more about this expertise

CO2 - Storage

Deep underground storage is the only current means of disposing of large amounts of CO2, safely and permanently, thus reducing global-warming. SINTEF was among the first to propose dedicated underground storage of CO2 and continues to study storage capacity, long-term behaviour of CO2 underground, monitoring techniques and safety, as well as its use for Enhanced Oil Recovery.

Senior Scientist
986 63 579
Read more about this expertise

CO2 as working fluid for refrigeration, air conditioning, heat pump systems and power cycles

CO2 has gone through a renaissance as refrigerant due to the need to replace the chemical refrigerants with highly negative environmental impact. The main applications where CO2 systems has been commercialized so far are heat pump water heaters (heat pumps for heating of sanitary water), refrigeration systems for supermarkets and within small size commercial refrigeration. SINTEF-NTNU initiated this development in the end of the 1980s. More than 4 million systems are installed to date, corresponding to a turnover of more than 200 billion NOK.

Chief Scientist
926 06 519
Read more about this expertise

CO2 injection

CO2 capture and storage is one of the most important contributions to reducing the world’s CO2 emissions. CO2 can be stored in geological formations far below ground or the sea floor. We investigate how CO2 can be pumped through wells and into these formations in a secure, reliable and efficient way.

Research Manager
988 37 513
Read more about this expertise

CO2-capture: Process modelling and simulation

Modelling is important for understand the mechanisms associated with the separation of CO2 from large point sources such as fossil fuel power plants, steel works and similar. Modelling tools can be used for plant design process optimization and system improvement. SINTEF has developed a simulation software package, CO2SIM, for simulation of absorption based CO2 capture, tailored for this purpose.

Senior Research Scientist
982 83 947
Read more about this expertise

Combustion processes for CO2 capure technolgy

We have accumulated more than 15 years experience in new combustion processes based on the use of unconventional fuels (rich in hydrogen) and new oxidizers like oxyfuel mixtures which are common in power and industrial technologies with CO2 Capture and Sequestration (CCS). We also support the development of new CCS concepts and bring them to pilot testing as we do for the promising Chemical Looping Combustion (CLC) technology.

Senior Research Scientist
476 70 869
Read more about this expertise

Combustion Technology

Combustion of fuels such as gases, wood, gasoline and coal are a main source of heat, steam and power, both in industrial processes as well as in our private lives (wood stoves, transport). Combustion is a main source of emissions to the atmosphere, such as NOx, SOx, CO, CO2 and soot and particulates. The combustion group at SINTEF Energy Research has extensive experience within analysis, measurements, optimization and design of combustion processes. We work with users, manufacturers and authorities in order to improve combustion technology and generate new concepts and design. Our work is motivated by the need for more sustainable and efficient use of fuel resources with emissions as low as possible.

Research Scientist
930 14 291
Read more about this expertise

Non wetting surfaces

Condensation of CO2 in heat exchangers and separators occurs in processes for liquefaction of a CO2-rich gas phase, for example to increase purity of the gas, to meet ship transportation specification. Through multiscale modelling and experimental activity, SINTEF works with combining nanotechnology with CCS process technology to increase efficiency of CO2 condensation.

Read more about this expertise

Reservoir characterization and monitoring

Successful characterization and monitoring of the subsurface depends on advanced data acquisition and processing, and geophysical methods. The ultimate goal of these techniques is to image the properties of the reservoir and provide essential information for oil and gas applications ranging from exploration and enhanced oil recovery to CO2 storage. Being able to estimate the associated uncertainties is crucial for the correct interpretation of the resultant images and reliable economic and environmental assessments.

Read more about this expertise

Value chains

During the coming decades, the introduction of large-scale carbon management processes could make a much needed contribution towards the reduction of anthropological global warming. We are currently analysing the entire carbon value chain – from capture, via transport to storage – and are looking into what we need to make the necessary infrastructure a reality. The combined process of carbon capture, transport and storage is currently regarded as one of the most important measures we can take to reduce anthropological CO2 emissions. A great deal of basic research has been carried out to look into certain essential elements required to achieve carbon management in practice. These include the development and enhancement of capture technologies and the investigation of potential CO2 storage options. However, there are significantly fewer studies examining the carbon value chain as a holistic system.

Read more about this expertise