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Quiz: Extractive Summarization

• If you had to pick 10 sentences to summarize 
a BBC report, how would you do it?

• If you had to pick sentences with a total of 100 
words to form an abstract of a scientific 
paper? 

• How is this different from usual abstracts?
• How would you evaluate a summary?



Properties of a Good Summary

• It must have high relevance 
• It must be representative or diverse.



SUBMODULAR OPTIMIZATION



Marginal gain of a sentence

• Many natural notions of „document coverage“ are
submodular [Lin & Bilmes ‘11]
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Diminishing returns/submodularity



Set functions

• finite ground set

• set function  

• will assume                           (w.l.o.g.)

• assume black box that can evaluate
for any 
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Utility            of having sensors at subset     of all 
locations

X1

X2

X3

A={1,2,3}: Very informative
High value F(A)

X4

X5
X1

A={1,4,5}: Redundant info
Low value F(A)

Example: placing sensors
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Marginal gain

• Given set function

• Marginal gain:
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X1
X2

Xs

new sensor s



B

Decreasing gains: submodularity

X1
X2

X3

X4
X5

placement B = {1,…,5}

X1
X2

placement A = {1,2}

Adding s helps a lot! Adding s doesn’t help muchXs

new sensor s
A +      s+      s

Big gain small gain
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Equivalent characterizations

• Diminishing gains:  for all

• Union-Intersection: for all 

A B+    s +    s
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Submodularity

• submodularity arises in many areas: 
combinatorics, economics, game theory, 
operation research, machine learning, and 
(now) natural language processing.

• submodularity has many nice properties, e.g. 
submodularity is preserved under many 
natural operations and transformations 
(e.g.scaling, addition, convolution, etc.)



Summarization as Submodular 
Optimization

• Ground set V is the set of all sentences 
• Extractive document summarization: select a small 

subset 𝑆𝑆 ⊆ 𝑉𝑉that accurately represents the entirety 
(ground set V).

• The summary is usually required to be length-limited.
– 𝑐𝑐𝑖𝑖: cost (e.g., the number of words in sentence i ),
– b : the budget (e.g., the largest length allowed),
– knapsack constraint:∑𝑖𝑖∈𝑆𝑆 𝑐𝑐𝑖𝑖 ≤ 𝑏𝑏

• Quality of summary: 𝑓𝑓(𝑆𝑆)
• 𝑆𝑆∗ = argmax {𝑓𝑓 𝑆𝑆 : 𝑆𝑆 ⊆ 𝑉𝑉,∑𝑖𝑖∈𝑆𝑆 𝑐𝑐𝑖𝑖 ≤ 𝑏𝑏}



Document summarization
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Relevance Diversity



Relevance of a summary
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How well is sentence i „covered“ by S

Similarity between i and j



Diversity of a summary
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Clustering of sentences
in document

Relevance of sentence j to doc.

Similarity between i and j



Monotonicity

X1
X2

X3

X4
X5

Placement B = {1,…,5}

X1
X2

Placement A = {1,2}

F is monotonic:

Adding sensors can only help
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Cardinality constrained maximization
Given: finite set V, monotone SF F
Want:       such that

NP-hard!

X1

X5

X3

X2

X4
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Greedy algorithm
Given: finite set V, monotone SF F
Want:       such that

NP-hard!

How well can this simple heuristic do?

Greedy algorithm:
Start with
For i = 1 to k

X1

X5

X3

X2

X4



Performance of greedy

Greedy empirically close to optimal. Why?
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Greedy
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One reason submodularity is useful

Theorem [Nemhauser, Fisher & Wolsey ’78]
For monotonic submodular functions,
Greedy algorithm gives constant factor approximation
F(Agreedy) ≥ (1-1/e) F(Aopt)

• Greedy algorithm gives near-optimal solution!
• In general, need to evaluate exponentially many sets to do better!

[Nemhauser & Wolsey ’78]

• Also many special cases are hard (set cover, mutual information, …) 23

~63%
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Scaling up the greedy algorithm [Minoux ’78]

In round i+1, 
– have picked Ai = {s1,…,si}
– pick si+1 = argmaxs F(Ai U {s})-F(Ai)

I.e., maximize “marginal benefit” ⊗(s | Ai)

⊗(s | Ai) = F(Ai U {s})-F(Ai)

Key observation: Submodularity implies 

i ≤ j => ⊗(s | Ai) ≥ ⊗(s | Aj)

Marginal benefits can never increase!

s

⊗(s | Ai) ≥ ⊗(s | Ai+1)
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“Lazy” greedy algorithm [Minoux ’78]

Lazy greedy algorithm:
 First iteration as usual
 Keep an ordered list of marginal 

benefits ⊗i from previous iteration
 Re-evaluate ⊗i only for top 

element
 If ⊗i stays on top, use it,

otherwise re-sort

a

b

c

d

Benefit ⊗(s | A)

e

a

d

b

c

e

a

c

d

b

e

Note: Very easy to compute online bounds, lazy evaluations, etc.
[Leskovec, Krause et al. ’07]



26

Blog selection
Lo

w
er

 is
 b

et
te

r

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

Number of blogs selected

Ru
nn

in
g 

tim
e 

(s
ec

on
ds

)

Exhaustive search
(All subsets)

Naive
greedy

Fast greedyLo
w

er
 is

 b
et

te
r

1 2 3 4 5 6 7 8 9 10
0

100

200

300

Number of sensors selected

Ru
nn

in
g 

tim
e 

(m
in

ut
es

)

Exhaustive search
(All subsets)

Naive
greedy

Fast greedy

Sensor placement

Empirical improvements [Leskovec, Krause et al’06]

30x speedup 700x speedup



Evaluating Summaries: ROUGE

• ROUGE is a software package for automated 
evaluation of summaries
(http://www.berouge.com/)

• Based co-occurrence statistics(unigram,bigram …)
• Automatic evaluation using ROUGE, between 

summary pairs correlates surprising well with 
human evaluations, based on various statistical 
metrics

http://www.berouge.com/)


Empirical results [Lin & Bilmes ‘11]

Best F1 score on benchmark corpus DUC-07!
Can do even better using submodular structured prediction! [Lin & Bilmes ‘12]
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COMPOSING WORD VECTORS



Similarity of Sentences

• We need a measure 𝑤𝑤𝑖𝑖,𝑗𝑗 of similarity of 
sentences i and j.

• We have a very good measure of semantic 
similarity between words – cosine siimilaity of 
word vectors!

• How can we extend this to similarity of 
sentences?



Composing word vectors



Composition using Linguistic 
Structures



Comparing similarity of phrases



Composition using LSTMs



Document Summarization

• Use submodular optimization with …
• … similarity of sentences derived by 

composition (in different ways) from word 
vector similarities.



http://www.cse.chalmers.se/research/databin/demonstrators.html
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