01c - Introduction - scikit-learn

January 15, 2017

1 scikit-learn

scikit-learn is the most prominent Python library for machine learning:

- Contains many state-of-the-art machine learning algorithms
- Offers comprehensive documentation about each algorithm.
- Widely used, and a wealth of tutorials and code snippets are available online.
- scikit-learn works well with numpy, scipy, pandas, matplotlib,...

1.1 Algorithms

See the Reference

Supervised learning:

- Linear models (Ridge, Lasso, Elastic Net, ...)
- Support Vector Machines
- Tree-based methods (Classification/Regression Trees, Random Forests,...)
- Nearest neighbors
- Neural networks
- Gaussian Processes
- Feature selection

Unsupervised learning:

- Clustering (KMeans, ...)
- Matrix Decomposition (PCA, ...)
- Manifold Learning (Embeddings)
- Density estimation
- Outlier detection

Model selection and evaluation:

- Cross-validation
- Grid-search
- Lots of metrics

1.1.1 Data import

Multiple options:

- A few toy datasets are included in sklearn.datasets
- You can import data files (CSV) with pandas or numpy
- You can import 1000s of machine learning datasets from OpenML

1.2 Example: classification

Classify types of Iris flowers (setosa, versicolor, or virginica) based on the flower sepals and petal leave sizes. Iris

```
In [9]: from preamble import * # Imports to make code nicer
%matplotlib inline
HTML('''<style>.CodeMirror{min-width:100% !important;}</style>''') # For slides
```

Out[9]: <IPython.core.display.HTML object>

Note: scikitlearn with return a Bunch object (similar to a dict)

The targets (classes) and features are stored as lists, the data as an ndarray

 $\begin{bmatrix} 5.1 & 3.5 & 1.4 & 0.2 \\ [4.9 & 3. & 1.4 & 0.2] \\ [4.7 & 3.2 & 1.3 & 0.2] \\ [4.6 & 3.1 & 1.5 & 0.2] \\ [5. & 3.6 & 1.4 & 0.2] \end{bmatrix}$

The targets are stored separately as an ndarray, with indices pointing to the features

Target:

1.2.1 Measuring Success: Training and testing data

To know whether a classification model is any good, we need to test it on unseen data. Therefore, we need to split our data in training and test data.

train_test_split will split the data randomly in 75% training and 25% test data.

Note: there are several problems with this approach that we will discuss later:

- Why 75%? Are there better ways to split?
- What if one random split yields significantly different models than another?
- What if all examples of one class all end up in the training/test set?

1.2.2 First things first: Look at your data

Let's use pandas to visualize our data.

1.2.3 Building your first model

All scikitlearn classifiers follow the same interface

```
In []: class SupervisedEstimator(...):
    def __init__(self, hyperparam, ...):
    def fit(self, X, y): # Fit the training data (build a model)
        ... # given data X and targets y
        return self
    def predict(self, X): # Use the trained model to make predictions
        ... # on unseen data X
        return y_pred
    def score(self, X, y): # Evaluate the model: predict and compare to true labels y
        ...
        return score
```

1.2.4 K nearest nearest neighbors

- Simplest 'learning' algorithm
- Just stores the training set (in a special data structure)
- To make a prediction for a new data point, find the *k* points in the training set that are closest to the new point.
- Return the class that is most prevalent among the *k* training points

- Can also return a probability for each class given the distribution

kNN

kNN is included in sklearn.neighbors, let's build our first model

```
In [13]: from sklearn.neighbors import KNeighborsClassifier
    knn = KNeighborsClassifier(n_neighbors=1)
    knn.fit(X_train, y_train)
```

1.2.5 Making predictions

Let's create a new example and ask the kNN model to classify it

1.2.6 Evaluating the model

Feeding all test examples to the model yields all predictions

We can now just count what percentage was correct

```
In [30]: print("Test set score: {:.2f}".format(np.mean(y_pred == y_test)))
Test set score: 0.97
```

The score function does the same thing (by default)

```
In [31]: print("Test set score: {:.2f}".format(knn.score(X_test, y_test)))
Test set score: 0.97
```

1.3 Summary

This is all you need to train and evaluate a model

1.4 The road ahead

This is NOT how we *actually* build and evaluate machine learning models There are many more things to take into account:

- How to build optimal train/test splits?
- Is the percentage of correct predictions actually a good evaluator?
- Which other algorithms can I try to build models?
- How do we tune the hyperparameters (e.g. the *k* of kNN)?
- What if the data has missing values, outliers, noise,...?
- Which features can we actually use to build models?
- Will future examples be anything like our current data?

In []: