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Abstract
A priority based rule for use during the process of scheduling trains oper-
ating on a single track railway line was proposed by the Norwegian railway
operator and owner, Jernbaneverket. The purpose of this study is to inves-
tigate the effect of the suggested scheduling rule on the scheduled waiting
times suffered by trains operating on a segment of the railway line.

It is shown that the scheduling rule, under certain limiting assumptions,
can be studied in the setting of queuing theory and that it has properties
in common with a theoretical priority discipline combining two well docu-
mented priority rules. The main part of this study is the development and
analysis of a threshold based, combined preemptive/non-preemptive priority
discipline. Under the combined discipline, preemptions are allowed during
the early stage of processing only. Theoretical expressions for flow-times
of jobs passing through the queuing system are reached through detailed
studies of the non-preemptive and the preemptive priority discipline.

The relationship between the suggested priority based scheduling rule
and the theoretical, combined priority discipline is finally illustrated by sim-
ulations. When adjusted for actual time spent by trains on traversing the
line segment, the steady state solution for flow-times obtained from queuing
theory yields an accurate expression for the trains’ average scheduled wait-
ing times. The scheduling problem can in fact be modeled accurately by an
M/G/1 queue under the combined priority discipline.
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1 Introduction and scope

For a railway network the maximum capacity is an upper limit on the number
of trains that can operate on a given part of the railway network in a given
period of time. Several factors contribute to reduce the maximum capacity.
In practice the capacity is dependent on the types of trains operating on the
lines – the rolling stock. The trains’ speed, acceleration, stop length and
stopping pattern put restraints on the effective capacity. In addition there
must be some time buffer between trains so that unexpected delays do not
transfer to the other trains.

Since all these limitations must be incorporated in the final schedule
it follows that scheduling is a very important part of managing a railway
network. It makes the train traffic predictable, produces data for timetables
essential for passengers and it is of great importance for traffic control and
safe operation in the railway network.

This study is concerned with the basics of the scheduling procedure. The
train operators request to operate their train on a given train path; a railway
line allocated to a train in a given period of time. Often such requests for
paths come in conflict with each other. Two train operators may prefer to
use the same part of the infrastructure at the same time.

It is crucial that the infrastructure owner avoids these conflicts when
assigning train paths to the train operators. The result is less favorable train
paths being assigned to those trains and operators that have low priority on
the line in question. Consequently, the final authorized times for operation
may differ from the originally requested times. This difference between the
preferred time and the final, scheduled time for operation is called scheduled
waiting time. Scheduled waiting time is, as the name suggests, incorporated
in the final schedule.

It is important not to confuse scheduled waiting time with unscheduled
waiting time. Unlike scheduled waiting time, the latter is often due to tech-
nical errors or human failure and affects passengers and goods transporters
in form of unpredicted delays and changes in the planned schedule.

The coordination of train paths in order to optimize the usage of the
existing infrastructure is the underlying problem of this work. The goal of
the Norwegian infrastructure owner, Jernbaneverket, is to offer the train
operators best possible terms for their operations. The scheduled waiting
time should be minimized under given criteria.

As of today, passenger traffic has higher priority than freight traffic in
the Norwegian railway network. This situation may very well change in the
future. A large amount of goods is transported by road since this actually
provides a more flexible and often faster alternative to freight trains. Giving
freight trains higher priority is a way of making the railway more attractive
to the goods transporters and may create a possibility for the infrastructure
owner to price the train paths higher and thus earn more money.
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A new decision rule for use under the scheduling process is suggested
by Jernbaneverket. It sets new criteria for how trains of various priority
should be treated when conflicts in requested operation times arise. This
work explore how this new priority rule affects the scheduled waiting times.

The Norwegian railway network mainly consists of single track railway
lines. Compared to double track lines, this causes extra scheduled waiting
time in situations where different train operators want to travel the same
line in opposing directions at more or less the same time. As double track
railway lines are common in most of Europe, the theoretical treatment of
single track lines is somewhat limited.

This study is limited to scheduling in a single block section. A block
section is defined to be the line segment located between two main signals.
For safety reasons only one train can operate in such a block section at a
time. More details regarding railway infrastructure is given by Hansen and
Pachl (2008), Handstanger (2009) and Skartsæterhagen (1993).

It is necessary to consider the total elapsed time a section of track is
allocated exclusively to a train movement and therefore blocked for other
trains. This is blocking time, by definition. It starts when a train is given
authority to move into the block section and lasts until the train completely
has left the section. Blocking time consists of several independent stochastic
parts. However, the main part of it is simply the time the actual train needs
to traverse the block section in question. Here it is assumed that the blocking
time is the same for all trains of a given type and solely dependent on their
speed. The fact that part of the blocking time is random is neglected.

∗∗∗

The scheduling rule proposed by Jernbaneverket is based on trains being
classified into different priority classes. Each class has a predefined level
of priority which can depend on factors such as train type, importance of
operation or traveling direction.

The train operators request to enter a block section at a given time. For
a train from a class of low priority to be allowed to operate in the block
section at the requested time, there must be enough time for it to traverse a
predefined fraction ϕ of that block section before a train of higher priority is
requested to operate. The threshold value ϕ defines the effect of the priority
rule. If the time criterion is not fulfilled, the train of low priority must wait.
The train of high priority is then given authority to operate in the block
section at the requested time.

If the time criterion is fulfilled, it is the train of high priority that must
wait while the train of low priority completes its operation. There might be
several high priority requests placed for the time interval the line is allocated
to the train of lower priority. Once the low priority train is scheduled to exit
the block section, the train of highest priority, scheduled to wait, is granted
authority to enter the section. In case of more than one train from the same
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priority class being scheduled to wait, the train with the earliest request
is authorized to operate first. That is, a first-come-first-served principle is
practiced within each priority class.

The main question to address is what impact this scheduling rule will
have on the scheduled waiting times. Under a set of assumptions, accounted
for in Section 8, the problem can be studied in the setting of queuing theory.

In a pre-project (Fatnes, 2009) a simplified model with only two priority
classes of trains was studied. From simulations it was shown that average
scheduled waiting time suffered due to the above scheduling rule lies between
the mean waiting time in two well documented priority systems (Figure 1). A
threshold value ϕ = 1 was seen to yield a strictly preemptive queuing system,
while ϕ = 0 resulted in a strictly non-preemptive one. In the situation
with two priority classes it was shown that the average scheduled waiting
times were somewhere between the mean waiting times in a non-preemptive
priority queue and the mean waiting times in a preemptive priority queue.
Low threshold values were seen to give a system with high overall traffic
capacity. High ϕ-values were seen to have a positive effect on the scheduled
waiting times for trains of high priority, but reducing the effective capacity
of the system.

In Figure 1, class 1 trains have priority over class 2 trains. λ1 and λ2
are the average number of operations requested per minute for each of the
two priority classes. P1 and P2 denotes the corresponding blocking times.
Further details are not important at this point.

The purpose of this study is to investigate the effect of the suggested, pri-
ority based, scheduling rule on average scheduled waiting times closer. The
scheduling problem is generalized to an arbitrary number of priority classes.
Queuing theory is then applied and the properties of the non-preemptive and
the preemptive priority disciplines are analyzed. It will be shown that exact
expressions for average scheduled waiting times in the scheduling problem
can be obtained by considering a combination of the two priority disciplines.

∗∗∗

The scheduling problem is studied in the setting of queuing theory and
the main part of this work evolves around various forms of priority queues.
Before priority queues are introduced some of the basic concepts in the
field of queuing theory are considered. Section 2 contains a brief discussion
of fundamental ideas together with a short introduction to the notation
used throughout the study. The queuing system itself is defined and the
interaction between arriving jobs and a processing unit is explained.

The next two sections deal with busy periods and delay cycles, the lat-
ter being a generalization of the first. A simple queuing system with only
one type of jobs is considered. A busy period describes a time interval in
which the queuing systems’ processing unit is busy processing jobs. The
results obtained for lengths of busy periods and delay cycles in Section 3



4 1 INTRODUCTION AND SCOPE

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5

Fraction of track, ϕ

Av
er

ag
e 

w
ai

tin
g 

tim
e

Class 1: λ1 = 1 90, P1 = 10
Class 2: λ2 = 1 45, P2 = 10
Non−preemptive
Preemptive

Figure 1: Results from a previous study of a scheduling scenario with only
two priority classes.

and Section 4, respectively, are fundamental building blocks for the further
exploration of priority queuing systems.

In Section 5 a priority system is introduced. The arriving jobs are divided
into different priority classes and the basic, non-preemptive priority system
is considered. It is characterized by waiting jobs belonging to the class
of highest priority being processed first. By studying various delay cycles
the expected time a job from a given priority class spends in the system
(flow-time) is found.

In the next section, Section 6, a more advanced priority discipline is
considered. Under the preemptive priority discipline studied here, jobs of
high priority are allowed to interrupt the processing of less important jobs.
The computation of flow-times becomes more complex in this case.

In Section 7 the core result of this study is obtained: Equation (43)
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states the expected flow-time of a job in a queuing system under a com-
bined preemptive/non-preemptive priority discipline. The priority system
is characterized by preemptions of low prioritized jobs being allowed only
during the early stage of the processing. Once a certain proportion ϕ of the
total processing time has been completed, the remaining processing time is
protected from preemptions.

When focus is shifted back to the scheduling problem in Section 8 it is
argued that average scheduled waiting times for trains can be found from
the expected flow-times in the combined preemptive/non-preemptive pri-
ority system when adjusted down by the actual trains’ blocking time. A
scheduling scenario is simulated, confirming the theoretical result obtained
from queuing theory. The source code used for the simulations is presented
in Appendix C.

Appendix A and Appendix B contain brief, but important, introduc-
tions to theory and concepts crucial to the rest of the study. Results from
both transform theory (Appendix A) and renewal theory (Appendix B) are
referred to throughout the text, but since these topics are not directly con-
nected to the queuing theory they are kept separated from the main part.

2 Preliminary queuing theory

Before one can study the details of specific queuing system some general
queuing theory and basic queuing models must be considered. This section
deals shortly with the basic theory and concepts.

Ross (2007) discusses probability models and properties of stochastic
processes, including the very important Poisson process. Basic queuing the-
ory is very well presented by Kleinrock (1975). The notation in this study
is chosen to fit the more advanced work of Conway et al. (1967) and Drekic
and Stanford (2000) on priority queues.

2.1 The foundation of queuing theory

A basic queuing model assumes that jobs arrive at the queuing system by
an arrival process. A service unit is responsible for processing the jobs. In
general it is possible to have a system with several service units, but the
concern of this text is the single server system. The entire queuing system
considered consists of a queue of waiting jobs and a machine that processes
one job at a time. Once a job is processed completely it departs from the
system and is no longer of any concern, neither to the machine nor the other
jobs waiting in queue for processing.

The number of jobs in the system is the number of jobs waiting in queue
plus the job currently being processed. It is common in the literature to
denote this quantity by L and that convention is followed here as well.



6 2 PRELIMINARY QUEUING THEORY

In order to define the system, rules for how jobs in the queue are se-
lected for processing – the selection discipline – and the distribution of the
processing times have to be specified. The selection discipline can be a sim-
ple first-come-first-served (FCFS) discipline where the job first in line gets
served first, or it can be specified by sophisticated rules depending on job
classes and state of the system. In many situations a need for some sort of
priority for important jobs arises.

The main interest of this text is the so-called M/G/1 queuing system
under different priority selection disciplines.

In the queuing literature it is common to describe the queuing system
by the Kendall notation A/B/n/m. A denotes the type of arrival process,
B denotes the type of processing process, n is the number of service units,
or machines, processing jobs and m is the size of the waiting space. When
there is no limit for the queue length, m = ∞ is often omitted from the
notation. So also in the following.

In the M/G/1 queuing system the arrival process is Markovian, the pro-
cessing is according to some arbitrary process and there is only one machine
processing jobs. This really means that arrivals of jobs at the system are
according to a Poisson process, say with an arrival rate λ, and that the
processing time distribution is some general probability distribution.

Assume job n (n = 1, 2, . . . ) arrives at the system at time τn where

0 < τ1 < τ2 < · · · (n = 1, 2 . . . ).

The difference between succeeding arrival times, called inter-arrival times,
is defined as

tn = τn − τn−1 for n = 1, 2, . . .

where τ0 = 0 by definition.
The inter-arrival times can often be assumed to be independent realisa-

tions of a random variable TA with cumulative probability distribution given
by

Pr (TA ≤ t) = A(t).

Assume that the number of arrivals N , in a fixed time interval of length
t, can be modeled by a Poisson process1

Pr (N = n) = (λt)n e−λt

n!
,

where the arrival rate λ is the expected number of arrivals per unit time. If
the number of arrivals follows the above Poisson process with an average of
λt arrivals in the time interval [0, t], the inter-arrival times tn, n = 1, 2, . . . ,

1N denotes different quantities throughout the text. Its meaning should be clear from
the context.
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is independently exponentially distributed with mean 1/λ according to Ross
(2007, page 307–308)

A(t) = 1− e−λt.

The exponential distribution possesses the Markovian property, it is
memoryless. Mathematically that is expressed as

Pr (TA > t+ s | TA > s) = Pr (TA > s) .

In words this statement says that the probability of an inter-arrival time
lasting for at least t + s time units, given that it has already been s time
units since the last arrival, equals the initial probability for an inter-arrival
time to last for at least t time units. Because of this property the Poisson
arrival process is referred to as a Markovian process, and hence the M in
the Kendall notation M/G/1.

There are two more properties of the exponential distribution that are
of great importance in queuing theory. Assume that T1, . . . , TK are inde-
pendent exponentially distributed random variables with respective means
1/λ1, . . . , 1/λK . From

Pr (min{T1, . . . , TK} > t) =
K∏
k=1

Pr (Tk > t) = e−t
∑K

k=1 λk

it is clear that min{T1, . . . , TK} is exponentially distributed with parameter
λ1 + · · ·+ λK . Furthermore, it can be shown that

Pr (Tk = min{T1, . . . , TK}) = λk
λ1 + · · ·+ λK

(Ross, 2007, page 294). In a system with arrivals occuring according to K
independent Poisson arrival processes with arrival rates λ1, . . . , λK , respec-
tively, the above expression state the probability for the next arrival to be
from the kth process having arrival rate λk. Finally, also explained by Ross
(2007, page 70), a combination of independent Poisson processes is a new
Poisson process with rate given as the sum of the rates of the combined
processes. These properties become very important in the discussion of pri-
ority systems, since the arriving jobs are divided into priority classes with
possibly different arrival rates.

The processing time of the nth arriving job is denoted Pn. These process-
ing times are assumed to be independent realisations of a random variable
P , distributed according to a general probability distribution G(p), and thus
the G in the Kendall notation M/G/1 explains itself.

To study the M/G/1 queuing system it is convenient to define some
additional terms and quantities. First, let U(t) be a function describing the
amount of unfinished work, or the remaining time necessary to process all
customers currently present in the system, at time t.
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Second, it is necessary to distinguish between a busy and an idle system.
While the machine is processing a job the system is said to be busy. When
there is no job present for the machine to process the system is said to be
idle. In the case of a standard M/G/1 queuing system the system is busy
as long as there is one or more jobs present. The duration of such a busy
period will be denoted by T .

It has been shown that the proportion of time the system is busy in
the long run, is the average job arrival rate times the average time a job
keeps the machine busy (Kleinrock, 1975, page 18). This quantity is called
the system utilization factor and denoted by ρ. Under both the FCFS dis-
cipline and the non-preemptive priority discipline, the latter considered in
Section 5, the selection discipline does not affect the total processing time of
any job. Neither is the unfinished work function U(t) effected by these selec-
tion disciplines. Systems with this property are said to be work-conserving
(Wolff, 1970, page 327). It follows that the average time a job keeps the ma-
chine busy is the average processing time E [P ]. Thus the utilization factor
is given as

ρ = λE [P ]
in a work conserving system. Note also that the proportion of time the
system is idle in the long run now is given as 1−ρ. In general the utilization
factor is the ratio of the rate at which work enters the system to the rate at
which the system can perform this work.

In all that follows ρ < 1. Queuing systems with this property is said
to be non-saturated, and the restriction on ρ is necessary to avoid a queue
with length growing to infinity with time. In the case of a saturated system
the jobs arrive faster than the machine can process them and the theory
developed in the next few sections will break down.

The main focus in the theoretical part of this text is the expected flow-
time for a job passing through a queuing system. Flow-time F is defined by
Conway et al. (1967, page 11) as the total amount of time a job spends in
the system.

Also the waiting time W is of interest. For a given job the waiting time
is defined as time spent in the queue from the time of arrival to the time the
processing starts. Hence, the relationship between flow-time and waiting
time is

F = W + P .
As a final remark to the general queuing theory, once the average time a

job spends in the system is known, Little’s formula (Little, 1961, page 383)
can be used to obtain the average number of jobs in the system. Little
proved under very general assumptions that the average number of jobs in
a queuing system is the average arrival rate of jobs to the system times the
average time a job spends in the system. That is

E [L] = λE [F ] ,
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where E [L] is the average number of jobs present in the system in the long
run.

2.2 Notation

Throughout the text various random variables are encountered. A contin-
uous random variable X is distributed according to the probability distri-
bution FX(x) = Pr (X ≤ x). Its probability density function is fX(x) =
dFX(x)/dx.

Laplace transforms associated with probability density functions are used
to obtain moments of the corresponding random variables through the fol-
lowing relationship: For a continuous random variable X, distributed ac-
cording to the probability density function fX(x), the Laplace transform is
given by

φX(z) =
∫ ∞
−∞

e−zxfX(x) dx = E[e−zX ],

where z is a complex variable.
The Laplace transform is simply the moment generating function evalu-

ated at −z. It is convenient to consider the Laplace transform rather than
the moment generating function of X itself, as the Laplace transform always
is between 0 and 1 when the random variable is non-negative and z ≥ 0
(Ross, 2007, page 72). In queuing theory the random variables considered
describe time intervals and are in fact non-negative.

Now, by the close relationship between Laplace transforms and moment
generating functions, by evaluating the ith derivative of φX(z) as z goes to
0, the ith moment of X can be found as

E
[
Xi
]

= lim
z→0

(−1)id
iφX(z)
dzi

.

For more details on the and a brief discussion of the properties of the Laplace
transform, see Appendix A. To get a somewhat more compact notation the
following simplification is introduced:

φ
(i)
X (0) = lim

z→0

diφX(z)
dzi

.

Throughout the text the generic notation presented above will be used
for most of the random variables encountered. An exception is made for
the processing time, P . As mentioned the processing times are distributed
according to the general distribution G(p) = Pr (P ≤ p) and has probability
density function g(p) = dG(p)/dp. In addition the corresponding Laplace
transform is denoted by γ(z).

When the priority rules becomes more sophisticated it will be necessary
to consider different versions of processing time. These differences will be
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denoted by subscripts on the variables and their corresponding distributions,
density functions and Laplace transforms.

Another exception is made for the duration T of a busy period. This
random variable is distributed according to the distribution given byH(y) =
Pr (T ≤ y) and its probability density function and Laplace transform are
denoted h(y) and η(z), respectively.

Further exceptions may occur in places where the readability of the text
is increases significantly by shorter notation.

3 Busy periods
The standardM/G/1 queuing system experiences alternating cycles of busy
and idle periods. By studying the distribution of the duration of such busy
periods, one arrives at a result which in turn can be used to study the
distribution of flow-time.

Theory regarding busy periods is given by Kleinrock (1975, Chapter 5.8),
Conway et al. (1967, Chapter 8-3) and Takagi (1991, Chapter 1.2).

3.1 The length of busy periods

Recall from Section 2 that during an idle period there are no jobs present
in the queuing system. The idle period terminates at the time of an arrival
at the system. In a busy periods there is at least one job in the system
which demands attention and keeps the machine busy. When the system is
emptied of all jobs, a new idle period is initiated (Ross, 2007, page 530).

Recall also that job n arrives at the system at time τn and that tn =
τn − τn−1 is the inter-arrival time between job n − 1 and job n. Let Pn
denote the processing time of job n. Furthermore, U(t) is the amount of
unfinished work in the system – or the remaining time required to process
all customers present in the system – at time t.

Now, denote the duration of the busy periods as T1, T2, . . . and the
duration of the idle periods as I1, I2, . . . . Consider an empty system and
assume that job 1 arrives at time τ1, enters the machine for processing,
immediately initiating a busy period. The unfinished work in the system
was clearly zero prior to the arrival of this job. At time t = τ1 the amount
of unfinished work in the system jumps to P1. U(t) decreases at rate −1
until the arrival of job 2 causes it to make a vertical jump of magnitude P2
at time t = τ2, and so on. The busy period initiated by job 1 lasts until the
system once again is emptied of all work.

Since the arrival process is memoryless the calculation of the idle period
distribution is trivial. An idle period terminates at an arrival. The In’s are
thus independently distributed according to the same distribution as the
inter-arrival times. The distribution of In is simply Pr (I ≤ t) = 1− e−λt for
all n = 1, 2, . . . .
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Figure 2: The development of unfinished work U(t) and sub-busy periods.

It should be noted that the order in which the jobs are processed does
not affect the graph, as long as the selection discipline does not imply any
extra processing time. To obtain the distribution H(t) = Pr (T ≤ t) of the
busy period duration T , one can take advantage of this observation. The
calculation is based on a selection discipline for which the busy period can be
viewed as the processing time of the initiating job plus a series of random
variables which them self are distributed as the length of a busy period
(Conway et al., 1967, page 149).

The busy period is viewed in terms of sub-busy periods, illustrated by
an example in Figure 2 (Kleinrock, 1975, page 209). The idea is to assume
that two different queues of waiting jobs are formed and that the selection
discipline in each queue is last-come, first-served (LCFS). All jobs arriving
during the processing time P1 enter the initial queue. All jobs arriving at
the system after P1 enter the main queue. A job is always selected from
the main queue if possible. If the main queue is empty jobs are selected
from the initial queue. The busy period terminates when both queues are
emptied. Figure 2 shows a situations where two jobs arrives at the system
during the processing time of the initiating job.

A job from the initial queue is selected for processing only if the main
queue is empty. While this job is being processed other jobs may arrive and
these enter the main queue. The jobs in the main queue are then selected for
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processing, starting with the one that arrived last, until the main queue once
again is empty. Now, and this is the crucial observation, the time period
between two successive jobs from the initial queue – a sub-busy period – has
all the characteristics of a busy period.

Furthermore, the sub-busy periods have lengths that are independently
and identically distributed according to the same distribution as the real
busy period. This is discussed both by Kleinrock (1975, page 211) and by
Conway et al. (1967, page 150).

The duration of a busy period T is the sum of N + 1 random variables,
where N is the number of jobs arriving during P1, the processing time of
the job initiating the busy period. Thus

T = P1 +XN+1 + · · ·+X3 +X2,

where Xi is the sub-busy period generated by the ith arriving job, as illus-
trated in Figure 2.

The Laplace transform of the probability density function h(t) of T is

η(z) =
∫ ∞
t=0

e−zt dH(t) = E
[
e−zT

]
.

Conditioning on the the processing time of job 1 and the number of jobs
arriving during this processing time, N , one can write

E
[
e−zT | P1 = p, N = n

]
= E

[
e−z(p+Xn+1+···+X2)

]
= E

[
e−zp

]
E
[
e−zXn+1

]
· · ·E

[
e−zX2

]
= e−zp[η(z)]n.

The second equality follows from the fact that the duration of the sub-busy
periods are independent. The last equality holds since P1 is given and all
sub-busy periods are identically distributed with Laplace transforms η(z).

N is Poisson distributed with mean λp since it represents the number
of arriving jobs in a time interval of length p. Thus the condition on N can
be avoided by application of the law of total probability. From the equation
above

E
[
e−zT | P1 = p

]
=
∞∑
n=0

E
[
e−zT | P1 = p, N = n

]
Pr (N = n)

=
∞∑
n=0

e−zp[η(z)]n (λp)n

n!
e−λp

= e−p[z+λ−λη(z)].

Further, integrating with respect to the processing time distribution G(p)
yields

η(z) =
∫ ∞
p=0

e−p[z+λ−λη(z)] dG(p).
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Finally, the right-hand side of this is recognized as the transform of G(p)
evaluated at z + λ− λη(z) and an important relationship,

η(z) = γ[z + λ− λη(z)], (1)

has been established. This functional equation is usually impossible to solve,
but it can be used to obtain the moments of the busy period duration.

The ith moment of the busy period duration T is

E
[
T i
]

= (−1)iη(i)(0)

and similarly, the ith moment of processing time is

E
[
P i
]

= (−1)iγ(i)(0).

From Equation (1)

E [T ] = − lim
z→0

dγ[z + λ− λη(z)]
dz

= −γ′(0)
[
1− η′(0)

]
= E [P ] (1 + E [T ]) .

Used here is the fact that z + λ− λη(z)→ 0 when z → 0 since

η(0) =
∫ ∞
t=0

dH(t) = 1.

Solving for E [T ] yields

E [T ] = E [P ]
1− λE [P ]

= E [P ]
1− ρ

, (2)

where ρ = λE [P ] is the utilization factor of the system introduced in Sec-
tion 2.

The second moment is in a similar way found to be

E
[
T 2
]

= E
[
P 2]

(1− ρ)3

(Kleinrock, 1975, page 214).

3.2 Flow-time in a first-come-first-served system

In the following the knowledge of the duration of the busy period developed
above is used to calculate the expected flow-time of a job in a FCFS queuing
system. The flow-time of a job is defined as the entire time between arrival
at the system and process completion. Flow-time, denoted by F , consists in
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X3 X4
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Figure 3: The first-come-first-served decomposition of a busy period.

other words of both waiting time and processing time. The corresponding
Laplace transform is denoted φF (z).

Jobs that arrive while the machine is idle will have flow-time equal their
processing time. Thus F = P in this case. The probability for a job arriving
while the machine is busy is given by the utilization factor ρ. It follows that
the probability of a job arriving in an idle period is 1− ρ.

It remains to find the flow-time of a job arriving during a busy period.
As it is one particular job that is of interest, the previously used LCFS
decomposition of the busy period can no longer be used. Denote instead
the processing time of the initial job of a busy period by X0. Let X1 be
the time needed to process all jobs that arrived during the processing of the
initial job. Proceeding in this manner, Xj is the time needed to process
all jobs that arrived in the previous interval of length Xj−1. Denote by Nj

the number of jobs arriving during Xj . Finally, let ψj(z) and Fj(x) denote
the Laplace transform and the probability distribution associated with Xj ,
respectively. An example of this FCFS decomposition of the busy period is
shown in Figure 3 (Kleinrock, 1975, page 220).

It should be noted that Figure 2 and Figure 3 shows the same arrival
pattern, but decomposed differently. This results in different sub-intervals.
The length of the initial sub-interval however is the same in both figures.

By conditioning on Nj−1 and Xj−1 and by using that the processing
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times are independent and identically distributed random variables, one can
write

E
[
e−zXj | Xj−1 = x, Nj−1 = n

]
= E

[
e−z

∑Nj−1
k=1 Pk

]
= E

[
e−zP1

]
· · ·E

[
e−zPn

]
= [γ(z)]n

(Kleinrock, 1975, page 221). The last equality follows from the convolution
property of the Laplace transform given by Equation (48) in Appendix A.
Eliminating the conditions on Nj−1 and Xj−1 yields

ψj(z) = E
[
e−zXj

]
=
∫ ∞
x=0

e−λx
∞∑
n=0

[λxγ(z)]n

n!
dFj−1(x)

=
∫ ∞
x=0

e−x[λ−λγ(z)] dFj−1(x)

= ψj−1[λ− λγ(z)]. (3)

Under the assumption that the system is non-saturated (ρ < 1) there
will always be a finite j for which Xj = 0. A busy system will at some point
become idle again. This can be written as

lim
j→∞

ψj(z) = 1. (4)

Now, idle periods are completely ignored for a while and the focus is
upon the busy periods. The system is defined to be in state j if the jth
interval, Xj , of a busy period is in progress. Given that the system is busy,
the probability of finding it in state j is

Pr (state j | busy) = E [Xj ]
E [T ]

, (5)

where E [T ] is the expected length of a busy period.
A job that arrives during Xj must wait until the current interval is

finished and in addition it must wait for all jobs that arrived before it during
Xj to be processed before it can go on the machine itself. Denote the
remaining time of interval Xj when the job in question arrives as Yj and
let N be the number of jobs that arrived prior to this job during Xj . The
flow-time of this job is then F = Yj +

∑N+1
i=1 Pi.

The first step towards the Laplace transform of the flow-time distribution
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is to condition on Xj , Yj and N :

E
[
e−zF | Xj = x, Yj = y, N = n

]
= E

[
e−z

(
y+
∑n+1
i=1 Pi

)]
= E

[
e−zy

]
E
[
e−zP1

]
· · ·E

[
e−zPn+1

]
= e−zy [γ(z)]n+1 ,

where the last equality follows from the convolution property of the Laplace
transform and the fact that y is fixed.

Removing the condition on N using that the probability of n arrivals in
the time interval Xj − Yj is Poisson distributed with mean λ(x − y) under
the condition that Xj = x and Yj = y, yields

E
[
e−zF | Xj = x, Yj = y

]
= e−zy[γ(z)]n+1

∞∑
n=0

e−λ(x−y) [λ(x− y)]n

n!

= e−zyγ(z)e−λ(x−y)
∞∑
n=0

[λ(x− y)γ(z)]n

n!

= γ(z)e−zye−λ(x−y)e−λ(x−y)γ(z).

Yj is a random interception of the jth interval. From Equation (52) in
Appendix B the joint density of Yj and Xj is

Pr (y < Yj ≤ y + dy, x < Xj ≤ x+ dx) = dFj(x)
E [Xj ]

dy

for 0 ≤ y ≤ x and 0 ≤ x ≤ ∞. This can now be used to eliminate the
condition on Xj and Yj . The notation E

[
e−zF | j

]
is used to denote the

conditional Laplace transform associated with the flow-time of a job that
arrives during the jth interval of a busy period.

E
[
e−zF | j

]
= γ(z)

∫ ∞
x=0

∫ x

y=0
e−x[λ−λγ(z)]e−y[z−λ+λγ(z)] dFj(x)

E [Xj ]
dy

= γ(z)
E [Xj ] [z − λ+ λγ(z)]

×
∫ ∞
x=0

[
1− e−x[z−λ+λγ(z)]

]
e−x[λ−λγ(z)] dFj(x)

= γ(z)
E [Xj ] [z − λ+ λγ(z)]

×
∫ ∞
x=0

[
e−x[λ−λγ(z)] − e−xz

]
dFj(x). (6)

Replacing j by j + 1 in Equation (3) yields

ψj+1(z) =
∫ ∞
x=0

e−x[λ−λγ(z)] dFj(x) = ψj [λ− λγ(z)] .
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The first half of the integral in Equation (6) can be recognized as ψj+1(z)
and the second half as ψj(z). Thus

E
[
e−zF | j

]
= γ(z) [ψj+1(z)− ψj(z)]

E [Xj ] [z − λ+ λγ(z)]
.

By using Equation (5) the condition on state j can be removed and

E
[
e−zF | busy

]
=
∞∑
j=0

E [Xj ]
E [T ]

E
[
e−zF | j

]

= γ(z)
E [T ] [z − λ+ λγ(z)]

∞∑
j=0

[ψj+1(z)− ψj(z)] . (7)

By Equation (4) the sum telescopes into 1 − ψ1(z), which in this case
simply is 1− γ(z) since the first interval of the busy period consists of only
one single processing time. Equation (2) gives the first moment of the busy
period and the Laplace transform associated with flow-time of a job arriving
during a busy period can be written

E
[
e−zF | busy

]
= γ(z)1− γ(z)

sE [P ]
z(1− ρ)

z − λ+ λγ(z)
. (8)

The first part of this expression is simply the Laplace transform associated
with processing time. The middle fraction is recognized from the renewal
theory in Appendix B as the Laplace transform associated with residual life,
in this situation the remaining time of the busy period in progress at time of
arrival. The last term is the Laplace transform associated with the overall
waiting time in a FCFS system (Kleinrock, 1975, page 200).

Since a job arrives at an idle system with probability 1 − ρ and finds
the system busy with probability ρ, the unconditional Laplace transform
associated with flow-time is

φF (z) = E
[
e−zF

]
= (1− ρ)γ(z) + ρE

[
e−zF | busy

]
= (1− ρ)γ(z) + ργ(z) [1− γ(z)](1− ρ)

E [P ] [z − λ+ λγ(z)]

= z(1− ρ)
z − λ+ λγ(z)

γ(z).

The last simplification is simply obtained by using ρ = λE [P ].
The Laplace transform associated with waiting time W is φW (z). Recall

that F = W + P . This implies that φF (z) = φW (z)γ(z) and from φF (z)
above

φW (z) = z(1− ρ)
z − λ+ λγ(z)

is obtained directly.



18 4 DELAY CYCLES

By evaluating the limit of the derivative of φW (z) as z goes to zero
the first moment of waiting time can, by application of l’Hôpital’s rule, be
obtained as

E [W ] = λE
[
P 2]

2(1− ρ)
.

This is known as the Pollaczek-Khinchine formula for expected waiting time
in a FCFS queuing system (Ross, 2007, page 529).

For flow-time the first moment is

E [F ] = E [P ] + E [W ] = E [P ] + λE
[
P 2]

2(1− ρ)
.

4 Delay cycles

A delay cycle is a generalization of the the busy periods discussed in Sec-
tion 3. Analysis of delay cycles provides a powerful method for obtaining
results for queuing systems with selection disciplines based on priority rules.
Different priority rules will be discussed in great details in Section 5, Sec-
tion 6 and Section 7. This section deals with delay cycles as a concept.
Similar derivations of the properties of interest are given by Conway et al.
(1967, Chapter 8-3), Kleinrock (1976, Chapter 3.3) and Takagi (1991, Chap-
ter 1.2).

4.1 Duration of a delay cycle

A delay cycle begins with an initial delay of length T0 that is the performance
of some task other than the processing of an initially arriving job. During
the initial delay no ordinary jobs are being processed by the machine.

The initial delay may be shorter or longer than the processing time of a
ordinary job, causing the delay cycle to be more general than a busy period.
Allowing the initial delay to be the processing time of an initially arriving,
ordinary job reduces the delay cycle to a busy period.

Typically the initial delay is the remaining processing time of some spe-
cial task when an ordinary jobs arrives an otherwise empty system. It follows
that the system is not necessarily idle prior to the initiation of the delay cy-
cle. Several ordinary jobs may have arrived during the initial delay. When
the initial delay ends, each of these jobs will generate its own sub-busy
period. Together these sub-busy periods form the delay busy period Tb.

The delay cycle ends when there are no more ordinary jobs left in the
system. The duration of the entire delay cycle is denoted Tc and the rela-
tionship Tc = T0 + Tb is obvious.

T0, Tb, and Tc are random variables distributed according to H0(t), Hb(t)
and Hc(t), respectively. The Laplace transforms of the corresponding prob-
ability density functions are denoted η0(z), ηb(z) and ηc(z). In the following
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η0(z) will be assumed known. Usually this assumption do not cause any
problems as η0(z) very often, as pointed out by both Conway et al. (1967,
page 151) and Kleinrock (1976, page 112), is in fact known or at least easily
calculated.

Assume that N ordinary jobs arrive at the system during the initial
delay of length T0. By conditioning on T0 and N the Laplace transform
associated with the delay busy period, ηb(z) = E[e−zTb ], can be calculated.
By the convolution property of the Laplace transform, Equation (48) in
Appendix A,

E
[
e−zTb | T0 = t, N = n

]
= [η(z)]n ,

since the jobs arriving during T0 generates n sub-busy periods, which are
independent and distributed exactly as a sub-busy period (Kleinrock, 1976,
page 112). As in Section 3, T denotes the duration of a busy period and
η(z) is its corresponding Laplace transform.

N is Poisson distributed with mean λt under the condition that T0 = t.
Removing the condition on N yields

E
[
e−zTb | T0 = t

]
=
∞∑
n=0

[η(z)]n (λt)n

n!
e−λt = e−t[λ−λη(z)].

The next step is to also avoid the condition on T0. This is done simply by
integrating over H0(t). Thus

E
[
e−zTb

]
=
∫ ∞
t=0

e−t[λ−λη(z)] dH0(t)

and, by observing that the integral is simply the Laplace transform of the
probability density function of T0 evaluated at λ− λη(z), the final result is
obtained as

ηb(z) = η0[λ− λη(z)]. (9)

ηc(z) is obtained in a similar fashion using the fact that Tc = T0 + Tb.
Again by conditioning on T0 and N

E
[
e−zTc | T0 = t, N = n

]
= e−ztE

[
e−zTb | T0 = t, N = n

]
= e−zt[η(z)]n.

Avoiding the conditions on T0 and N exactly as above yields

ηc(z) = E
[
e−zTc

]
=
∫ ∞
t=0

e−zt
∞∑
n=0

[η(z)]n (λt)n

n!
e−λt dH0(t)

= η0[z + λ− λη(z)] (10)

Moments of Tb and Tc can be found by the same procedure as earlier.
That is, derivation and limit evaluation of the Laplace transforms as z goes
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to zero. This procedure yields, for Tb

E [Tb] = ρE [T0]
1− ρ

and
E
[
T 2
b

]
= λE

[
P 2]

(1− ρ)3
E [T0] +

ρ2

(1− ρ)2
E
[
T 2

0

]
(Conway et al., 1967, page 151). In very similar manners the first and second
moment of Tc can be found to be

E [Tc] = E [T0]
1− ρ

(11)

and
E
[
T 2
c

]
= λE

[
P 2]

(1− ρ)3
E [T0] +

E
[
T 2

0
]

(1− ρ)2
. (12)

Takagi (1991, page 28) states the third moment as well, but it is of little
interest here.

4.2 Flow-time in a delay cycle

The next and final step is to generalize the Laplace transform of flow-time
of a job arriving during a busy period, given by Equation (8) in Section 3, to
obtain the Laplace transform associated with the flow-time of a job arriving
during a delay cycle.

All jobs processed in a delay cycle arrive when the machine is busy. The
expected duration of the busy period T is thus replaced with the expected
duration of the delay cycle Tc. Furthermore, the jobs generating the sub-
busy periods arrive during the initial delay T0 and not during a processing
interval P . Hence, the telescoping sum in Equation (7) reduces to 1− η0(z)
in the generalized case.

Since the focus is upon jobs arriving during a delay cycle, the analogue to
E
[
e−zF | busy

]
in Equation (8) is directly the Laplace transform associated

with flow-time in a delay cycle. This is denoted φF |c(z). It is obtained by
the above discussed modification of Equation (7) as

φF |c(z) = (1− ρ)γ(z)[1− η0(z)]
E [T0] [z − λ+ λγ(z)]

(13)

(Conway et al., 1967, page 155), since E [Tc] = E [T0] /(1 − ρ) from Equa-
tion (11).

As a closing remark to this section, waiting time is still flow-time minus
processing time. The Laplace transform associated with waiting time in a
delay cycle is thus

φW |c(z) = (1− ρ)[1− η0(z)]
E [T0] [z − λ+ λγ(z)]

. (14)



21

5 Non-preemptive priority systems

The standardM/G/1 queuing system discussed earlier will now be modified
in such a way that the selection discipline is no longer FCFS, but rather a
non-preemptive priority discipline.

In the first part of this section a general description of the non-preemptive
priority discipline is provided. Some of its properties are then explored in
more detail. Finally flow-times will be studied through an analysis of delay
cycles.

Non-preemptive priority systems are treated by Conway et al. (1967,
Chapter 8-6), Kleinrock (1976, Chapter 3.6) and Takagi (1991, Chapter 3.2).

5.1 Properties of a non-preemptive priority system

The arriving jobs are divided into K different priority classes and each class
is assigned a level of priority. It is a convention in the queuing literature to
assign the highest priority level to the class 1 jobs. That is, jobs from class
k has priority above all class k + 1,. . . ,K jobs.

The selection discipline is such that of the jobs waiting in queue, the one
with highest priority is selected for processing next. Within each priority
class the discipline is still FCFS. If a high priority job arrives while a job
of lower priority is being processed, the later arriving job will have to wait,
despite its higher level of priority. The lower prioritized job is allowed to
complete its processing and thus, preemptions never occur. Therefore this
selection discipline is said to be non-preemptive priority.

In general the different priority classes can have different arrival rates
and processing distributions. Subscript k denotes class k. λk and Pk denotes
the arrival rate and processing time of a class k job, respectively. Pk is
distributed according to Gk(p), and the Laplace transform associated with
the probability density function of Pk is γk(z). The utilization factor for class
k is ρk = λkE [Pk]; the proportion of time the machine is busy processing
class k jobs. The overall utilization factor for the entire system is

ρ =
K∑
j=1

λjE [Pj ] .

In a similar fashion flow-time and waiting time for a given class k will be
denoted Fk and Wk, respectively.

The focus in the following is upon jobs belonging to a particular class k.
If it were not for the other K − 1 classes the system would be a standard
FCFS system with only class k jobs. Jobs from the other priority classes
may be viewed as disturbing elements, disrupting the system seen from a
class k job’s point of view in two ways: First, while a class k job is being
processed arrivals of higher priority jobs may cause the selection of the next
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class k job to be delayed. Second, an idle period may terminate with the
arrival of some job from another class, causing the ensuing busy period to
be a delay cycle rather than a simple busy period for class k.

It is convenient to group the other K − 1 classes into jobs with priority
above the class k jobs (class a) and jobs with priority below the class k jobs
(class b). For class a the total arrival rate is

Λa =
k−1∑
j=1

λj ,

since class a consists of all classes from 1 to k− 1. Similarly class b consists
of all classes from k + 1 to K. Thus the class b arrival rate is given as

Λb =
K∑

j=k+1
λj .

Pa and Pb are the random variables denoting processing time of the jobs
in each group, distributed according to

Ga(p) = 1
Λa

k−1∑
j=1

λjGj(p)

and

Gb(p) = 1
Λb

K∑
j=k+1

λjGj(p),

respectively. The corresponding Laplace transforms are γa(s) and γb(s).
Finally the utilization factors for class a and class b are ρa = ΛaE [Pa] and
ρb = ΛbE [Pb], respectively. This notation is according to Conway et al.
(1967, page 160).

5.2 Blocking time

To deal with the first deviation from a FCFS system with only class k jobs it
is convenient to define blocking time2. While a class k job is being processed
arrivals of higher priority jobs may cause the selection of the next class k job
to be delayed. Blocking time account for this disruption by taking the role
of class k processing time. Denoted Bk, blocking time is the processing time
of a class k job plus the processing time of all higher priority jobs arriving
during this processing time. It is thus really a delay cycle, the initial delay
being a class k processing time and all jobs processed in the delay busy
period are from class a.

2This is not the same as blocking time in the railway theory
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Denoting the Laplace transform associated with the distribution of block-
ing time by φBk(z), from Equation (10) it follows that

φBk(z) = γk[z + Λa − Λaηa(z)], (15)

where ηa(z) = γa[z+Λa−Λaηa(z)] is the Laplace transform associated with
the distribution of a class a busy period (see Equation (1)). From this, the
first moment of the blocking time can be found as

E [Bk] = lim
z→0

(−1)dφBk(z)
dz

= lim
z→0

(−1)γ′k[z + Λa − Λaηa(z)]
d
dz

[z + Λa − Λaηa(z)]

= E [Pk] [1− Λaη′a(0)],

since ηa(0) = 1. Furthermore, η′a(0) = γ′a(0)[1− Λaη′a(0)] and thus

E [Bk] = E [Pk]
[
1− Λaγ′a(0)

1 + Λaγ′a(0)

]
= E [Pk]

1− ρa
, (16)

since Λaγ′a(0) = −ρa. Blocking time is the effective processing time of a
class k job observed by other class k jobs waiting for processing.

It is convenient to define

ρBk = λkE [Bk] = ρk
1− ρa

.

That is, ρBk is the expected number of class k jobs arriving at the system
during a blocking time. This quantity will play the role ρ played in the
standard M/G/1 FCFS system. This since the processing of a class b job
has no effect on the class k jobs beyond that of being a possible initial delay
in a delay cycle. For a class k job waiting, the machine is occupied after the
initial delay only if other k jobs or a jobs are being processed before itself.

5.3 Three types of delay cycles

As mentioned, an idle period may terminate with the arrival of some job
from another class, causing the ensuing busy period to be a delay cycle rather
than a simple busy period for class k. This can be handled by considering
the state of the system at the time of a class k arrival.

Some class k jobs arrive when the machine is idle and experiences no
waiting time at all. All other class k jobs arrive during delay cycles, of
which there are three different types. These are called type a, type k and
type b cycles depending on the priority class of the job initiating them. All
three types of cycles are shown schematically in Figure 4. This figure is
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(a) Type a delay cycle
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(b) Type k delay cycle

time

Delay cycle length

Delay busy periodInitial delay

A class b job enters 
the processing unit

System empty of both 
class a and class k 

jobs

Idle or type b cycle
 Both class k and class a 

jobs being processed 
Idle or type b cycle

Several Pa's Several Bk's

Only class a jobs 
being processed

One Pb

The class b job 
departs 

System empty of 
class a jobs
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Figure 4: The different types of delay cycles in a non-preemptive priority
system.

inspired from figures given by Conway et al. (1967, page 162). Any of these
delay cycles ends when a process completion leaves the system empty of
both class a and class k jobs.

From Equation (13) the Laplace transform associated with flow-time in
the various types of delay cycles can be obtained by suitable modification.
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As mentioned, in all three delay cycles of interest ρ in Equation (13) is
replaced by ρBk . For similar reasons γ(z) is replaced by φBk(z) since it is
no longer only the processing time of a class k job that is of interest, but
in addition the processing time of those higher priority jobs arriving during
the processing time of that class k job.

It is clear that E [Tc] = E [T0] /(1−ρ) in Equation (13) must be replaced
by E [Tcj ] = E [T0j ] /(1− ρBk), where T0j denotes the initial delay in a type
j delay cycle. As a natural extension of this notation η0j(z) denotes the
Laplace transform associated with initial delay in a type j cycle.

These modifications result in a Laplace transform associated with the
flow-time in a type j cycle given as

φFk|j(z) = (1− ρBk)γk(z)[1− η0j(z)]
E [T0j ] [z − λk + λkφBk(z)]

. (17)

In a type a delay cycle the initial delay, denoted T0a, is a busy period
involving class a jobs only. That is, the Laplace transform associated with
T0a is simply η0a(z) = ηa(z). From Equation (2)

E [T0a] = E [Pa]
1− ρa

.

Inserting the above into Equation (17) and observing that (1−ρa)(1−ρBk) =
1− ρa − ρk yields

φFk|a(z) = (1− ρa − ρk)γk(z)[1− ηa(z)]
E [Pa] [z − λk + λkφBk(z)]

.

for a type a cycle.
For a type k cycle the initial delay is a blocking time. It follows that

T0k = Bk and η0k(z) = φBk(z). The first moment of blocking time is given
in Equation (16). Hence

φFk|k(z) = (1− ρa − ρk)γk(z)[1− φBk(z)]
E [Pk] [z − λk + λkφBk(z)]

.

The expression for type b cycles becomes somewhat more complex. The
initial delay is itself a delay cycle where the initial delay is the processing
time of a class b job, Pb. The jobs in the delay busy period are all from class
a, since the class k job of interest is the first in line. Hence, the Laplace
transform associated with initial delay in a type b cycle is

η0b(z) = γb[z + Λa − Λaηa(z)].

From this the first moment of T0b can be found as

E [T0b] = E [Pb]
1− ρa

.
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Finally, the Laplace transformation associated with waiting time in a type
b delay cycle can be obtained as

φFk|b(z) = (1− ρa − ρk)γk(z)(1− γb[z + Λa − Λaηa(z)])
E [Pb] [z − λk + λkφBk(z)]

.

By conditioning on the proportion of time the system is engaged in
the different types of delay cycles, an expression for the overall expected
flow-time in a non-preemptive priority queue can be found. Before that
expression can be obtained, the probabilities of finding the system engaged
in one of the three types of delay cycles or in an idle state, must be calculated.

5.4 Expected flow-time

The system is defined to be in state 0 when the machine is idle. When
the machine is engaged in either an a, k or b cycle, the system is in state
a, k or b, respectively. πj is the steady state probability of state j, or
the proportion of time the system is in state j = {0, a, k, b} in the long
run. The following calculation of these steady state probabilities mainly
follows Conway et al. (1967, page 163–164), but is somewhat simplified by
considering an observation made by Drekic and Stanford (2000, page 295).
By defining mj as the mean length of a j cycle and lj as the mean time
between the system enters a type j cycle, πj can be expressed as

πj = lim
t→∞

Pr (state j at time t) = mj

lj
, (18)

where mj = E [Tcj ].
ρ = ρa + ρk + ρb is the system utilization as a non-idle system will be

engaged in either an a, k or b cycle, and clearly

π0 = 1− ρ.

Let Nj(t) be the number of busy periods in the interval of length t
initiated by an arrival of a class j job at the system in idle state. rj is the
rate at which such busy periods occur. By the elementary renewal theorem
given in Appendix B, Equation (55),

rj = lim
t→∞

E [Nj(t)]
t

,

and hence, the mean time between entrances to state j is lj = 1/rj .
Since type a cycles only can be initiated by an arrival of a class a job

at an idle system, it is clear that type a cycles occur by a rate ra = Λaπ0
(Drekic and Stanford, 2000, page 295) and

la = 1
Λa(1− ρ)

.
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The same argument holds for a type k cycle. rk = λkπ0 and thus

lk = 1
λk(1− ρ)

.

While type a and k cycles are initiated by class a and k jobs arriving at
an idle system only, every class b job is responsible for initiating a type b
cycle. That is, each type b cycle consists of only one class b job and there
is on average Λb type b cycles per unit time. Again from the elementary
renewal theorem, Equation (55), one find

lb = 1/Λb.

For j = {a, k, b} the mj ’s are found as

mj = E [T0j ]
1− ρBk

where ρBk = λkE [PBk ] from the first moment of a delay cycle given in
Equation (11). E [T0j ] is known from the above discussion of the different
types of delay cycles and thus

ma = E [Pa]
1− ρa − ρk

,

mk = E [Pk]
1− ρa − ρk

and

mb = E [Pb]
1− ρa − ρk

.

All quantities needed for calculation of the πj ’s are now known. π0 = 1−ρ
as discussed. πa, πk and πb are given as

πa = ma

la
= ρa(1− ρ)

1− ρa − ρk
,

πk = mk

lk
= ρk(1− ρ)

1− ρa − ρk
,

and
πb = mb

lb
= ρb

1− ρa − ρk
.

The unconditional Laplace transform φFk(z) associated with the dis-
tribution of flow-time of a class k job under the non-preemptive priority
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discipline can now be obtained. Note that the flow-time for a job arriving
at an idle system is simply Pk and that φFk|0(z) = γk(z).

φFk(z) = E
[
e−zFk

]
= π0γk(z) + πaφFk|a(z) + πkφFk|k(z) + πbφFk|b(z)

= γk(z)
(1− ρ)[z + Λa − Λaηa(z)] + λb(1− γb[z + Λa − Λaηa(z)])

λkφBk(z)− λk + z

= γk(z)
(1− ρ)[z + Λa − Λaηa(z)] + λb(1− γb[z + Λa − Λaηa(z)])

λkγk[z + Λa − Λaηa(z)]− λk + z
,

where the last equality is by Equation (15).
It is a tedious, but straight forward procedure to obtain the first moment

of flow-time for a class k job in a non-preemptive priority queue. The limit
of the derivative of φFk(z) must be evaluated as z goes to zero. To obtain
the result for −φ′Fk(0) it is necessary to apply l’Hôpital’s rule twice. When
done, some algebraic manipulation yields

E [Fk] = E [Pk] +
ΛaE

[
P 2
a

]
+ λkE

[
P 2
k

]
+ ΛbE

[
P 2
b

]
2(1− ρa − ρb)(1− ρa)

. (19)

6 Preemptive priority systems
Of interest now is a priority discipline which the literature refers to as pre-
emptive. It is characterized by the following property: Jobs of higher pri-
ority are allowed to preempt jobs of lower priority and immediately go on
the machine for processing at the time of arrival. The job of lower priority
returns to the head of the queue of its class. When the system is empty of
all higher priority jobs, the preempted job goes on the machine for another
processing attempt.

There are three different basic variations of the preemptive priority dis-
cipline discussed in the literature. The somewhat simpler version is that of
preemptive resume, where the processing is continued from where it left off
when the job was preempted. Under this selection discipline no processing
time is wasted and the system is work conserving. This is not the case for
the two preemptive repeat disciplines.

Under the preemptive repeat disciplines the processing starts over when
a job reenters the processing unit after a preemption. When the processing
time needed for completion is drawn only once – the first time the job goes
on the machine – the selection discipline is called preemptive repeat-equal.

While Conway et al. (1967) treat all the three cases in parallel, here it is
only the third case, preemptive repeat-different, that is of interest. In this
case the processing time needed for completion of a given job is drawn from
the processing time distribution every time the job enters the processing
unit.
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This section is based closely on Conway et al. (1967, Chapter 8-7). Pre-
emptive priority queues are also discussed by Takagi (1991, Chapter 3.4).

6.1 The preemptive repeat-different priority discipline

The analysis of the preemptive repeat-different system is similar to the anal-
ysis of the non-preemptive priority system. Still a given class k job is consid-
ered, and the focus is on how the preemptive repeat-different system differs
from the FCFS system with only class k jobs. The notation must be ex-
tended somewhat as there is a need to consider several random variables not
introduced earlier.

First, Wk is still the waiting time for a class k job. It is defined as the
time interval between the moment a class k job arrives at the system and
the moment when the first processing attempt begins.

The rest of the time a class k job spends in the system is called residence
time, denoted by Rk. In other words, it is the time interval between the
first entrance to the processing facility and process completion. Residence
time plays the role in a preemptive repeat-different priority system that
blocking time played in the non-preemptive priority system and processing
time played in the standard FCFS system. Rk is the effective processing
time of a class k job observed by another class k job waiting for processing.

Flow-time for a class k job Fk is the entire time between arrival at the
system and process completion, that is

Fk = Wk +Rk.

An important random variable in the following is the duration of a pre-
emption. For a class k job this is denoted by Dk and defined as the time
from when a preemption first occur to the next processing attempt. It is
common to call this variable the breakdown time of a class k job. Properties
of the breakdown time will be discussed in Section 6.5.

Under the preemptive repeat-different discipline processing time spent
on a job that is preempted goes to waste. The wasted processing time of
a class k job is the total length of all the non-completed service attempts.
The final processing attempt, in which the processing is completed, is called
successful processing time. Wasted and successful processing time for a class
k job are denoted Pwk and Psk, respectively. Their sum, Pgk = Pwk + Psk,
is called gross processing time.

It is now obvious that the preemptive repeat-different priority system is
not work conserving. The average amount of time a class k job keeps the
processing unit busy is E [Pgk]. Thus, the class k utilization factor is now

ρ̃k = λkE [Pgk] .

Because of a recursive relationship between residence time and break-
down time which will be explored towards the end of this section, it is
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convenient to introduce the notation

Λk =
k∑
j=1

λj .

When a class k job suffers a preemption, only one higher priority job can
be present in the system, namely the one job that caused the preemption.
Class a still refers to the jobs of priority above that of class k and class b to
the jobs of priority below. Now, for a class k job in process a preemption
will occur with intensity Λk−1, earlier represented by Λa.

In the followingN denotes the number of preemptions a job suffers before
it is completed.

6.2 Wasted and successful processing time

Let Pk be the processing time needed to complete a given processing attempt
of a class k job. Let Y denote the interval from the start of the processing
attempt of the class k job to the arrival of a class a job. As a preemption
occurs with intensity Λk−1, Y is exponentially distributed with parameter
Λk−1. That is, FY (y) = 1 − e−Λk−1y and fY (y) = Λk−1e

−Λk−1y. Pk is, as
always, distributed according to Gk(p). The joint density of Y and Pk is

Pr (y < Y ≤ y + dy, p < Pk ≤ p+ dp) = Λk−1e
−Λk−1ydydGk(p). (20)

The probability that a given attempt of processing a class k job is suc-
cessful is the probability of Y being greater than, or equal to, Pk. It is
a straightforward procedure to obtain Pr (Y ≥ Pk) from the joint density
above:

Pr (Y ≥ Pk) =
∫ ∞
p=0

∫ ∞
y=p

Λk−1e
−Λk−1y dy dGk(p)

=
∫ ∞
p=0

e−Λk−1p dGk(p)

= γk(Λk−1).

The probability of a processing attempt to succeed is thus γk(Λk−1). As the
corresponding probability of suffering a preemption is 1−γk(Λk−1) it is clear
that the number of preemptions N suffered by a class k job is geometrically
distributed with parameter γk(Λk−1). That is

Pr (N = n) = [1− γk(Λk−1)]nγk(Λk−1).

The length of a wasted processing interval is Y under the condition that
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Y < Pk. Hence

gwk(y)dy = Pr (y < Pwk ≤ y + dy)

= Pr (y < Y ≤ y + dy, Y < Pk)
Pr (Y < Pk)

= 1
1− γk(Λk−1)

∫ ∞
p=y

Λk−1e
−Λk−1y dGk(p) dy.

It is now possible to obtain the Laplace transform γwk(z) associated with
the wasted processing time Pwk as

γwk(z) =
∫ ∞
y=0

e−zygwk(y) dy

=
∫ ∞
y=0

e−zy
1

1− γk(Λk−1)

∫ ∞
p=y

Λk−1e
−Λk−1y dGk(p) dy

= Λk−1
1− γk(Λk−1)

∫ ∞
y=0

∫ ∞
p=y

e−(z+Λk−1)y dGk(p) dy

= Λk−1
1− γk(Λk−1)

∫ ∞
y=0

e−(z+Λk−1)y[1−Gk(y)] dy (∗)

= Λk−1
1− γk(Λk−1)

[(1− γk(z + Λk−1)
z + Λk−1

]
(∗∗)

= Λk−1
z + Λk−1

1− γk(z + Λk−1)
1− γk(Λk−1)

. (21)

Here (∗) follows by the same arguments that lead to Equation (53) in Ap-
pendix B and (∗∗) follows from Equation (46) and Equation (47) in Ap-
pendix A, analogous to the result obtained in Equation (54).

The development of the Laplace transform associated with successful
processing time Psk follows along the same path, but the calculations are
in fact simpler. A successful processing interval is simply Pk under the
condition that Y ≥ Pk. Using Equation (20) it is easy to obtain the relative
occurrence of a successful processing time p as

gsk(p)dp = Pr (p < Psk ≤ p+ dp)

= Pr (p < Pk ≤ p+ dp, Y ≥ Pk)
Pr (Y ≥ Pk)

= 1
γk(Λk−1)

∫ ∞
y=p

Λk−1e
−Λk−1y dy dGk(p)

= 1
γk(Λk−1)

e−Λk−1p dGk(p).

Finally, the Laplace transform associated with successful processing time of
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a class k job can be found to be

γsk(z) =
∫ ∞
p=0

e−zpgsk(p)dp

= 1
γk(Λk−1)

∫ ∞
p=0

e−p(z+Λk−1)dGk(p)

= γk(z + Λk−1)
γk(Λk−1)

. (22)

6.3 Residence time and gross processing time

For a class k job each preemption is followed by a breakdown time. The
residence time for a class k job under a preemptive repeat-different rule
therefore consists of N realizations of Pwk +Dk followed by one realization
of Psk.

Given that a job is preempted n times, the residence time Rk is the sum
of 2n+1 random variables. The n wasted processing times, the n breakdown
times and the one successful processing interval are all independent of each
other. The conditional Laplace transform associated with residence time
can thus be written

E
[
e−zRk | N = n

]
= E

[
e−zPsk

] (
E
[
e−zPwk

]
E
[
e−zDk

])n
= γsk(z)[γwk(z)φDk(z)]

n,

where φDk(z) is the Laplace transform associated with breakdown time.
The Laplace transform associated with residence time can be obtained

by removing the condition on N , which is geometrically distributed with
parameter γk(Λk−1). Thus

φRk(z) = E
[
e−zRk

]
=
∞∑
n=0

E
[
e−zRk | N = n

]
Pr (N = n)

=
∞∑
n=0

γsk(z)[γwk(z)φDk(z)]
nγk(Λk−1)[1− γk(Λk−1)]n

= γk(Λk−1)γsk(z)
∞∑
n=0

[(1− γk(Λk−1))γwk(z)φDk(z)]
n.

From the final remark in Appendix A (1 − γk(Λk−1))γwk(z)φDk(z) ≤ 1.
Using the expressions found for γwk(z) and γsk(z) in Equation (21) and
Equation (22), in addition to the well known property of a geometric series,



6.3 Residence time and gross processing time 33

the above equation can be re-written into

φRk(z) = γk(Λk−1)γsk(z)
1

1− [1− γk(Λk−1)]γwk(z)φDk(z)

= (z + Λk−1)γk(z + Λk−1)
z + Λk−1 − Λk−1φDk(z)[1− γk(z + Λk−1)]

(23)

(Conway et al., 1967, page 171).
It remains to find the Laplace transform associated with gross processing

time. Conditioning on N and recalling that Pgk = Pwk + Psk one can, by
the independence of wasted and successful processing time, write

E
[
e−zPgk | N = n

]
= E

[
e−zPsk

]
E
[
e−zPwk

]n
= γsk(z) [γwk(z)]n .

Avoiding the condition on N , in the same manners as for φRk(z) earlier, it
is easy to obtain

γgk(z) = γk(z + Λk−1)[z + Λk−1]
z + Λk−1 − Λk−1[1− γk(z + Λk−1)]

.

It should be noted that this equals Equation (23) with φDk(z) = 1. This
makes sense since gross processing time is the same as the residence time
under the assumption that the class k job in question suffers no preemption.

Moments of gross processing time and residence time are needed later
on. The first derivative of γgk(z) is

γ′gk(z) = [γk(z + Λk−1) + (z + Λk−1)γ′k(z + Λk−1)] [z + Λk−1γk(z + Λk−1)]
(z + Λk−1 − Λk−1[1− γk(z + Λk−1)])2

− [1− Λk−1γ
′
k(z + Λk−1)] [(z + Λk−1)γk(z + Λk−1)]

(z + Λk−1 − Λk−1[1− γk(z + Λk−1)])2
.

As usual the limit is evaluated as z goes to zero. This yields the expression

γ′gk(0) = [γk(Λk−1) + Λk−1γ
′
k(Λk−1)]− [1− Λk−1γ

′
k(Λk−1)]

Λk−1γk(Λk−1)

= (−1) 1− γk(Λk−1)
Λk−1γk(Λk−1)

.

By Equation (50), the first moment of gross processing time is

E [Pgk] = 1− γk(Λk−1)
Λk−1γk(Λk−1)

(24)

(Conway et al., 1967, page 172). Continuing along the same path, one can
obtain an expression for the second derivative of γgk(z) as z goes to zero as

γ′′gk(0) = 2
[Λk−1γk(Λk−1)]2

[
1− γk(Λk−1) + Λk−1γ

′
k(Λk−1)

]
.
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Here

γ′k(Λk−1) = lim
z→0

d
dz
γk(z + Λk−1)

= lim
z→0

∫ ∞
p=0

d
dz
e−p(z+Λk−1) dGk(p)

= lim
z→0

∫ ∞
p=0
−pe−zpe−Λk−1p dGk(p)

= −E
[
Pke

−Λk−1Pk
]

(25)

under the assumption that differentiation can be done under the integral
sign (Walpole et al., 2007, page 220). Again Equation (50) yields

E
[
P 2
gk

]
= 2

[Λk−1γk(Λk−1)]2
(
1− γk(Λk−1)− Λk−1E

[
Pke

−Λk−1Pk
])

. (26)

The two first moments of residence time Rk can be obtained as

E [Rk] = (1 + Λk−1E [Dk]) E [Pgk] (27)

and

E
[
R2
k

]
= (1 + Λk−1E [Dk]) E

[
P 2
gk

]
+ 2Λk−1E [Dk] (1 + Λk−1E [Dk]) (E [Pgk])2

+ Λk−1E
[
D2
k

]
E [Pgk] . (28)

To obtain these moments is straight forward as usual, but the derivation,
limit evaluation and algebraic manipulation of the resulting expressions be-
comes a lengthy operation. No additional insight is gained from carrying
out these operations, so the above results are simply quoted directly from
Conway et al. (1967, page 172).

6.4 Determination of waiting time

The next step in the study of the preemptive repeat-different priority disci-
pline is to determine the Laplace transform associated with flow-time by use
of the analysis of FCFS operations in delay cycles. The procedure is similar
to that of Section 5.

Some class k jobs arrive while the system is idle or when the machine
is processing a job of lower priority. The system is said to be in state 0
since an arriving class k job preempts the class b job being processed, if any,
and goes on the machine immediately in both cases. A class k job arriving
a system in state 0 suffers no waiting time as it finds the system virtually
empty.

All other arriving class k jobs arrive during delay cycles of which there
are now only two types, both shown schematically in Figure 5. A type a cycle
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time

Delay cycle length

Delay busy periodInitial delay

Class a job 
arrives

System empty 
of class a jobs

System empty of both 
class a and class k 

jobs

Idle or class b jobs 
being processed

Only class a jobs  being 
processed

 Both class k and class a jobs being 
processed 

One Dk Several Rk's

Idle or class b jobs 
being processed

(a) Type a delay cycle

time

Delay cycle length

Delay busy periodInitial delay

Class k job 
arrives

System empty of both 
class a and class k 

jobs

A single residence time
 Both class k and class a jobs being 

processed 

One Rk Several Rk's

Idle or class b jobs 
being processed

Idle or class b jobs 
being processed

(b) Type k delay cycle

Figure 5: The two different types of delay cycles a class k customer may
encounter when arriving at a busy system with preemptive repeat priority
discipline.

is initiated when a class a job arrives a virtually empty system. Similarly, a
type k cycle is initiated when an arriving class k job finds the system empty
of both class k and class a jobs. Both cycles end when the system is emptied
for both class a and class k jobs.

The Laplace transform associated with class k flow-time in a type j =
{k, a} cycle can be found from Equation (13) as

φFk|j(z) = (1− λkE [Rk])φRk(z)[1− η0j(z)]
E [T0j ] [z − λk + λkφRk(z)]

.

As discussed Rk has taken on the role of P in Equation (13) and thus γ(z)
is replaced by φRk(z).

In the type a cycle the initial delay consists of class a jobs being processed
only. Therefore the length of the initial delay is equal to the duration of a
preemption and T0a = Dk. In a type k cycle the initial delay is simply one
single residence time and T0k = Rk.
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The system is said to be in state a if it is engaged in a type a cycle
and in state k if it is engaged in a type k cycle. Once the steady state
probabilities πj , j = {0, k, a}, have been determined the Laplace transform
associated with a class k flow-time in a preemptive repeat priority system
can be found. The πj ’s are obtained by considering

πj = mj

lj

as in Section 5. Still mj and lj denote the mean length of a j cycle and the
mean time between entrances to state j, respectively.

Since the expected time to the next arrival of a class a or a class k job
at any time is 1/Λk, the mean length of state 0 is given as m0 = 1/Λk. This
follows immediately from the fact that the system is idle, as far as a class k
job is concerned, only as long as there is no class a or class k jobs present.

The mean time between two successive entrances to state 0 is the ex-
pected length of a state 0 period plus the expected length of the following
cycle. When that cycle ends, the system is in state 0 once again. Condi-
tioning on whether the state 0 period is terminated by an arriving class a
or class k job, an expression for l0 is obtained as

l0 = m0 + Λk−1
Λk

ma + λk
Λk
mk.

As already discussed T0a = Dk and T0k = Rk. Hence ma and mk can
easily be expressed as

ma = E [Tca] = E [Dk]
1− λkE [Rk]

and mk = E [Tck] = E [Rk]
1− λkE [Rk]

.

It is now a simple task to obtain π0 as

π0 = m0
l0

= 1
1 + Λk−1ma + λkmk

= 1− λkE [Prk]
1 + Λk−1E [Tbk]

.

From the discussion of the non-preemptive priority system, only those
class a and class k jobs arriving a virtually empty system initiate type a
and type k cycles. Hence, the rate at which type a and type k cycles are
initiated is ra = Λk−1π0 and rk = λkπ0, respectively. From the elementary
renewal theorem, Equation (55) in Appendix B, rj = 1/lj . By now all the
quantities needed to calculate the steady state probabilities are known and
the remaining πj ’s can be obtained as

πa = mara = Λk−1maπ0 = Λk−1E [Dk]
1 + Λk−1E [Dk]

and
πk = mkrk = λkmkπ0 = λkE [Rk]

1 + Λk−1E [Dk]
.
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The expected flow-time of a class k job is E [Fk] = E [Rk] + E [Wk]. The
moments of residence time are known as soon as the moments of Dk has
been determined. These moments will be investigated in Section 6.5. Thus,
for now it is sufficient to consider waiting time.

By conditioning on the proportion of time πj the system is in state j,
the overall waiting time can be obtained. A job arriving at the system when
the system is in state 0 has no waiting time and φWk|0(z) = 1. Hence,
the Laplace transform associated with a class k job’s waiting time in a
preemptive repeat-different priority system is

φWk(z) = π0 + πaφWk|a(z) + πkφWk|k(z)

= 1− λkE [Rk]
1 + Λk−1E [Dk]

+ Λk−1E [Dk]
1 + Λk−1E [Dk]

(1− λkE [Rk])[1− φDk(z)]
E [Dk] [z − λk + λkφRk(z)]

+ λkE [Rk]
1 + Λk−1E [Dk]

(1− λkE [Rk])[1− φRk(z)]
E [Rk] [z − λk + λkφRk(z)]

= 1− λkE [Rk]
1 + Λk−1E [Dk]

[
1 + Λk−1[1− φDk(z)]

λkφRk(z)− λk + z
+ λk[1− φRk(z)]
λkφRk(z)− λk + z

]

= π0

[
z + Λk−1 − Λk−1φDk(z)
λkφRk(z)− λk + z

]
.

Following the standard procedure for obtaining moments, one first dif-
ferentiate φWk(z) with respect to z, obtaining

φ′Wk(z) = π0
[1− Λk−1φ

′
Dk

(z)][λkφRk(z)− λk + z]
[λkφRk(z)− λk + z]2

− π0
[1 + λkφ

′
Rk

(z)][z + Λk−1 − Λk−1φDk(z)]
[λkφRk(z)− λk + z]2

.

To evaluate the limit as z tends to 0, l’Hôpital’s rule must be applied twice.
This yields

φ′Wk(0) = lim
z→0

[
π0
−Λk−1φ

′′
Dk

(z)[1 + λkφ
′
Rk

(z)]− Λk−1φ
′′
Rk

(z)[1− φ′Dk(z)]
2[1 + λkφ

′
Rk

(z)]

]
,

where the terms tending to 0 have been left out. Evaluating the limit finally
gives

E [Wk] = λkE
[
R2
k

]
2(1− λkE [Rk])

+ Λk−1E
[
D2
k

]
2(1 + Λk−1E [Dk])

(29)

(Conway et al., 1967, page 174).
E [Wk] is expressed in terms of moments of Rk and Dk. In Equation (27)

and Equation (28) E [Rk] and E
[
R2
k

]
are expressed in terms of the first two

moments of Pgk and Dk. To obtain a convenient form of E [Wk] expressed in
terms of gross processing time and residence time, the relationship between
Pgk and Dk must be explored.
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6.5 Breakdown time

The duration of a preemption – breakdown time – of a class k job consists
of the residence time of the interrupting job with higher priority and the
residence time of all later arriving class k − 1 jobs, until the system again
is emptied of jobs from class 1, 2, . . . , k − 1. The breakdown times and
the residence times depend on each other recursively. The residence time
of jobs from the highest priority class, R1, determines the breakdown time
D2 of jobs from the second highest priority class. Then D2 determines the
residence time of the class 2 jobs, R2, and so on.

The breakdown time of a class k+1 job is either a type a cycle or a type
k cycle. Tca and Tck denotes the length of these cycles, and

Dk+1 =
{
Tca with probability Λk−1/Λk
Tck with probability λk/Λk,

since the job causing the preemption is from class a with probability Λk−1/Λk
and from class k with probability λk/Λk.

The first moment of Tca and Tck is, as already discussed,

E [Tca] = E [Dk]
1− λkE [Rk]

and E [Tck] = E [Rk]
1− λkE [Rk]

,

respectively. The second moments can be found from Equation (12) in
Section 4 as

E
[
T 2
ca

]
= λkE

[
R2
k

]
(1− λkE [Rk])3

E [Dk] +
E
[
D2
k

]
(1− λkE [Rk])2

and

E
[
T 2
ck

]
= λkE

[
R2
k

]
(1− λkE [Rk])3

E [Rk] +
E [Rk]2

(1− λkE [Rk])2
.

Conditioning on type of cycle the first moment of Dk+1 is obtained easily
as

E [Dk+1] = Λk−1E [Dk] + λkE [Rk]
Λk(1− λkE [Rk])

. (30)

Similarly, the second moment of Dk+1 is

E
[
D2
k+1

]
= Λk−1

Λk
E
[
T 2
ca

]
+ λk

Λk
E
[
T 2
ck

]
= Λk−1E

[
D2
k

]
(1− λkE [Rk]) + λkE

[
R2
k

]
(1 + Λk−1E [Dk])

Λk(1− λkE [Rk])3
(31)

(Conway et al., 1967, page 174).
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Cho and Un (1993, page 140) obtained much simpler expressions for the
first two moments of Dk. As class 1 jobs don’t suffer preemptions D1 = 0.
From Equation (30), E [D2] can be found to be

E [D2] = λ1E [R1]
λ1(1− λ1E [R1]

.

A second consequence of class 1 jobs not suffering preemptions is that the
residence time is simply gross processing time; E [R1] = E [Pg1].

Using ρ̃k = λkE [Pgk] and introducing σk =
∑k
j=1 ρ̃j the above expression

for E [D2] can be written in the form

E [Dk] = σk−1
Λk−1(1− σk−1)

. (32)

Using an inductive argument (Drekic and Stanford, 2000, page 293–294) this
can be proven to hold for all k = 1, 2, . . . , K.

From Equation (27)

E [Rl] = (1 + Λl−1E [Dl])E [Pgl] .

Assuming Equation (32) holds for all classes up to k − 1 and inserting that
into the above expression yields

E [Rk−1] = (1 + λk−1E [Dk−1])E [Pgk]

= (1 + Λk−2σk−2
Λk−2(1− σk−2)

)E [Pg,k−1]

=
E [Pg,k−1]
1− σk−2

.

Finally, inserting the expressions found for E [Rk−1] and E [Dk−1] into Equa-
tion (30) gives

E [Dk] =
Λk−2σk−2

Λk−2(1−σk−2) + λk−1E[Pg,k−1]
1−σk−2

Λk−1

(
1− λk−1E[Pg,k−1]

1−σk−2

)
= σk−2 + ρ̃k−1

Λk−1 (1− σk−2 − ρ̃k−1)

= σk−1
Λk−1(1− σk−1)

,

which is exactly Equation (32) and thereby inductively proves that it holds.
A similar approach leads to a simplification of the second moment of

breakdown time. The expressions involved (Equation (31) and Equation (33))
are rather complicated in form and the inductive proof becomes both lengthy
and ugly. As it is simply an algebraic operation providing no additional
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information about the problem, the final result – obtained by Cho and Un
(1993, page 140) and studied closer by Drekic and Stanford (2000, page 294)
– is simply stated:

E
[
D2
k

]
= 1

Λk−1(1− σk−1)2
k−1∑
j=1

λj
(1− σj−1)2

1− σj
E
[
R2
j

]
. (33)

6.6 Calculation of flow-time

The first and second moment of gross processing time are known through
Equation (24) and Equation (26). Since the class 1 jobs cannot be pre-
empted, the class 1 breakdown time is zero. Hence the first and second
moment of R1 can be obtained from Equation (27) and Equation (28).

Next, the two first moments of Dk and Rk can be obtained recursively
for k = 2, 3, . . . , K.

Finally, all quantities needed for calculating the expected flow-times are
at hand. Flow time is residence time plus waiting time. Using Equation (29),
the first moment of the class k flow-time is

E [Fk] = E [Rk] +
λkE

[
R2
k

]
2(1− λkE [Rk])

+ Λk−1E
[
D2
k

]
2(1 + Λk−1E [Dk])

. (34)

7 The combined priority discipline

Typical in classic queuing theory is to let preemptions be allowed in the
entire queuing system or not at all. Cho and Un (1993) studied a combined
preemptive/non-preemptive priority discipline – introduced for a two-class
system by Jaiswal (1968) – allowing preemptions during the early stage
of processing only. They studied the effect of combining the preemptive-
repeat and the preemptive resume-equal disciplines with the non-preemptive
discipline. Drekic and Stanford (2000) extended the theory to also apply to
the preemptive repeat-different priority rule.

The above mentioned papers consider several threshold policies defining
when preemptions are allowed and when they are prevented. One possibility
is to allow preemptions until a specified amount of processing time has
been completed. Another is to allow preemptions when more than a certain
amount of processing time remains before completion.

However, the threshold policy of interest here is that which Drekic and
Stanford (2000) refers to as proportion-based. The idea is to protect the re-
maining processing time from further preemptions once a certain proportion
ϕ, 0 ≤ ϕ ≤ 1, of the total processing time has been successfully completed.
In the remaining, protected processing interval even higher prioritized jobs
arriving at the system must wait for the current job to be completed.
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7.1 Characteristic properties and notation

It is still class k jobs that are of interest. As before class a jobs denote jobs
from all classes with priority above the class k jobs. Similarly class b jobs
are jobs from classes with priority below the class k jobs.

The system of interest is not work conserving. The class k utilization
factor is

ρ̃k = λkE [Pgk] .

Recall from Section 6 that Λk =
∑k
j=1 λj and σk =

∑k
j=1 ρ̃j .

The threshold defining the part of the processing interval where pre-
emptions are allowed and the part where preemptions are prevented can be
class dependent. Therefore, a class k job can be preempted by a higher
prioritized job until it has completed ϕkPk of its total processing time. The
remaining processing interval (1 − ϕk)Pk is regarded as protected and the
system becomes non-preemptive once the threshold is reached.

The protected processing interval will be denoted by Sk = (1 − ϕk)Pk.
It is easy to confirm that the random variable Sk has ith moment given as
(1 − ϕk)iE

[
P ik
]
since ϕk is a constant known for each class. It should also

be noted that the Laplace transform associated with the protected class k
processing interval is

φSk(z) = γk[(1− ϕk)z].

Under the combined priority discipline also low priority jobs can keep
the jobs of higher priority from starting their processing. When a class b job
complete the part of its processing where preemptions are possible before a
class k or class a job arrives, the job of higher priority must wait during the
protected part of the class b processing interval.

To handle this deviation from the pure preemptive priority discipline the
completion time of a class k job must be introduced. Completion time is
defined as residence time (still denoted by Rk for class k) plus the amount
of time, if any, until the machine is ready to process the next class k job.
The completion time of a class k job is denoted by Ck.

Ck > Rk when at least one higher prioritized job, from class a, is forced
to wait during a protected, non-preemptive processing interval. Ck takes on
the role of effective processing time, since the next class k job is forced to
wait for the jobs of higher priority to be processed, even though the previous
class k job was allowed to finish.

Dk still denotes the class k breakdown time – the time between a class
k preemption and the next processing attempt.

Both class a and class k jobs see the system as virtually empty when the
machine is either idle or processing the preemptive part of a class b job’s
processing time. Their processing starts immediately upon arrival in these
situations.
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A class k job may arrive at the system while the machine is virtually idle,
or during one of three different types of delay cycles, all shown schematically
in Figure 6.

The type a cycles are initiated when a class a job arrives at a virtually
idle system. Hence, the initial delay has the length of a breakdown time Dk

and the delay busy period consists of several class k completion times.
A type k cycle is really just a busy period where each job has effective

processing time Ck.
The third type of delay cycle is called a type bi cycle. It is initiated when

a class b job reaches its threshold and is protected from further preemptions.
Class b is formed by class i jobs, i = k + 1, k + 2, . . . , K. Each of these
classes can have different thresholds ϕi. As a consequence, all the type bi
cycles do not necessarily have the same initial delays. Analogous to the
non-preemptive case, the initial delay in a bi cycle is itself a delay cycle.

The discussion of the delay cycles is continued after the breakdown
times in a combined preemptive/non-preemptive priority system has been
explored.

7.2 Breakdown time revisited

It is now possible to make some important modifications to earlier results
regarding breakdown times. However, a link between the gross processing
time and completion time is needed and must be accounted for first.

A class k completion time consists of one class k gross processing time
and a random number of busy periods caused by arrivals of higher priority
jobs. All class a jobs arriving during Pgk are responsible for a busy period
with the duration of a breakdown time Dk. Those class a jobs arriving
during the early stage of the class k process causes preemptions. Those that
arrive after the class k threshold is reached causes busy periods with the
length of breakdown times after the class k job is completed. The number
of high priority jobs arriving during the gross processing time Pgk is given
by a Poisson process with rate Λk−1. It follows that

E [Ck] = (1 + Λk−1E [Dk])E [Pgk] (35)

(Drekic and Stanford, 2000, page 293). The similarity between this expres-
sion and Equation (27) connecting residence time and gross processing time
in Section 6 is obvious.

As under the fully preemptive priority discipline, the breakdown time of
a class k + 1 customer is a type a cycle or a type k cycle with probability
Λk−1/Λk and λk/Λk, respectively. From Figure 6 it is clear that the delay
busy periods in both cycles consists of completion times and not residence
times as was the case in Section 6. It is straight forward to obtain the mean
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time
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processed 
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One Dk Several Ck's

(a) Type a delay cycle

time
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Class k job 
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System empty of both 
class a and class k 

jobs

Idle A single completion time
 Both class k and class a jobs being 
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(b) Type k delay cycle

time
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being processed
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Protected 
processing

(c) Type bi delay cycle

Figure 6: Different types of delay cycles in a system with combined
preemptive/non-preemptive priority discipline.

length of a type a cycle as

ma = E [Dk]
1− λkE [Ck]
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and the mean length of a type k cycle as

mk = E [Ck]
1− λkE [Ck]

from Equation (11) and Equation (2), respectively.
Conditioning on their occurrence a recursive expression for the first mo-

ment of breakdown time can be obtained as

E [Dk+1] = Λk−1E [Dk] + λkE [Ck]
Λk(1− λkE [Ck])

.

In a similar fashion the second moment becomes

E
[
D2
k+1

]
= Λk−1E

[
D2
k

]
(1− λkE [Ck]) + λkE

[
C2
k

]
(1 + Λk−1E [Dk])

Λk(1− λkE [Ck])3
.

Class 1 jobs are never preempted and D1 = 0. Using Equation (35) and
an otherwise identical inductive argument to that of Section 6.5 it is easy to
obtain a simplified expressions for the first moment of breakdown time as

E [Dk] = σk−1
Λk−1(1− σk−1)

. (36)

This is identical to the expression sated in Equation (32).
An expression for the second moment of breakdown time becomes

E
[
D2
k

]
= 1

Λk−1(1− σk−1)2
k−1∑
j=1

λj
(1− σj−1)2

1− σj
E
[
C2
j

]
(Drekic and Stanford, 2000, page 294). This is similar to Equation (33), but
residence time has been replaced by completion time.

7.3 Waiting time

As usual the mean length of a type j delay cycle is denoted by mj . The
exact expressions for the type j cycle can easily be found by considering
Equation (11). However, it is not necessary to consider these expressions
at this point as the final result for waiting time does not depend om them
directly.

From Equation (14) the conditional Laplace transform associated with
waiting time in a type a cycle is

φWk|a(z) = 1− φDk(z)
ma[z − λk + λkφCk(z)]

,

since Laplace transform associated with initial delay is φDk(z) and the
Laplace transform associated with the delay busy period is φCk(z).
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The conditional Laplace transform associated with waiting time in a type
k cycle is

φWk|k(z) = 1− φCk(z)
mk[z − λk + λkφCk(z)]

,

since φCk(z) is associated with both initial delay and the delay busy period
in this case.

For the type bi cycle, i = k + 1, k + 2, . . . ,K, one find

φWk|bi(z) =
1− η0,bi(z)

mbi [z − λk + λkφCk(z)]
.

To determine the initial delay η0,bi(z) in a type bi cycle, observe that
class a jobs arrive at rate Λk−1 during the protected processing interval
Si = (1 − ϕi)Pi. Each of these arrivals induces a busy period of duration
Dk. It follows that

η0,bi(z) = φSi [z + Λk−1 − Λk−1φDk(z)]

from Equation (10) since the initial delay of a bi cycle is itself a delay cycle
(see Figure 6c).

It now remains to find the proportion of arriving class k jobs that find
the system engaged in the different types of cycles before the unconditional
Laplace transform associated with waiting time can be obtained. As before,
this is done by considering the steady state probabilities.

The system is said to be in state 0 if it is virtually empty from a class k
job’s point of view. This is the situation if the machine is idle or if a class b
job is in the non-protected part of its processing interval. Thus the steady
state probability of state 0 is

π0 = 1− σk −
K∑

i=k+1
λiE [Si] .

As in Section 6 the system is in state a when it is engaged in a type a
cycle. Only those class a jobs arriving at a virtually empty system initiate a
type a cycle. The rate at which the system enters state a is thus ra = Λk−1π0.
From the elementary renewal theorem, Equation (55) in Appendix B, and
Equation (18)

πa = Λk−1π0ma.

An analogous argument yields

πk = Λk−1π0mk

for state k.
All queuing systems considered in this text are assumed to be non-

saturated. That implies that all i = {k + 1, . . . ,K} jobs initiate a type
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Notation

A(z) = z + Λk−1 − Λk−1φDk(z)
A′(z) = 1− Λk−1φ

′
Dk

(z)
A′′(z) = −Λk−1φ

′′
Dk

(z)
Bi(z) = λi(1− φSi [z + Λk−1 − Λk−1φDk(z)])
B′i(z) = −λi(φ′Si [z + Λk−1 − Λk−1φDk(z)])[1− Λk−1φ

′
Dk

(z)]
B′′i (z) = −λi(φ′′Si [z + Λk−1 − Λk−1φDk(z)])[1− Λk−1φ

′
Dk

(z)]2
+λi(φ′Si [z + Λk−1 − Λk−1φDk(z)])[Λk−1φ

′′
Dk

(z)]
C(z) = z − λk + λkφCk(z)
C ′(z) = 1 + λkφ

′
Ck

(z)
C ′′(z) = λkφ

′′
Ck

(z)

Table 1: Compact notation used in the derivation of E [Wk]

bi cycle eventually. A class i job arrives whit arrival rate λi. The proportion
of time the system is engaged in a type bi cycle is thus

πbi = λimbi .

This is mainly the same argument used for type b cycles under the non-
preemptive priority discipline in Section 5.

The unconditional Laplace transform associated with class k waiting
time in a combined preemptive/non-preemptive priority system can now be
obtained as

φWk(z) = π0 + πaφWk|a(z) + πkφWk|k(z) + πbiφWk|bi(z),

since the waiting time is zero for a class k job arriving at an virtually empty
system and hence φWk|0(z) = 1. Simplification of the above equation yields

φWk(z) = π0[z + Λk−1 − Λk−1φDk(z)]
z − λk − λkφCk(z)

+
∑K
i=k+1 λi(1− φSi [z + Λk−1 − Λk−1φDk(z)])

z − λk − λkφCk(z)
. (37)

As before the first moment of waiting time is of interest. Differentiation
of φWk(z) yields a very long expression, and the operation is made more
manageable by introducing the notation in Table 1.

Now Equation (37) can be rewritten to

φWk(z) = π0
A(z)
C(z)

+
∑K
i=k+1Bi(z)
C(z)

.
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φ′Wk(z) can thus be written relatively compact as

φ′Wk(z) = π0

(
A′(z)C(z)−A(z)C ′(z)

[C(z)]2

)
+
∑K
i=k+1 (B′i(z)C(z)−Bi(z)C ′(z))

[C(z)]2
.

A(z), Bi(z) and C(z) all tend to zero as z approaches 0, and it follows
that l’Hôpital’s rule must be applied to evaluate the limit. In fact it is
necessary to apply l’Hôpital’s rule twice. Differentiating the numerator and
denominator of the above expression for φ′Wk(z) twice, leaving out those
terms still tending to zero, yields

φ′Wk(0) = lim
z→0

{
π0
A′′(z)C ′(z)−A′(z)C ′′(z)

2[C ′(z)]2

+
∑K
i=k+1[B′′i (z)C ′(z)−B′i(z)C ′′(z)]

2[C ′(z)]2

}
. (38)

Evaluating the involved expressions in the limit as z → 0 gives

A′(0) = 1 + Λk−1E [Dk],
A′′(0) = −Λk−1E

[
D2
k

]
,

B′i(0) = λiE [Si] (1 + Λk−1E [Dk]),
B′′i (0) = −λiE

[
S2
i

]
(1 + Λk−1E [Dk])2 − λiE [Si] Λk−1E

[
D2
k

]
,

C ′(0) = 1− λkE [Ck]
and

C ′′(0) = λkE
[
C2
k

]
.

Inserting these limits together with π0 = 1−σk−
∑K
i=k+1 λiE [Si] into Equa-

tion (38), taking into account that E [Wk] = −φ′Wk(0), leads to

E [Wk] = (1− σk)
[
Λk−1E

[
D2
k

]
(1− λkE [Ck])

]
2(1− λkE [Ck])2

+ (1− σk)
[
λkE

[
C2
k

]
(1 + Λk−1E [Dk])

]
2(1− λkE [Ck])2

+
K∑

i=k+1
λiE

[
S2
i

] [(1 + Λk−1E [Dk])2(1− λkE [Ck])
]

2(1− λkE [Ck])2
.

Using Equation (35) and Equation (36) it is easy to find that

1 + Λk−1E [Dk] = 1/(1− σk−1)

and
1− λkE [Ck] = (1− σk)/(1− σk−1).
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The expression for expected waiting time can now be simplified to

E [Wk] = (1− σk−1)
Λk−1E

[
D2
k

]
2

+
λkE

[
C2
k

]
+
∑K
i=k+1 λiE

[
S2
i

]
(1− σk−1)(1− σk)

. (39)

This final expression for expected class k waiting time under the com-
bined preemptive/non-preemptive priority discipline is similar to the ex-
pression obtained by Cho and Un (1993, page 137). Due to what must be a
misprint, the expression obtained by Drekic and Stanford (2000, page 297)
does not have the factor 1−σk−1 in its first term. In the next section it will
be shown that Equation (39) fits simulations of the train problem very well.

Before that, expressions for completion time, gross processing time and
residence time under the combined priority discipline must be discussed.

7.4 Waiting time components

In order to calculate class k waiting time, and hence also flow-time, expres-
sions for residence time, gross processing time and completion time must
be explored. Their Laplace transforms will be obtained following the proce-
dure suggested by Cho and Un (1993, page 134–135), but extended to hold
for the repeat-different discipline. The moments of interest will simply be
stated. The derivation of the moments are extremely time consuming and
of little interest to the reader, who probably has seen more than enough
differentiation of Laplace transforms by now.

Analogous to Section 6 wasted and successful class k processing time
will be denoted by Pwk and Psk, respectively. The number of preemptions
suffered by a class k job is denoted by N . The residence time Rk of a class
k job suffering N preemptions under the combined priority discipline is the
sum of N wasted processing times and breakdown times plus one successful
processing time.

Of the class k processing time the preemptible portion is ϕkPk and the
non-preemptible portion is (1 − ϕk)Pk. A preemption occurs when a class
a job arrives at the system during the preemptible part of the class k pro-
cessing time. Class a jobs arrive with rate Λk−1. As in Section 6.2, let Y
denote the time interval from the start of a given processing attempt to the
arrival of a class a job. The probability of a given processing attempt being
successful is the probability of Y being greater, or equal to, ϕkPk;

Pr (Y ≥ ϕkPk) =
∫ ∞
p=0

∫ ∞
y=ϕkp

Λk−1e
−Λk−1ydydGk(p) = γk(Λk−1ϕk).

It follows that the number of preemptions suffered by a class k job is geo-
metrically distributed with parameter γk(Λk−1ϕk) as

Pr (N = n) = [1− γk(Λk−1ϕk)]n γk(Λk−1ϕk).
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Analogous to Equation (21) and Equation (22) the Laplace transforms
associated with wasted and successful processing time become

γwk(z) = Λk−1
z + Λk−1

1− γk [(z + Λk−1)ϕk]
1− γk(Λk−1ϕk)

and
γsk(z) = 1− γk (z + Λk−1ϕk)

γk(Λk−1ϕk)
,

respectively.
Pursuing the same path leading to Equation (23) in Section 6.3 now leads

to the Laplace transform associated with residence time under the combined
priority rule.

φRk(z) = (z + Λk−1)γk(z + Λk−1ϕk)
z + Λk−1 − Λk−1φDk(z)[1− γk([z + Λk−1]ϕk)]

, (40)

which was also obtained by Drekic and Stanford (2000, page 300).
Since gross processing time equals the residence time under the assump-

tion that the class k job suffers no preemption, the Laplace transform asso-
ciated with Pgk can be found directly from Equation (40) simply by letting
φDk(z) = 1. This yields

γgk(z) = (z + Λk−1)γk(z + Λk−1ϕk)
z + Λk−1 − Λk−1[1− γk([z + Λk−1]ϕk)]

. (41)

The completion time is the residence time plus the delay busy period
caused by all the class a jobs that arrived during the non-preemptible portion
of the class k job’s processing time. This delay busy period consists of
several busy periods, each with duration Dk. Since the class a jobs causing
the busy periods accumulated during an interval of length (1− ϕk)Pk, it is
clear that the delay cycle of interest has initial delay associated with the
Laplace transform

η0(z) = γk[(1− ϕk)z].
The initial delay of the cycle is already accounted for in the Laplace

transform associated with residence time. By Equation (9) in Section 4 the
Laplace transform associated with the delay busy period is given as

ηb(z) = γk([1− ϕk][Λk−1 − Λk−1φDk(z)]).

Now, the Laplace transform associated with completion time can be
written

φCk(z) = φRk(z)γk([1− ϕk][Λk−1 − Λk−1φDk(z)]).
Observing that

γk(z + Λk−1ϕk)γk(Λk−1 − Λk−1φDk(z)− Λk−1ϕk − Λk−1φDk(z)ϕk)
= γk[z + Λk−1 − Λk−1φDk(z)(1− ϕk)]
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by the convolution property, the Laplace transform associated with comple-
tion time is

φCk(z) = (z + Λk−1)γk[z + Λk−1 − Λk−1φDk(z)(1− ϕk)]
z + Λk−1 − Λk−1φDk(z)[1− γk([z + Λk−1]ϕk)]

(42)

(Drekic and Stanford, 2000, page 300)
Derivation and limit evaluation of Equation (40), Equation (41) and

Equation (42) yields the moments of the random variables Rk, Pgk and Ck,
respectively. The task involves a lot of tedious algebra. Not to test the
reader’s patience, the moments of interest are simply stated as they are
obtained by Drekic and Stanford (2000, page 311):

E [Rk] = (1 + Λk−1E [Dk])(1− γk(Λk−1ϕk))
Λk−1γk(Λk−1ϕk)

− Λk−1(1− ϕk)γ′k(Λk−1ϕk)
Λk−1γk(Λk−1ϕk)

, k ≥ 2.

E [Pgk] = 1− γk(Λk−1ϕk)− Λk−1(1− ϕk)γ′k(Λk−1ϕk)
Λk−1γk(Λk−1ϕk)

, k ≥ 2.

E
[
P 2
gk

]
= (1− ϕ2

k)γ′′k (Λk−1ϕk)
γk(Λk−1ϕk)

+ 2[1− Λk−1(1− ϕk)γ′k(Λk−1ϕk)]
[Λk−1γk(Λk−1ϕk)]2

× (1− γk(Λk−1ϕk) + Λk−1ϕkγ
′
k(Λk−1ϕk)), k ≥ 2.

E [Ck] = (1 + Λk−1E [Dk])E [Pgk] , k ≥ 2.

E
[
C2
k

]
= (1 + Λk−1E [Dk])E

[
P 2
gk

]
+ Λk−1E

[
D2
k

]
E [Pgk]

+ 2Λk−1E [Dk] (1 + Λk−1E [Dk])

×
[
E [Pgk] [1− γk(Λk−1ϕk)]

Λk−1γk(Λk−1ϕk)
+ (1− ϕk)2γ′′k (Λk−1ϕk)

2γk(Λk−1ϕk)

]
, k ≥ 2.

Here, by similar arguments to those used to obtain Equation (25) in Sec-
tion 6.3,

γk(Λk−1ϕk) = E
[
eΛk−1ϕkPk

]
,

γ′k(Λk−1ϕk) = −E
[
Pke

Λk−1ϕkPk
]
,

and
γ′′k (Λk−1ϕk) = E

[
P 2
k e

Λk−1ϕkPk
]
.

The expressions above are valid for priority classes k = 2, . . . ,K. Priority
class 1 suffers no preemptions. It is clear that Dk = 0. No preemptions also
implies that gross processing time, residence time and completion time all
are equal to the class 1 processing time. Thus, for k = 1,

E [Pg1] = E [R1] = E [C1] = E [P1]
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and
E
[
P 2
g1

]
= E

[
R2

1

]
= E

[
C2

1

]
= E

[
P 2

1

]
.

7.5 Expected flow-time and its limits

From the recursive connection between completion times and breakdown
times discussed in Section 7.2, the expected flow-time can now be calculated
for all classes k = 1, . . . , K by the formula

E [Fk] = E [Rk]

+ (1− σk−1)
Λk−1E

[
D2
k

]
2

+
λkE

[
C2
k

]
+
∑K
i=k+1 λiE

[
S2
i

]
(1− σk−1)(1− σk)

. (43)

This is, as mentioned in the introduction, the core result of this study.
The combined preemptive/non-preemptive priority system reduces to a

strictly non-preemptive system in the case of ϕk = 0, for k = 1, . . . , K. In
the case of ϕk = 1 for for k = 1, . . . , K, the combined system becomes a
strictly preemptive system. That is, Equation (43) becomes Equation (19)
and Equation (34) for each of the two threshold extrema, respectively.

This is illustrated for a system with 4 priority classes in Figure 7. All
priority classes are assumed to have the same threshold, ϕk = ϕ for all k.
Further, the arrival rates are set to be equal for all four priority classes.
The processing times are chosen constant for each class, but not equal. As
can be read from the figure, λk = 1/120 for all k and P1 = 10, P2 = 15,
P3 = 10 and P4 = 15. These values makes the figure comparable to the
results obtained for a scheduling scenario simulated in Section 8. In Figure 7
expected flow-time is plotted against ϕ. The expected flow-times in strictly
non-preemptive and preemptive systems are marked with dotted lines.

It should be noted from the figure that the jobs of highest priority are
best off with a fully preemptive system. Jobs of lowest priority would prefer
a strictly non-preemptive system when it comes to minimizing their expected
flow-time. This is clear since class 1 jobs preempt jobs from all other priority
classes and never get preempted them self, while the class 4 jobs on the other
hand gain nothing from preemptions being allowed.

Considering this it is not very surprising that the other classes have
optimal expected flow-times for thresholds between the two extrema 0 and
1. Class 2 jobs preempt class 3 and class 4 jobs, but are preempted by class
1 jobs. In the graph in Figure 7, ϕ ≈ 0.365 is found to be the optimal
threshold for class 2 jobs, as it minimizes the class 2 expected flow-time.
A class 3 job can only preempt class 4 jobs. At the same time it may
suffer preemptions due to both class 1 and class 2 jobs. Optimal threshold
value for priority class 3 is consequently much closer to the fully preemptive
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Figure 7: Expected flow-time in a combined priority system

system than that of priority class 2. In the graph ϕ ≈ 0.101 is found to be
the optimal threshold, with respect to minimization of the expected class 3
flow-time.

It should be mentioned that the expected flow-time of class 3 jobs is
lower than the expected flow-time of class 2 jobs in this particular case.
This is simply because the class 2 processing times are longer than the class
3 processing times.

Keep in mind that ϕk = ϕ for all k in Figure 7. From another point
of view, suppose that the threshold values are fixed, but not necessarily
equal, for all priority classes but one. That is, ϕk is known and fixed for all
k 6= i. An optimal threshold value for class i would always be ϕi = 0 as no
preemption is better than some preemptions.
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8 Scheduling on single track railway lines

It is now time to return to the scheduling problem regarding trains requested
to operate on a single track railway line. First some assumptions allowing
the problem to be viewed in the setting of queuing theory must be accounted
for. It will be argued that the priority rule suggested by Jernbaneverket is,
at certain important points, similar to the combined priority rule discussed
in Section 7.

A simulated scheduling scenario will illustrate that the mean sched-
uled waiting times can be found by considering flow-times in a combined
preemptive/non-preemptive priority system.

8.1 The scheduling problem

Briefly recapitulated from Section 1, scheduling is the task of assigning train
paths to the train operators based on their requests. A train path is a
segment of a railway line allocated to a single train in a given period of
time.

The line segment in question is a single track block section that handles
bidirectional train traffic. Due to safety regulations only one train is allowed
to operate in a block section at a time. This to ensure a minimum spacing
between trains and also because crossings (two trains passing each other in
opposite directions) are impossible. Conflicts arise when paths preferred by
the different train operators in some way overlap.

In the process of sorting the conflicts out trains are granted different
priority on the line. The level of priority can be based on, for instance,
train type or traveling direction. Operations are then authorized according
to a chosen scheduling rule. It is convenient to recall the scheduling rule
suggested by Jernbaneverket from Section 1.

The train operators request to enter a block section at a given
time. For a train from a class of low priority to be allowed to
operate in the block section at the requested time, there must be
enough time for it to traverse a predefined fraction ϕ of that block
section before a train of higher priority is requested to operate.
If the time criterion is not fulfilled, the train of low priority must
wait. The train of high priority is then given authority to operate
in the block section at the requested time.
If the time criterion is fulfilled, it is the train of high priority that
must wait while the train of low priority completes its operation.
There might be several high priority requests placed for the time
interval the line is allocated to the train of lower priority. Once
the low priority train is scheduled to exit the block section, the
train of highest priority, scheduled to wait, is granted authority
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to enter the section. In case of more than one train from the same
priority class being scheduled to wait, the train with the earliest
request is authorized to operate first. That is, a first-come-first-
served principle is practiced within each priority class.

Adjusting the value of ϕ, 0 ≤ ϕ ≤ 1, affect the effective capacity of
the block section in question. A large ϕ will cause the block section to be
unavailable to low priority trains and idle for a large amount of time. On
the other hand, the high priority trains will be granted train paths close to
their original requests.

Smaller values of ϕ will have the opposite effect; raising the overall effec-
tive capacity of the line. But also, small values of ϕ result in larger scheduled
waiting times for trains of high priority.

It should be obvious by now that the scheduling problem is a priority
queuing problem. However, a study of the scheduling problem in the light of
the previously developed queuing theory calls for a few limiting assumptions.

8.2 Scheduling in light of queuing theory

The operators’ requested times for entering the block section can be viewed
as arrival times to a queuing system. Corresponding inter-arrival times
are thus the time intervals between successive requested times. Since the
different train operators operate independently of each other and their future
wishes for train paths are unknown, it makes sense to model inter-arrival
times as a stochastic process. Between requested times of entries to the block
section, there are in fact observed many small time gaps and fewer large
time gaps. To assume the intervals between arrivals being exponentially
distributed thus seems appropriate (Handstanger, 2009, page 3). It follows
immediately that the arrival process of interest is a Poisson processes.

Scheduling is done for a limited time period. A train requested to enter
the block section in the scheduling period can be viewed as a job arriving
at a queuing system. The train can be from one of K priority classes. The
arrival rate λk, k = 1, . . . , K, is the average number of trains from priority
class k requested to enter the block section per time unit.

The block section only allows for one train to operate at a time. A train
traversing the block section can be viewed as a job being processed. The
queuing system of interest has only one processing unit and the processing
time is the time a train needs to traverse the entire block section. These
blocking times are assumed known and equal for all trains of a given type,
as explained in Section 1. The processing times Pk are the deterministic
class k blocking times, dependent only on the speed of the class k trains.

Assuming there is no limit on how many trains that can be requested to
enter the block section within a given amount of time it should be clear that
the scheduling problem can be described as an M/D/1 queuing system.
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Here D denotes the degenerated, deterministic distribution of processing
time. This is obviously a slightly specialized version of the M/G/1 queue
with no variation in the class k processing times. It is worth mentioning
that the queuing theory presented in Section 2–Section 7 is in fact valid also
for stochastic processing times.

Now, for the suggested scheduling rule, scheduled waiting time plus the
deterministic blocking time of a class k train equals the flow time of a class
k job in a queuing system under the combined preemptive/non-preemptive
priority rule. This despite a few obvious differences between the scheduling
problem and the theoretical queuing system:

A train cannot be preempted from the block section in the same way
as a job is said to be preempted in a theoretical queuing system. Instead
it is simply held back and the block section kept empty. This is possible
since all the requested times are known prior to the times for the authorized
operations are set. It is as if whether or not a job is going to be preempted
in the theoretical queuing system is known prior to the next arrivals.

The wasted processing times and breakdown times suffered by a job in
the theoretical queuing system are part of the scheduled waiting time in the
scheduling problem. The theoretical successful processing time is simply
the deterministic blocking time. The time interval between a requested
time for starting an operation and the actual scheduled time for exit from
the block section equals the theoretical flow-time. It follows that the mean
scheduled waiting time for a class k train is given by the expected flow-time
in a combined non-preemptive/preemptive priority system, minus the actual
class k processing time, Pk.

8.3 Simulation of a scheduling scenario

To visualize the similarity between the scheduling problem and the theoret-
ical queuing system, a fictive scheduling scenario is considered.

A single track railway line connects a residential area and a harbor in
the east and an industrial area in the west. Assume that both freight trains
and passenger trains operate on this line. The prioritized task on this rail-
way line is the transport of people from their homes to their work place.
Westbound passenger trains thus form the prioritized class of trains. The
second most important task is to transport raw materials from the harbor
to the industrial area. Westbound freight trains form priority class 2.

The most flexible task is the transport of finished products from the
industrial area to the harbor for shipping. It follows that eastbound freight
trains are of lowest priority on the line, belonging to priority class 4. It is
somewhat more important to transport people home from work after ended
shifts, and the passenger trains traveling in direction east belong to priority
class 3.

A block section on this line is of such length that a passenger train
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Figure 8: Average scheduled waiting time for trains requesting to traverse a
single track block section. The length of the scheduling period is 100 days.

needs 10 minutes to traverse it. The somewhat slower freight trains need 15
minutes to traverse the same section. Now, if there on average is a request
for operating one train from each class every second hour, the priority classes
have the following properties:

• Priority class 1: Westbound passenger trains. λ1 = 1/120, P1 = 10.

• Priority class 2: Westbound freight trains. λ2 = 1/120, P2 = 15.

• Priority class 3: Eastbound passenger trains. λ3 = 1/120, P3 = 10.

• Priority class 4: Eastbound freight trains. λ4 = 1/120, P4 = 15.

The situation is simulated using the source code in Appendix C (R De-
velopment Core Team, 2010). Scheduling is assumed to be done for a period
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Figure 9: Average scheduled waiting time for trains requesting to traverse
a single track block section. The length of the scheduling period is 10000
days.

of 100 days, or 2400 hours. Following the suggested priority rule strictly,
leads to average scheduled waiting times plotted in Figure 8. The simula-
tions are done repeatedly for 100 different ϕ-values in the interval from 0
to 1. The threshold value ϕ is assumed to be the same for all the priority
classes in each simulation. The solid lines represent the steady state solu-
tion E [Fk] − Pk as a function of ϕ, where E [Fk] is given by Equation (43)
in Section 7.

As expected, from the theoretical results from Section 7, the high priority
trains are allowed to operate closer to their requested times when ϕ is large.
Consequently, the low priority trains suffer large scheduled waiting times.

From Figure 8 it is clear that the simulated average scheduled waiting
times vary around the theoretical steady state solution. Using the same
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priority classes as above, requested times are simulated for a period of 10000
days – almost 30 years. The result is shown in Figure 9. Still there are small
deviations in average scheduled waiting times from the theoretical, expected
values. This suggest that there is actually quite a large amount of variation
in the suffered scheduled waiting times within each priority class.

As was the objective of this project, a theoretical model describing the
scheduling problem has been obtained. The first moment otained for class
k flow-time gives an accurate description of the mean, class k, scheduled
waiting time. To investigate the variation observed in the simulations closer,
the second moment of flow-time must be obtained. This can be done by
differentiating the Laplace transform associated with flow-time once more.
Though simple in theory, in practice this is a lengthy operation beyond the
time frame of this study.

9 Conclusion

Prior to the initiation of this work the Norwegian railway owner and op-
erator, Jernbaneverket, proposed a priority based decision rule to be used
during the process of scheduling trains operating on single track railway
lines. It was shown that this suggested scheduling rule, under certain limit-
ing assumptions, could be studied in the setting of queuing theory.

The main part of this study has been the development and analysis of
a threshold based, combined preemptive/non-preemptive priority discipline.
Under this discipline, preemptions of low prioritized jobs were allowed during
the early stage of processing only. The effect of the combined priority rule
on the flow-times in anM/G/1 queuing system with an arbitrary number of
priority classes was studied in detail. An exact solution for expected flow-
times in a system in steady state was obtained under the assumptions of
known arrival rates, mean processing times and thresholds for each priority
class.

The priority based scheduling rule for trains operating on a segment of a
single track railway line was modeled by the theoretical, combined priority
rule. The focus has been on scheduled waiting times, which is the time be-
tween the requested time for an operation and the actual, authorized time for
that operation. The theoretical expression for expected flow-times obtained
from queuing theory was, when adjusted down by the actual, nonrandom
processing time, seen to yield an accurate expression for average scheduled
waiting times. It was the main objective of this study to obtain a theoret-
ical model suitable to describe the scheduling problem – and the scheduled
waiting times in particular – under the proposed, priority based decision
rule. That objective was successfully achieved, as theory fitted simulated
data nicely.

For a simulated scheduling scenario there was observed variation in the
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scheduled waiting times. Trains suffering large scheduled waiting times rep-
resent a much bigger problem to the railway operator than trains autho-
rized to operate at the requested times. When deciding on how to adjust
the threshold values to optimize the usage of the railway line in question,
it is consequently not only the mean scheduled waiting time that is of im-
portance. It may also be vital to avoid the occasionally huge scheduled
waiting times suffered by a few trains. A natural extension of the present
work would therefore be an investigation of the flow-time variance. This
calls for the second moments of flow-time to be obtained. While it is a
straightforward procedure in theory it is a tedious task in practice. Some of
the most time consuming work may be avoided by use of symbolic mathe-
matics software packages, such as Maple or Mathematica. Further studies
of simulations may also provide useful insight.

Another aspect worth considering is that train scheduling in fact allows
for negative waiting times. In some cases it is possible to schedule operations
earlier than the actual request in order to avoid conflicts. It is likely that
conventional queuing theory needs a considerable amount of modification to
handle that scenario.
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A Transform theory

This appendix is a short introduction to the Laplace transform and some
of its properties. In queuing theory the Laplace transforms of probability
density functions are of importance mainly because of their close connection
to the moment generating functions of random variables. They provide an
alternative characterization of random variables and a way to calculate their
moments. It is convenient to consider the Laplace transform rather than
the moment generating function itself, as the Laplace transform always is
between 0 and 1 when the random variable is non-negative.

The material is based on Kreyzig (1999, Chapter 5) and the notation is
chosen to fit the main part of this text.

A.1 The Laplace transform

Consider a function g(t) continuous for all t ≥ 0. The Laplace transform of
g(t) is defined as

L{g(t)} = γ(z) =
∫ ∞
t=0

e−ztg(t)dt. (44)

If g(t) is a piecewise continuous function on every finite interval in the
range t ≥ 0 and satisfies

|g(t)| ≤Mekt (45)

for all t ≥ 0 and some constants M and k, then the Laplace transform
of g(t) exists for all z > k. Furthermore, if the Laplace transform of a
given function exists, it is uniquely determined. More details and a proof
of the existence theorem can be found in Kreyzig (1999, page 256). Several
important properties of the Laplace transform follow.

First, the Laplace transform is a linear transform. That is, for functions
g1(t) and g2(t) of continuous time and for any constants a and b a straight
forward calculation yields

L{ag1(t) + bg2(t)} =
∫ ∞
t=0

e−zt (ag1(t) + bg2(t)) dt

= a

∫ ∞
t=0

e−ztg1(t)dt+ b

∫ ∞
t=0

e−ztg2(t)dt

= aγ1(z) + bγ2(z).

Another important property is that of the first shifting theorem. If g(t)
has the Laplace transform γ(z), then e−atg(t) has the Laplace transform
γ(z − a). This is easily obtained from

γ(z − a) =
∫ ∞
t=0

e−(z−a)tg(t)dt =
∫ ∞
t=0

e−zt
[
eatg(t)

]
dt = L

{
eatg(t)

}
.
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From time to time it proves useful to recognize the Laplace transform of
the derivative of g(t). Consider g′(t) continuous3 for all t ≥ 0. By definition
and integration by parts

L
{
g′(t)

}
=
∫ ∞
t=0

e−ztg′(t)dt

=
[
e−ztg(t)

]∞
0

+ z

∫ ∞
t=0

e−ztg(t)dt

= zγ(z)− g(0).

More generally, the expression for the Laplace transform of the ith
derivative of g(t) is

L
{
g(i)(t)

}
= ziγ(z)− zi−1g(0)− zi−2g′(0)− · · · − g(i−1)(0).

which can be proven by induction (Kreyzig, 1999, page 259).
As the derivatives of g(t) can be obtained essentially by multiplying the

transform γ(z) by z, integration can be done by dividing on z. That is, for
g(t) piecewise continuous, satisfying (45) for some k and M

L
{∫ t

τ=0
g(τ)dτ

}
= 1
z
γ(z). (46)

Once again the reader is referred to Kreyzig (1999, page 262) for details.
To move on, the unit step function and Dirac’s Delta function, also

known as the unit impulse function, must be defined. The unit step function
u(t− a) is 0 for t < a by definition, has a jump of size 1 at t = a (where it
can be left undefined) and is 1 for t > a. That is,

u(t− a) =
{

0 if t < a

1 if t > a
.

The unit impulse function is important for handling discontinuities and
their derivatives. The impulse of a force g(t) over time interval a ≤ t ≤ a+k
is defined to be the integral of g(t) from a to a + k. Of particular interest
is the case where the force acts only for an instance. To deal with that
situation, consider the function

gk(t− a) =
{

1/k if a ≤ t ≤ a+ k

0 otherwise
, a ≥ 0.

The impulse Ik is 1 since

Ik =
∫ ∞
t=0

gk(t− a)dt =
∫ a+k

t=a

1
k
dt = 1.

3For a piecewise continuous g′(t) the result is similar, but the integration must be
broken up into parts such that g′(t) is continuous on each part.
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The unit impulse function4 is defined as

δ(t− a) = lim
k→∞

gk(t− a).

The unit step function and the unit impulse function has Laplace transfor-
mations given as

L{u(t− a)} = e−az

z
(47)

and
L{δ(t− a)} = e−az

respectively.
By using the unit step function it is possible to establish another impor-

tant relationship described by the second shifting theorem. If g(t) has the
transform γ(z), the shifted function

g(t− a)u(t− a) =
{

0, t < a

g(t− a), t > a

has a Laplace transform given as

L{g(t− a)u(t− a)} = e−asγ(s)

(Kreyzig, 1999, page 267).
The final property of the Laplace transform discussed in this extremely

brief coverage of the topic is the convolution property. It has to do with
the products of transforms. For two functions, f(t) and g(t), that satisfy
inequality (45), the product η(z) of their transforms, φ(z) and γ(z), is the
transform of the convolution of f(t) and g(t), defined as

(f ∗ g)(t) =
∫ t

τ=0
f(τ)g(t− τ)dτ . (48)

That is, L{(f ∗ g)(t)} = φ(z)γ(z). For random variables X and Y with
probability density functions f(t) and g(t), respectively, the convolution
(f ∗ g)(t) gives the density of X +Y . For further details, see Kreyzig (1999,
page 279–281).

A.2 Moment generating functions

The ith moment about the origin of a continuous random variable X is
E
[
Xi
]
, that is

E
[
Xi
]

=
∫ ∞
−∞

xif(x)dx

4Not a function in the ordinary sense.



64 B RENEWAL THEORY

(Walpole et al., 2007, page 220) where f(x) is the probability density func-
tion of X. The first moment of the random variable X is its mean. Fur-
thermore, the variance of X can be written in terms of the first and second
moment as Var [X] = E

[
X2]− (E [X])2.

The moment generating function of the continuous random variable X
is given by MX(v) = E

[
evX

]
, that is

MX(v) = E
[
evX

]
=
∫ ∞
−∞

evxf(x)dx. (49)

Existence of the moment generating function depends entirely on the con-
vergence of the integral in Equation (49).

The obvious purpose of the moment generating functions is to establish
moments of random variables. These can be obtained from the relationship

diMX(v)
dvi

∣∣∣∣
v=0

= E
[
Xi
]
,

as shown in Walpole et al. (2007).
When one compares the definition of the Laplace transform, given by

Equation (44), to the definition of moment generating functions, given by
Equation (49), one realizes that the two are quite similar. In fact, for a pos-
itive, random variable P , with cumulative distribution G(p) = Pr (P ≤ p),
the corresponding Laplace transform is

γ(z) = E
[
e−zP

]
=
∫ ∞
p=0

e−zpg(p)dp.

Hence, moments of P can be found from the formula

lim
z→0

diγ(z)
dzi

= (−1)iE
[
P i
]
. (50)

This relationship makes it possible to obtain important properties of a dis-
tribution from the corresponding Laplace transform.

Finally it is convenient to note that as long as g(x) is a probability
density function

γ(z) =
∫ ∞
−∞

e−zpg(p)dp ≤ 1,

and γ(z) = 1 only if z = 0.

B Renewal theory

The renewal process is a generalization of the Poisson process. It is a count-
ing process {N(t), t ≥ 0} for which the time {P1, P2, . . . } between successive
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events are independently and identically distributed according to an arbi-
trary distribution (Ross, 2007, page 417). Each event is called a renewal
and Pi, i = {1, 2, . . . } are called renewal intervals. This section deals with
two, at least in the setting of queuing theory, very important results from
the renewal theory.

Both results are briefly presented both by Conway et al. (1967, page 146–
147) and by Kleinrock (1975, page 169–174). A more complete treatment of
the renewal theory is given by Ross (2007, Chapter 7).

B.1 The inspection paradox

In the setting of queuing theory the problem in question is this: Given a job
being processed, what is the distribution of the remaining processing time
for this job when another job arrives at some random point in time?

Assume that job i goes on the machine for processing at time τi, and
that the processing of the first job begins at time 0. The renewal process
{N(t), t ≥ 0} is in this case the number of jobs that have entered the
machine for processing at time t. A renewal event occurs when one job
departs from the system. Idle periods are of no interest at this point, so it
is assumed that there always is a new job waiting for processing. Hence,
when the processing of job i is completed, the processing of job i+ 1 starts
immediately. The intervals Pi = τi+1 − τi is thus the processing time of
job i. Further, it is assumed that the processing intervals Pi, k = 1, 2, . . . ,
are independently and identically distributed random variables distributed
according to

G(p) = Pr (P ≤ p) .

At some random point in time, say t, a job arrives at the queuing system.
Assume that N(t) = n, job n is being processed, and denote by Y (t) the
remaining processing time of that particular job at time t.

In the terminology of renewal theory {τi} form a sequence of renewal
points in time. Y (t) is the residual life of the selected job n. X = τn+1− τn
is the lifetime5 of the particular job n and A(t) = X −Y (t) is the age of job
n at time t. The cumulative distributions of residual life, Y , and the selected
lifetime X are FY (y) = Pr (Y ≤ y) and FX(x) = Pr (X ≤ x), respectively.

The results of this section are based on the observation that long intervals
between renewal points occupy larger segments of the time axis than short
intervals6 Thus, a long interval is more likely to cover the randomly selected
point t than a short interval. It follows that the lifetime of the selected job
n, X, is not distributed according to G(p). This is commonly referred to as
the inspection paradox (Ross, 2007, page 455).

5Note thatX = Pn, but the choice ofX simplifies the notation as the need for subscripts
are avoided.

6This observation must somehow be accepted. However, the main result of this section
is derived in more rigorous manners in Kleinrock and Gail (1996, page 120–125).
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For the continuous variable X, the relative occurrence of x is given by

Pr (x < X ≤ x+ dx) = fX(x)dx,

for a infinitesimal dx.
The probability of an event – in this case the arrival of a job at the

queuing system – occurring in a processing interval of length x should be
proportional to that length and to the relative occurrence of such intervals.
The latter is given by g(x)dx. Thus, the probability that the selected interval
X is of length x is

Pr (x < X ≤ x+ dx) = Kxg(x)dx,

where K must be evaluated to properly normalize this density. This is done
by integrating both sides of the previous equation from zero to infinity:∫ ∞

x=0
fX(x)dx = K

∫ ∞
x=0

xg(x)dx.

Directly from this K is given by K = (E [P ])−1. The probability density
function of the selected processing interval X can from this bewritten as

fX(x) = xg(x)
E [P ]

(51)

Now, if the length of the selected processing interval X is known to be
x, the probability that the residual life Y (t) does not exceed y is

Pr (Y (t) ≤ y | X = x) = y

x
, for 0 ≤ y ≤ x,

since Y (t) depends only on a randomly chosen, and thus uniformly dis-
tributed, point t in the given interval of length x.

Using the uniformity of the conditional distribution above, the joint den-
sity of X and Y (t) follows from Bayes’ rule (Walpole et al., 2007, page 71)
and Equation (51) as

Pr (y < Y (t) ≤ y + dy, x < X ≤ x+ dx)
= Pr (y < Y (t) ≤ y + dy | X = x) Pr (x < X ≤ x+ dx)
= Pr (Y (t) ≤ dy | X = x) Pr (x < X ≤ x+ dx)

=
(dy
x

)(
xg(x)
E [P ]

dx
)

= g(x)dydx
E [P ]

for 0 ≤ y ≤ x. (52)
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To obtain the marginal distribution of Y (t) the joint probability density
function of Y (t) and X is integrated with respect to x:

fY (y)dy = dy
E [P ]

∫ ∞
x=y

g(x)dx

= dy
E [P ]

[
1−

∫ y

x=0
g(x)dx

]
= dy

E [P ]
[1−G(y)] .

Finally, this gives the distribution of residual life Y (t) in terms of the dis-
tribution of the processing times and the mean processing time as7

fY (y) = 1−G(y)
E [P ]

. (53)

From Equation (46), Equation (47) and the linearity property of the
Laplace transform, all given in Appendix A, the Laplace transform φY (z)
associated with fY (y) can be obtained as

φY (z) = 1
E [P ]

[
L{1} − L

{∫ y

t=0
g(t)dt

}]
= 1

E [P ]

[1
z
− γ(z)

z

]
= 1− γ(z)

zE [P ]
, (54)

where γ(z) is the Laplace transform associated with the probability density
function g(x).

The ith moment of the processing time is E
[
P i
]
. The ith moment of

residual life is E
[
Y i
]
and can be obtained from φY (z) by using Equation (50)

from Appendix A. Derivation of φY (z) with respect to z yields

dψY (z)
dz

= γ(z)− zγ′(z)− 1
z2E [P ]

.

By Equation (44), taking the limit of this as z goes to zero results in a
0/0-expression as γ(0) = 1. Application of l’Hôpital’s rule yields

lim
z→0

dφY (z)
dz

= − γ′′(0)
2E [P ]

.

Here, as in the rest of the text, the above notation is defined by

γ(i)(0) = lim
z→0

diγ(z)
dzi

.

7It can be shown that the limiting probability density function for age A(t) is the same
as for residual life Y (t).
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Now, since γ′′(0) = E
[
P 2],

E [Y ] = (−1)φ′′Y (0) = E
[
P 2]

2E [P ]
.

Written in terms of the variance of the processing times, Var [P ] =
E
[
P 2]− (E [P ])2, the first moment of residual life Y becomes

E [Y ] = E [Pk]
2

+ Var [Pk]
2E [Pk]

.

From this E [Y ] ≥ 1
2E [P ] and growing with Var [P ].

In case of the processing times being exponentially distributed with rate
1/λ, the expected residual life of a selected processing interval is E [Y ] =
1/λ = E [P ]. That is, when a Poisson process is randomly intercepted, one
expect to observe 2/λ time between two successive processing completions,
even though the expected time between two completions is 1/λ for that
process.

B.2 The elementary renewal theorem

The result of the elementary renewal theorem is important in the discussion
of steady state probabilities.

Let N(t) be the number of renewals in an interval of length t. The ex-
pected number of renewals in an interval of length t is called the renewal
function and denoted by E [N(t)]. Properties of this function are discussed
by Ross (2007, page 419–423). The essence of the elementary renewal theo-
rem is

lim
t→∞

E [N(t)]
t

= 1
E [P ]

(55)

(Ross, 2007, page 425). Here E [P ] is the expected length of a renewal
interval and thus the expected time between renewals. r = 1/E [P ] is called
the rate of the renewal process. It is quite intuitive that the average rate at
which renewals occur is 1 per every E [P ] time units.

C Source code

This appendix contain the source code used for simulations of the train
problem. The code is written in R (R Development Core Team, 2010), a free
software environment for statistical computing and graphics.

The function Queue is used to calculate waiting time for a given set of
arriving trains. The advantage of the function is that it can handle any form
for requests and does not depend on the arrival process being Markovian.
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Queue <- function(arrival, process, priority, phi) {
# Computes flow-time and waiting time for a given set of job arrivals to a
# combined preemptive/non-preemptive priority queue.
#
# Args:
# arrival: vector of sorted arrival times in absolute time
# process: vector of processing times associated with the arrival times
# given in arrival.
# priority: vector of integers (1,...,N) giving the priority of the jobs
# arriving according to the arrival times given in arrival.
# phi: a vector of the porportion of processing time the different
# classes must complete before the system becomes non-preemptive.
# phi[k] is the treshold associated with priority class k.
#
# Returns:
# A list containg vectors of
# * corresponding priorities
# * flow-time
# * waiting time
# The vectors correspond to the entries of the given arrival and process.

# Error handling
if (length(arrival) != length(process)) {

stop("Arguments arrival and process have invalid lengths: ",
length(arrival), " and ", length(process), ".");

}
# Initiating the system

pri.classes <- seq(1:max(priority));
machine.available <- 0;
starttimes <- c();
stoptimes <- c();
i <- rep(0,max(priority)); # Position in sub-arrival time vector.
n <- c(); # Number of jobs in the different priority classes.
first.arrival <- c(); # Arrival time of first class k job to be processed.
first.process <- c(); # Processing time of first class k job to be processed.

# Set up subset of arrivals and processingtimes
subset.arrival <- list(NULL);
subset.process <- list(NULL);
for (l in pri.classes) {

subset.arrival[[l]] <- subset(arrival,priority==l);
subset.process[[l]] <- subset(process,priority==l);

}
for (l in pri.classes) {

n <- c(n,length(subset.arrival[[l]]));
first.arrival <- c(first.arrival, subset.arrival[[l]][i[l]+1]);
first.process <- c(first.process, subset.process[[l]][i[l]+1]);

}
# Remove priority classes not present

remaining.classes <- pri.classes[which(!n==0)];
remaining.phi <- phi[which(!n==0)];
first.arrival <- first.arrival[which(!n==0)];
first.process <- first.process[which(!n==0)];

# Calculate when job reaches their critical point if starting as soon as
# possible. The job with lowest critical.point value is processed first.

critical.point <- first.arrival + remaining.phi*first.process;
if (length(remaining.classes) > 1) {

for (j in length(remaining.classes):2) {
if (critical.point[j] > min(first.arrival[1:(j-1)])) {

critical.point[j] <- Inf;
}

}
}
class <- remaining.classes[which(critical.point
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==min(critical.point))];
global.index <- which(priority==class)[i[class] + 1];
starttimes[global.index] <- arrival[global.index];
machine.available <- arrival[global.index] + process[global.index];
stoptimes[global.index] <- machine.available;
i[class] <- i[class]+1; # Update class pointer
while (!all(i==n)) {

# Remove classes finished completely
keep <- c();
for (j in 1:length(i)) {

if (i[j]!=n[j]) {
keep <- c(keep,j);

}
}
remaining.classes <- pri.classes[keep];
remaining.phi <- phi[keep];

# Find next job to be processed, and update starttimes/stoptimes
first.arrival <- c();
first.process <- c();
for (l in remaining.classes) {

first.arrival <- c(first.arrival, subset.arrival[[l]][i[l]+1]);
first.process <- c(first.process, subset.process[[l]][i[l]+1]);

}
critical.point <- c();
begin.process <- c()
for (l in 1:length(remaining.classes)) {

if (first.arrival[l] < machine.available) {
critical.point <- c(critical.point, machine.available

+ remaining.phi[l]*first.process[l]);
begin.process <- c(begin.process, machine.available);

}
else {

critical.point <- c(critical.point, first.arrival[l]
+ remaining.phi[l]*first.process[l]);

begin.process <- c(begin.process, first.arrival[l]);
}

}
if (length(remaining.classes) > 1) {

for (j in length(remaining.classes):2) {
if (critical.point[j] > min(first.arrival[1:(j-1)])) {

critical.point[j] <- Inf;
}

}
}
local.index <- which(critical.point==min(critical.point))[1];
class <- remaining.classes[local.index];
global.index <- which(priority==class)[i[class] + 1];
starttimes[global.index] <- begin.process[local.index];
machine.available <- begin.process[local.index] + process[global.index];
stoptimes[global.index] <- machine.available;
i[class] <- i[class] + 1; # Update class pointer

}
# Calculate flow-time and waiting time

flow.time <- stoptimes - arrival;
waiting.time <- starttimes - arrival;

# Construct list with results to return
result <- list(priority=priority,

stop=stoptimes,
start=starttimes,
flow=flow.time,
waiting=waiting.time);

return(result);
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}

The function in GenerateQueue was used to generate train arrivals with
exponential inter-arrival time.

GenerateQueue <- function(rate, mean.process, kPeriod) {
# Generates input vectors to the function Queue() under the assumption of
# deterministic processing times and exponentially distributed inter-arrival
# times for each priority class. Note: phi[1] should always be 0.
#
# Args:
# rate: Vector of arrival rates corresponding to the priority
# classes
# mean.process: Vector of mean processing time of corresponding priority
# class.
# kPeriod: Constant, giving the period jobs arrive at the system
#
# Returns:
# A list with sorted arrival times and corresponding priority and process
# vector containing priority and processing time of each arriving
# job, respectively.
total.int.arrival <- c();
priority <- c();
process <- c();
arrival.rate <- c();

for (i in 1:length(rate)) {
inter.arrival <- rexp(1,rate[i]); # sub inter-arrival time
while (sum(inter.arrival) < kPeriod) {

new.int.arrival <- rexp(1,rate[i]); # draw a new inter-arrival time
if (sum(inter.arrival) + new.int.arrival < kPeriod) {

inter.arrival <- c(inter.arrival, new.int.arrival);
}
else {

break;
}

}
if (sum(inter.arrival) > kPeriod) {

inter.arrival <- c();
}
absolute.arrival <- cumsum(inter.arrival);
total.int.arrival <- c(total.int.arrival, absolute.arrival);
priority <- c(priority, rep(i, length(absolute.arrival)));
process <- c(process, rep(mean.process[i], length(absolute.arrival)))
arrival.rate <- c(arrival.rate, rep(rate[i], length(absolute.arrival)))

}
priority <- priority[order(total.int.arrival)];
process <- process[order(total.int.arrival)];
arrival.rate <- arrival.rate[order(total.int.arrival)];
arrival <- sort(total.int.arrival);
result <- list(arrival=arrival,

rate=arrival.rate,
priority=priority,
process=process);

return(result);
}
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