International workshop on Renewable Energy and Hydrogen Export

Hydrogen Supply Chain with Long Distance Transport

24th, March, 2015

Kawasaki Heavy Industries, Ltd.

Corporate Technology Division

Products

Aerospace (Boeing 787)

Motorcycles

Gas turbine power generation

Transportation Energy · Environment

Refuse incineration

Rolling stock (Shinkansen)

Ships(LNG carrier)

Energy plant (Coal-fired power generation plant)

Products for Hydrogen

Fertilizer Plant (Hydrogen production)

H-II rocket fuel hydrogen storage tank

Liquefied hydrogen storage tank

Liquefied hydrogen container

High pressure hydrogen gas trailer

- 1. Circumstances of energy resources
- 2. Movement to hydrogen utilization
- 3. Concepts of hydrogen supply chain
- 4. Technologies for hydrogen infrastructure
- 5. Progress of the project

- 1. Circumstances of energy resources
- 2. Movement to hydrogen utilization
- 3. Concepts of hydrogen supply chain
- 4. Technologies for hydrogen infrastructure
- 5. Progress of the project

The World Energy Consumption

Domestic Energy Demand

·Simulation of hydrogen supply

Conditions

- Available supplies of CO₂-free-hydrogen at 25 ~ 45 Japanese yen/Nm³(CIF: cost insurance and freight)
- ·Restriction on CO₂ by 2020 : -15%, by 2050 : -80% (As compared to 1990)
- · Difficult to combine with CCS domestically

Search for the lowest economic burden on citizens caused by energy supply and CO_2 emission reduction

* This simulation has been done using the simulator GRAPE by The Institute of Applied Energy.

Future Hydrogen Supply

Prediction of hydrogen supply (primary energy supply)

- ·In 2020, introduction of hydrogen (hydrogen cost: CIF25 yen/Nm³)
- \cdot Switching to CO₂-free fuels is necessary by 2050
- \cdot In 2050, hydrogen demand is more than 20% even if hydrogen costs 45 yen/Nm³

- 1. Circumstances of energy
- 2. Movement to hydrogen utilization
- 3. Concepts of hydrogen supply chain
- 4. Technologies for hydrogen infrastructure
- 5. Progress of the project

Japanese Government Energy Policy

In April 2014, the Japanese Government released the "Strategic Energy Plan". Hydrogen is expected to play a central role in the future energy system:

- Dissemination of residential use stationary fuel cell
- Introduction and dissemination of Fuel Cell Vehicles (FCV)
- Introduction of hydrogen power generation
- Introduction and dissemination of a large scale production, transportation and storage of hydrogen (derived from unutilized brown coal and other sources)
- Draw up the "Strategic Roadmap for Hydrogen and Fuel Cell"

Strategic Road Map for Hydrogen and Fuel Cell

Expansion of hydrogen use <u>Phase 1</u>

<u>2015</u>

Release FCV onto the market

<u>2020</u>

Achieving a reduction of hydrogen price to a level equal to or lower than that of fuels for hybrid vehicles

<u>2025</u>

Achieving a reduction of FCV prices to the level of hybrid vehicles

Hydrogen power generation / Large scale hydrogen supply system Phase 2

Mid 2020s

Introduction of hydrogen from overseas

Around 2030

Production, transportation and storage of hydrogen derived from unutilized energy resources imported from overseas

2. Movement to Hydrogen

Demand Growth "FCV to Olympic/Paralympics"

- 1. Circumstances of energy resources
- 2. Movement to hydrogen utilization
- 3. Concepts of hydrogen supply chain
- 4. Technologies for hydrogen infrastructure
- 5. Progress of the project

3. H₂ Supply Chain Concepts of CO₂ Free Hydrogen Supply Chain

Brown Coal

- Brown coal is a fossil fuel with vast deposit, younger than black coal
- High moisture (50%-60%)
- Difficult to transport due to its spontaneous ignition
- Locally used for coal thermal power generation

- NO transport makes no trade meaning mining right only "abandoned", "cheep" and "easy interests" resource.
- Accordingly, hydrogen production from brown coal is one of the most economic schemes.

3. H₂ Supply Chain

Australian Brown Coal

Brown coal field to horizon line.One layer from surface to 250m depth and further underneath.(Corresponding 240 years of Japans gross generation)

CCS: CO₂ Storage Location

(CCS:CO₂ Capture and Storage)

Federal and Victorian state governments are promoting CCS project named "CarbonNet".

Liquefied Hydrogen for Mass Transport

Feature of liquefied hydrogen

- Very low temperature : boiling point at -253
- Volume : 1 / 800 of gaseous states
- Already implemented transportation medium for process usage and space rocket fuel.
- High purity = no need for refinement (readily usable for fuel cell after vaporization)

Storage tanks largest in Japan (Tanegashima rocket launch base)

LNG carrier ship (mass energy transport)

3. H₂ Supply Chain Feasibility Study on Commercial Supply Chain

- Coproduced CO₂ disposal
- Hydrogen production

: locally sequestrated

CO₂ free

770t/day corresponding fuel for
3 million FCVs or 1GW power station

3. H₂ Supply Chain Cost Evaluation of Feasibility Study(FS)

CIF (Cost Insurance and Freight) = 29.8yen/Nm³ (1.96 NOK/Nm³)

Carrier	9%
Loading base	11%
Liquefaction	33%
Hvdrogen pipeline	
Production	29%
CO ₂ storage	10%
Brown coal	8%

[Scale]

3 million FCVs or 1GW power station

 Items above production use Japanese technologies and products

Half of the consideration returns to Japan

FCV

Hydrogen power station

21

Powering your potential

Comparison of Fuel Economy; FCV vs Existing

Hydrogen fuel provides benefit to the present petroleum price. Further benefit is expected if petroleum price goes up in the future.

Comparison of Unit Cost of Power Generations

Most cheap among CO₂ free energies, though more expensive than the fossil and nuclear powers.

Cheaper, more stable and vast as compared to the renewables.

Concept of Mass Hydrogen Introduction

- 1. Circumstances of energy resources
- 2. Movement to hydrogen utilization
- 3. Concepts of hydrogen supply chain
- 4. Technologies for hydrogen infrastructure
- 5. Progress of the project

Hydrogen Liquefaction

Original key hard, expansion turbine, realizes hydrogen liquefaction system

Liquefied Hydrogen Carrier Ship

For realization of the world first liquefied hydrogen carrier ship

Production Trans./store. Utilization

Unique dome structure to keep vacuum - Vacuum dual shell with stainless steel Highly insulated support structure

Approval in principal is provided from ClassNK

Cargo tank

Storage of Liquefied Hydrogen

Liquefied hydrogen tank

Boil off rate: 0.18%/day

Production Trans./store. 🕁 Utilization

Specifications		
Туре	Spherical double-shelled tank	
Volume	540m ³	
Pressure	0.686MPa + vacuum	
Temperature	-253	
Thermal Insulation	Vacuum perlite powder insulation	

27

4. Tech. for Hydrogen

Onshore Transport of Liquefied Hydrogen

Liquid hydrogen container truck

Production 🔿 Trans. / store. 🔿 Utilization

Specifications	
Туре	ISO 40ft-type container
Volume	45.6m ³
Liquid H2 Load Capacity	2.9 tons
Thermal Insulation	Vacuum multilayer insulation
Auxiliary	Evaporator for pressurized gas

4. Tech. for Hydrogen

Utilization

Hydrogen Gas Turbine Generator

Combustion technologies being developed

Key hard : combustor

Hydrogen burner

Trans./store.

Production

29

- 1. Circumstances of energy resources
- 2. Movement to hydrogen utilization
- 3. Concepts of hydrogen supply chain
- 4. Technologies for hydrogen infrastructure
- 5. Progress of the project

Progress of Hydrogen Project

5. Progress

Feasibility Study on Pilot Chain (10t/day)

Conceptual design is completed

Capital cost is roughly estimated

Move onto basic design

Cargo containment system of pilot-scale liquefied hydrogen carrier ship is provided world first approval in principal

"HyGrid" Society for The Study on Smart Energy

Society comprised of diversified energies via electricity and hydrogen

Members

Iwatani corp., Kawasaki Heavy Industries, Ltd. (chair), International Institute for Carbon-Neutral Energy Research (I2CNER), Research Institute for Systems Technology, Technova Inc. (secretariat), Toyota Motor Corporation, Toyota Tsusho corp., Nissan Motor Co., Ltd., Honda R&D Co., Ltd., Mitsui & Co., Ltd., Roland Berger Strategy Consultants. (As of Dec., 2013)

5. Progress

Aim of HyGrid

Compensate large fluctuation of renewable energies

5. Progress

Hydrogen Potential from Overseas

Impact of CO₂ Free Hydrogen Supply Chain

Stable Supply

·Hydrogen from fossil fuel linked with CCS will realize vast and affordable energy supply.

Contribute energy security (Australian brown coal corresponds 240 years of gross generation in Japan)

Environment

•No CO₂ emission when used (Only water is emitted) "Ultimate clean energy"

Increase Industrial Competitiveness

- •Wide use of hydrogen brings Industrial growth Deployment of Infrastructure export.
- For resource rich countries, hydrogen production started from fossil fuel gradually shifted to the renewables.
 Sustainability!

Thank you for your attention

Create new value - for a better environment and a brighter future for generations to come "Global Kawasaki"

Kawasaki Heavy Industries, Ltd. 1 - 14 - 5, Kaigan, Minato - ku, Tokyo 105 - 8315, Japan Tel: 03 - 3435 - 2259 Fax.03 - 3435 - 2081 http://www.khi.co.jp

