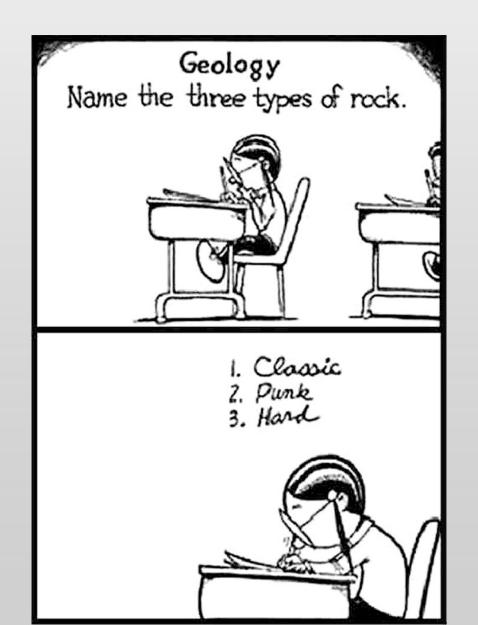

NLP Technologies for Cognitive Computing Lecture 3: Word Senses


Devdatt Dubhashi

LAB

(Machine Learning. Algorithms, Computational Biology) Computer Science and Engineering Chalmers

Why Language is difficult ..

WSI and WSD

- Word sense induction (WSI): the automatic identification of the <u>senses of a word (i.e.</u> <u>meanings).</u>
- Word sense disambiguation (WSD): identifying which sense of a word (i.e. meaning) is used in a sentence, when the word has multiple meanings.

WSI and WSD: Two approaches

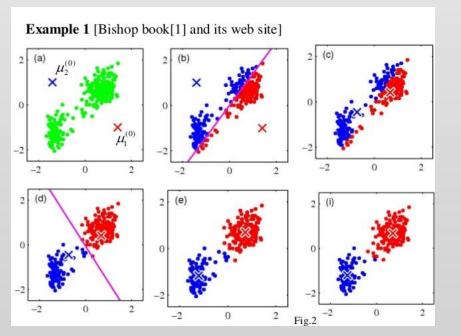
Knowledge Based

Corpus Based/Data Driven

- Greater coverage
- Novel senses (previously unknown)

- Detailed
- Interpretable'
- High quality

WORD SENSE INDUCTION


Context and Target Vectors in word2vec

- Assign to each word *w*, a target vector u_w and a context vector v_w in R^d
- Target vector represents the meaning of the word
- Context vector represents the word when it is used in the context of another word.

Key Idea: Cluster contexts

- For each word, look at all the contexts in which it occurs in the corpus
- Clustering those context vectors should give information about its different senses – the Distributional Hypothesis!

K-Means Clustering

- Initialze k centers $c_1...c_k$
- Repeat until convergence:
 - Assign each point x_j to
 its closest center, call the
 set assigned to c_i, C_i
 - Recompute the centers: $c_i = \frac{1}{|C_i|} \sum_{j \in C_i} x_j$

Centers: How many and which?

- Performance of k Means depends very strongly on :
 - Where the initial centers are chosen at the start
 - How many centers are chosen, the parameter k.

How to Initialize I

- Pick k random points
- Pick k points at random from input points
- Assign points at random to k groups, and take their centroids as initial centers
- Pick first center at random, take next center as far away from first, take next as far away from first two ...

K Means ++

- Let $d(x, C) := \min_{c \in C} d(x, c)$
- Start with C₁ containing a single point picked from input uniformly at random
- For $k \ge 2$, let

 $-C_{L}$

$$c^* = \operatorname{argmax} \left\{ \frac{d^2(x, C_{k-1})}{\sum_y d^2(y, C_{k-1})} \right\}$$

- D. Arthur, S. Vassilvitskii (2007): $O(\log n)$ approximation to the optimal.
- Disadvantage: needs k passes through input, running time O(nkd)

CHALMERS

$AFK - MC^2$ (NIPS 2016)

MCMC approach to sampling from the target distribution.

Algorithm 1 ASSUMPTION-FREE K-MC²(AFK-MC²) **Require:** Data set \mathcal{X} , # of centers k, chain length m // Preprocessing step 1: $c_1 \leftarrow$ Point uniformly sampled from \mathcal{X} 2: for all $x \in \mathcal{X}$ do 3: $q(x) \leftarrow \frac{1}{2} d(x, c_1)^2 / \sum_{x' \in \mathcal{X}} d(x', c_1)^2 + \frac{1}{2n}$ // Main loop 4: $C_1 \leftarrow \{c_1\}$ 5: for i = 2, 3, ..., k do $x \leftarrow$ Point sampled from \mathcal{X} using q(x)6: 7: $d_x \leftarrow \operatorname{d}(x, C_{i-1})^2$ 8: **for** j = 2, 3, ..., m **do** 9: $y \leftarrow$ Point sampled from \mathcal{X} using q(y) $d_{y} \leftarrow d(y, C_{i-1})^2$ 10: if $\frac{d_y q(x)}{d_x q(y)} > \text{Unif}(0,1)$ then $x \leftarrow y, d_x \leftarrow d_y$ 11: $C_i \leftarrow C_{i-1} \cup \{x\}$ 12: 13: return C_k

$$q(x \mid c_1) = \frac{1}{2} \underbrace{\frac{d(x, c_1)^2}{\sum_{x' \in \mathcal{X}} d(x', c_1)^2}}_{(A)} + \frac{1}{2} \underbrace{\frac{1}{|\mathcal{X}|}}_{(B)}.$$

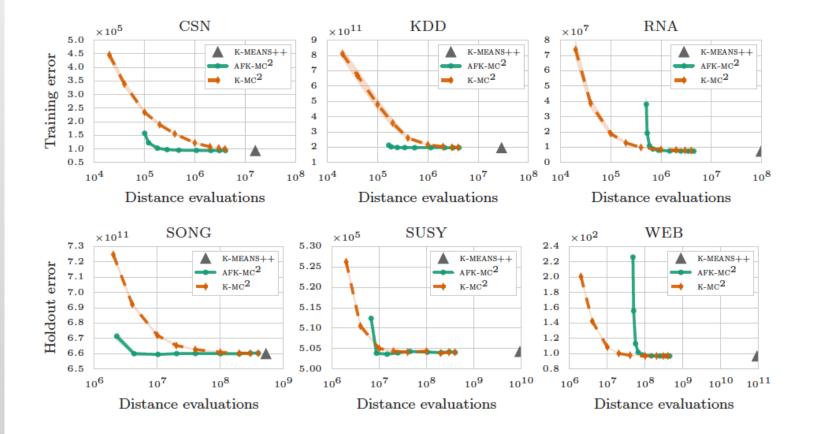
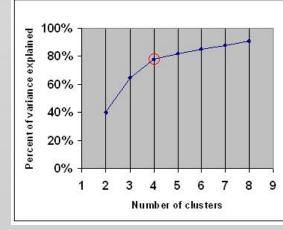


Figure 2: Quantization error in relation to the number of distance evaluations for ASSUMPTION-FREE K-MC², K-MC² and k-means++. ASSUMPTION-FREE K-MC² provides a speedup of up to several orders of magnitude compared to k-means++. Results are averaged across 200 iterations and shaded areas denote 95% confidence intervals.

Non-parametric clustering: k?


• Intra-cluster variance:

$$W_k := \frac{1}{|C_k|} \sum_{\mathbf{x}_i \in C_k} (\mathbf{x}_i - \mathbf{c}_i)^2$$

• $W = \sum_k W_k$

- Heuristic: Choose k to minimize W
- Elbow Heuristic
- Gap-Statistic: Choose minimum k

 $\operatorname{Gap}(k) \ge \operatorname{Gap}(k+1) - s_{k+1}.$

$$\operatorname{Gap}_n(k) = E_n^* \{ \log W_k \} - \log W_k$$

CHALMERS

Non-parametric clustering via convex relaxations: SON

$$\min_{\mu} \sum_{i} \|x_i - \mu_i\|^2 + \lambda \sum_{i < j} \|\mu_i - \mu_j\|_2$$

Goodness of fit

regularization

Quiz

• If we ignore the second (regularization) term, what is the optimal solution to the problem?

SON: Sparsity inducing norm

- The regularization term is a group norm penalty: it will force $\mu_i = \mu_j$ many centroid pairs (μ_i, μ_j) .
- Thus for appropriate λ the right number of clusters will be identified automatically tailored to the data without user intervention.

SON versus k-means

- No need to specify k
- Can be used incrementally: as data comes in, the number of clusters adjusts automatically.
- Convex problem, hence unique optimum and no problems of initialization etc.
- Solved efficiently for large data sets by stochastic proximal gradient descent.

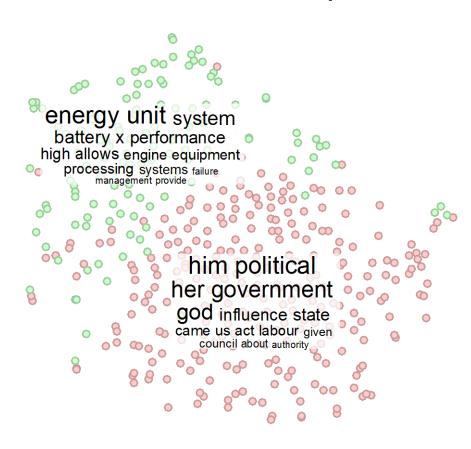
SON properties

- If the input data has a clear cluster structure:
 - a mixture of well separated Gaussians
 - a stochastic block model

Then the SON optimization problem is guaranteed to recover the clusters perfectly.

ICE Clustering of Context Vectors

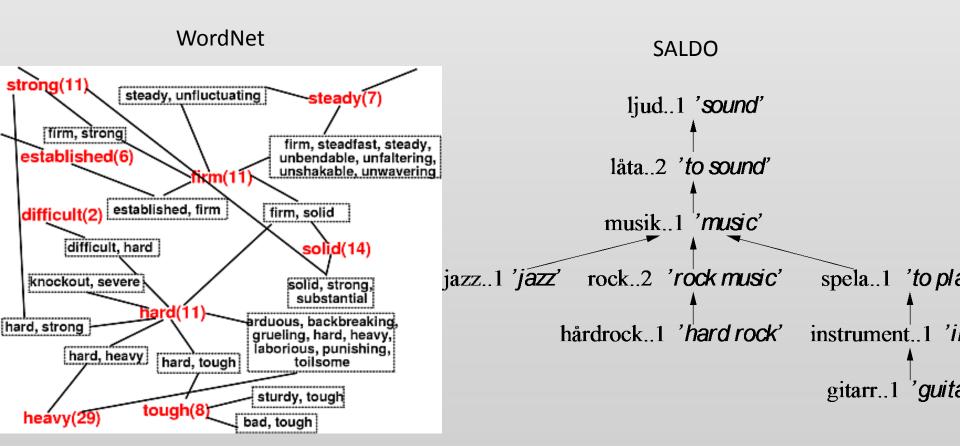
• For each word occurrence w, form the weighted centroid of its context vectors:


$$c_w = \sum_{w' \in N(w)} \alpha_{w,w'} v_{w'}$$

•
$$\alpha_{w.w'} = \sigma(u_w v_{w'})$$

- Also use a triangular context window to give higher weight to words closer to target.
- Now apply k-means to the centroid vectors c_w

Word sense induction


Instance cloud for: 'power'

M. Kageback, F. Johansson et al, "Neural context embeddings for automatic discovery of word senses", (NAACL 2015 workshop on Vector Space Modeling for NLP)

CHALMERS

Semantic Ontologies

Fitting word vectors to ontologies

- Split each word vector into vectors corresponding to its different *senses*
- Assign the vector for a particular sense to the corresponding node of the semantic network.

Two Objectives

- For each word vector u_w, compute vectors u_{w1},...,u_{wr} corresonding to its r different senses in the network
- Minimize reconstruction error:

 $\|\mathbf{u}_w - \alpha_1 \mathbf{u}_{w_1} - \dots - \alpha_s \mathbf{u}_{w_s}\|^2$

• Maximize fit to network: CBOW model

$$\sum_{w' \in N_G(w)} \log \frac{1}{1 + e^{-\mathbf{u}_{w_i} \cdot \mathbf{v}_{w'}}}$$

Overall Optimization Problem

$$\min \quad \|\mathbf{u}_w - \alpha_1 \mathbf{u}_{w_1} - \dots - \alpha_s \mathbf{u}_{w_s}\|^2$$
$$- \sum_{w' \in N_G(w)} \log \frac{1}{1 + e^{-\mathbf{u}_{w_i} \cdot \mathbf{v}_{w'}}}$$

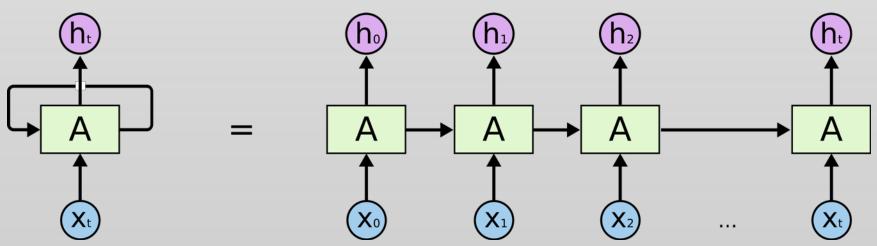
http://demo.spraakdata.gu.se/richard/scouse/

- What kind of optimization problem is this?
- What method would you use to solve it?

WORD SENSE DISAMBIGUATION

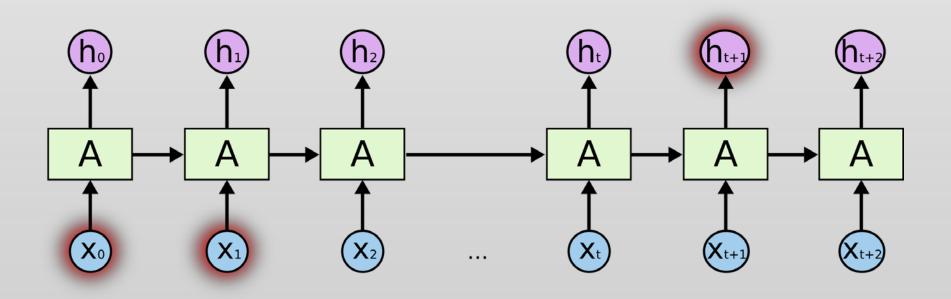
WSD: Use context

- Given an occurrence of a word in a text, to disambiguate which sense is being used ...
- ... use the surrounding context.
- Use sense vectors and context vectors from word2vec!

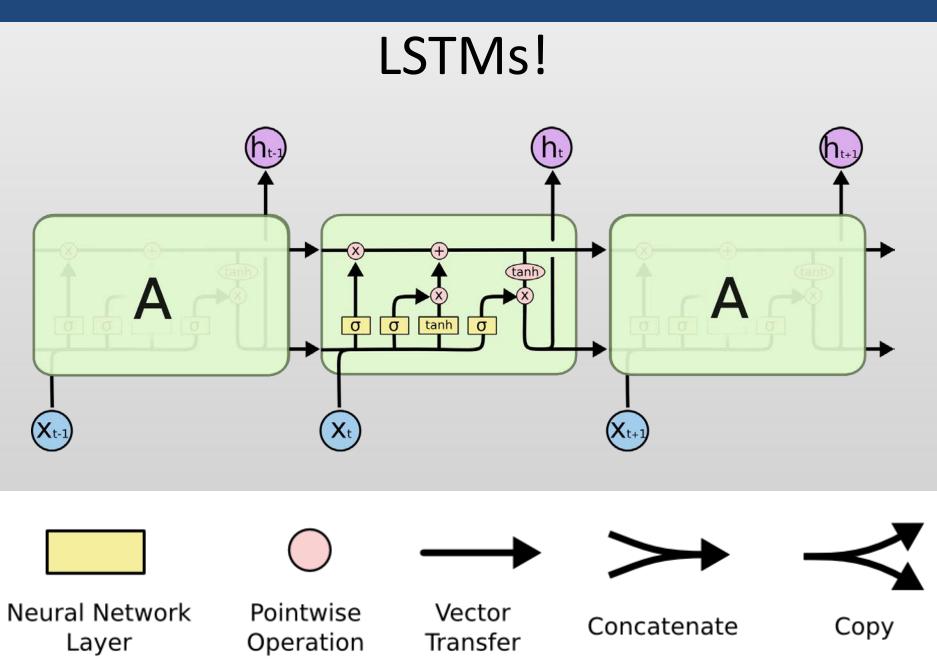

CBOW approach
$$P(w_s \mid w') = \frac{1}{1 + e^{-\mathbf{u}_{w_s} \cdot \mathbf{v}_{w'}}}$$

$$P(w_s \mid w'_1, w'_2, \cdots, w'_n) = P(w_s \mid w'_1) P(w_s \mid w'_2) \cdots P(w_s \mid w'_n)$$

 $argmax_s \log P(w_s \mid w_1') + \log P(w_s \mid w_2') + \dots + \log P(w_s \mid w_n')$

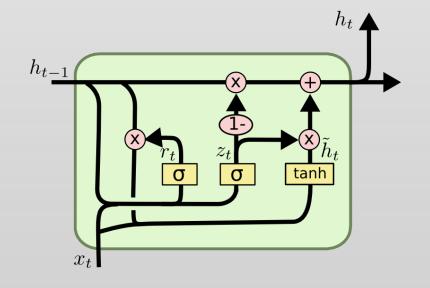

Using Order of Words: RNNs

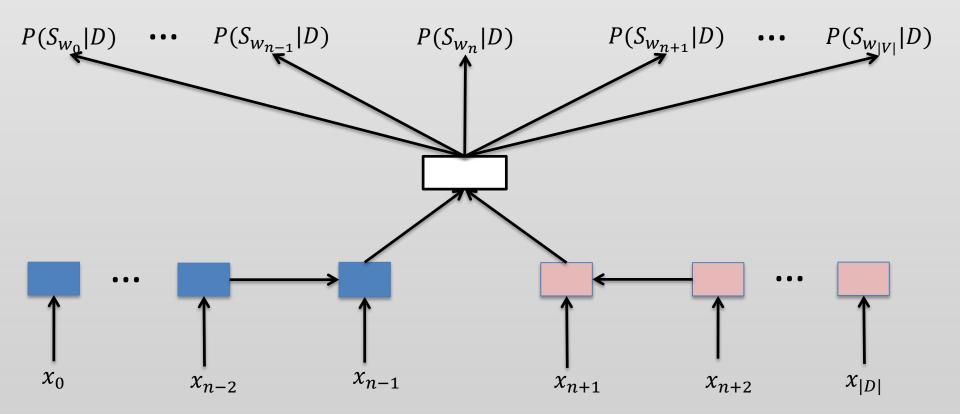
- Can we use the order/sequence of words in the context?
- RNNs!



CHALMERS

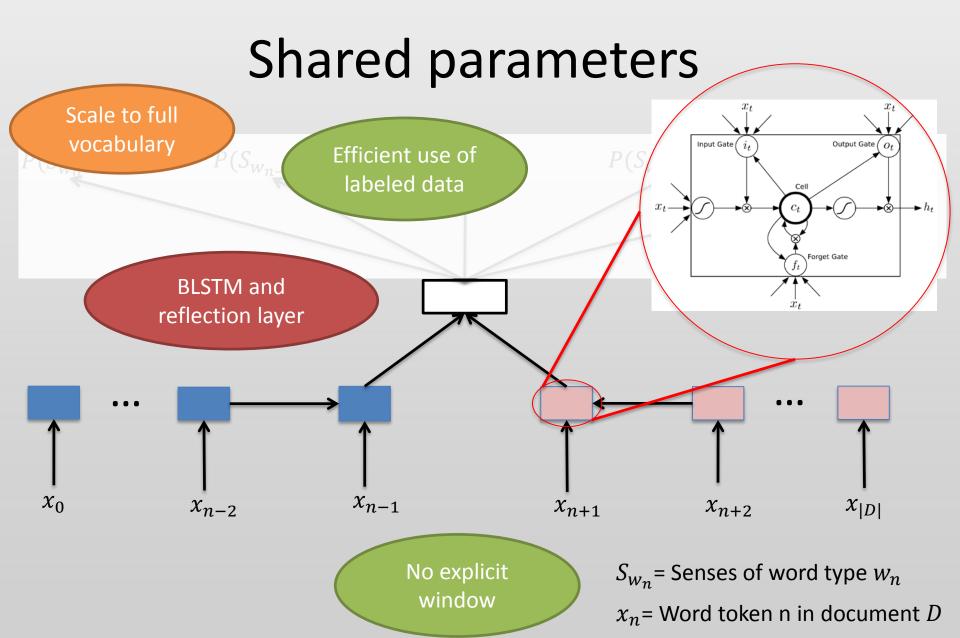
Use long range dependence




GRUs

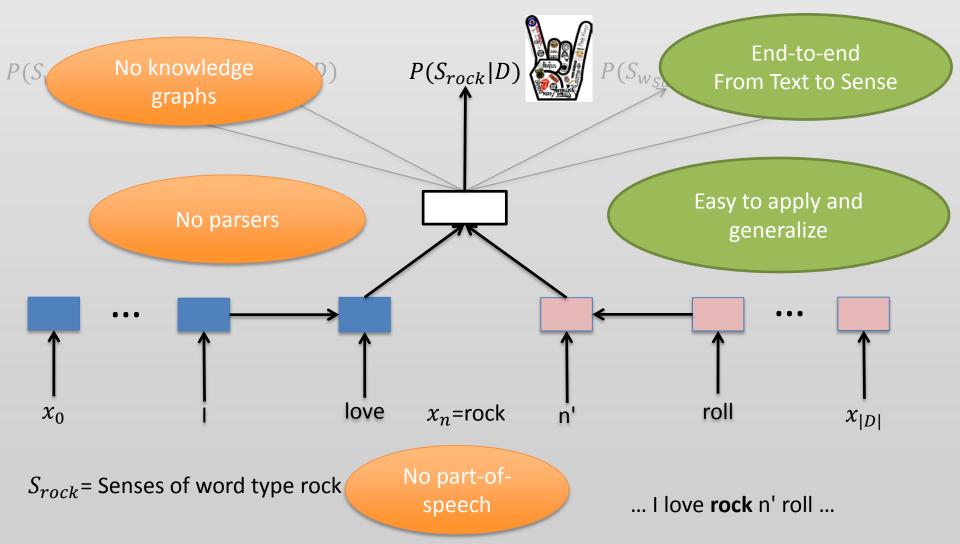
$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$
$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

CHALMERS


WSD: A BLSTM Model

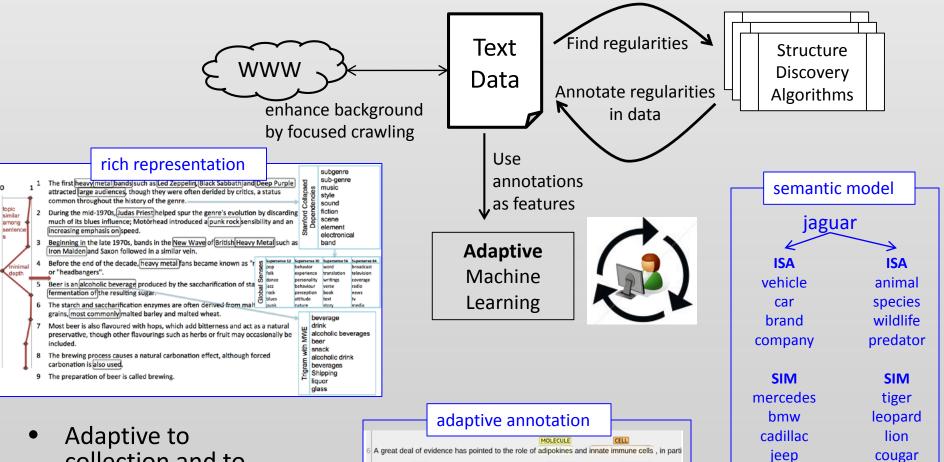
Kågebäck and Salomonsson, *CogAlex, Coling* 2016 https://bitbucket.org/salomons/wsd S_{w_n} = Senses of word type w_n

 x_n = Word token n in document D


CHALMERS

No hand crafted features

Example - rock


Using Sense Vectors

- Sense vectors useful in many downstream NLP tasks, also in machine translation.
- Sense vectors also useful in document summarization: first disambiguate the sense of each word occurrence, then compose sense vectos to form vector for sentences.

Moderna Parallella Fornsvenska Litteraturbanken Kubhist Historiskt Fler 🛛	Referera till Korp Svenska English 🙏 🚺 🙀
VEDD	
123 av 203 korpusar valda — 1,75G av 9,23G token +	
Enkel Utökad Avancerad Jämförelse	
Sök 👻	
även som 🗌 förled 🗌 efterled och 🗋 skiftlägesoberoende	
KWIC: träffar per sida: 25 📀 sortera inom korpus på: förekomst 📀 Statistik: sammanställ på: ord 🔻 🔍 Visa ordbild 🔍 Visa karta	
KWIC Statistik Ordbild Karta	Korpus
Antal träffar: 22	SUC 3.0
((1))) Visa kontext	Textattribut
SUC 3.0 (stödjer ej utökad kontext)	
juda kirurgöverläkaren och hans assistenter att gå in i personalmatsalen i sina lätt blodiga rockar, krävde dock både diplomatiskt handlag och en viss fasthet hos direktionsord Hon knäppte rocken och rättade till namnbrickan och pennhållaren i plast som stack upp ur bröst	text: ce02d
າ medkänsla: vad försöker de egentligen dölja med sin bestämda gång och sina tillknäppta rockar ? Fast kosackerna gav honom en rock som tröst.	Ordattribut
Tamt om rockens baksidor	ordklass: substantiv
som får ' Pour le mérite ' på sin rock . Terspeuten har krittradersandig kestern under den vite, maken, han drack norvätt ur ett alse untten med klivrande iskuber och har store klas	grundform:
Terapeuten bar kritstrecksrandig kostym under den vita rocken , han drack nervöst ur ett glas vatten med klirrande iskuber och bar stora klac gade om vi hade något visum till Palestina plockade jag ivrigt fram det dyrbara pappret ur rockens slitna foder.	rock
Publiken är kort och gott här för att få sig ett bad, en alkoholfri picknickfest och så lite rock som efterrätt.	lemgram: rock ² (substantiv)
Möjligen kan den ringas in av negationer: det är inte 🛛 rock 🛛 , inte jazz, inte klassiskt, inte folklore, inte fusion, inte punk, fast ändå något av	rock (substantiv)
Han stod med händerna djupt nere i fickorna på den vita rocken .	efterled: [tom]
Rock på akustiska instrument - det blir det på Mortens i Uddevalla i morgon onsdag	förled: [tom]
När hon tog av sig rocken för att lämna den till vaktmästaren, visade det sig att hon i stället för varm trö På en krok i väggen hänger kläder - underkläder av finaste ylle, byxor, skjorta, kort rock eller mantel - allt av fint och lent, rent material.	dependensrelation: Subjektspredikativ
h tigande fylkades på den branta, stensatta kajen i en klunga, alla var klädda i ett slags grå rockar som såg ut som gamla sjukhuskläder.	(subjektiv predikatsfyllnad) msd: NN.UTR.SIN.IND.NOM
Hon brukade låta rocken fladdra efter sig som en soldatkappa i stället för att låta den smyga intill figur	sammansatta lemgram: [tom]
utan invändningar: någon gång köpte han till och med den andres tunna tidning, vek den i rockens innerficka och lade den om kvällen ifrån sig på köksbordet.	sammansatta ordformer: [tom]
Längd efter längd av rökt korv försvann in under rockar och ned i ytterfickor.	betydelse:
utövarnas krets, denna gång som ett allmänt genomslag i såväl populärmusik som i jazz-, rock- och konstmusik.	 rock² (0.893)
ska stilar; i Dragspels-Nytt kan man läsa om olika musiker som spelar gammaldans, swing, rock, atonal konstmusik - en stilblandning som knappast kunde byggas upp kring r	Visa fler (1)
- Man borde ha tagit rocken med sig. Lukten av vått ylle från den stora svarta rocken när Zoe gett sig av för alltid.	Visa dependensträd

« < 1 > »

Adaptive Natural Language Processing

collection and to human user

Takeaways: Lecture 3

- Word sense induction and disambiguation are fundamental tasks in NLP
- Clustering is a fundamental unsupervised ML technique
- Word, context and sense embeddings are useful tools in these tasks.
- RNN architectures such as LSTMS and GRUs are powerful tools for these tasks

References

- M. Kågebäck et al, <u>Neural context embeddings for automatic</u> <u>discovery of word senses</u> (NAACL 2015 workshop on Vector Space Modeling for NLP)
- T. Hocking et al, "Clusterpath: an Algorithm for Clustering using Convex Fusion Penalties", ICML 2011.
- R. Johansson and L. Pena Neto, Embedding a Semantic Network in a Word Space, NAACL 2015.
- R. Johansson and L. Pena Neto, Embedding Senses for Efficient Graph Based Word Sense Disambiguation, *TextGraphs@NAACL* 2016
- M. Kågebäck and H. Salomonsson, <u>Word Sense Disambiguation</u> <u>using a Bidirectional LSTM</u> (Coling 2016 Workshop on Cognitive Aspects of the Lexicon (CogALex-V))