
Knut-Andreas Lie

An Introduction to Reservoir
Simulation Using MATLAB

User Guide for the Matlab Reservoir Simulation

Toolbox (MRST)

May 27, 2014

SINTEF ICT, Departement of Applied Mathematics
Oslo, Norway

Preface

There are many good books that describe mathematical models for flow in
porous media and present numerical methods that can be used to discretize
and solve the corresponding systems of partial differential equations. However,
neither of these books describe how to do this in practice. Some may present
algorithms and data structures, but most leave it up to you to figure out all
the nitty-gritty details you need to get your implementation up and running.
Likewise, you may read papers that present models or computational methods
that may be exactly what you need for your work. After the first enthusiasm,
however, you very often end up quite disappointed–or at least, I do–when I
realize that the authors have not presented all the details of their model, or
that it will probably take me months to get my own implementation working.

In this book, I try to be a bit different and give a reasonably self-contained
introduction to the simulation of flow and transport in porous media that
also discusses how to implement the models and algorithms in a robust and
efficient manner. In the presentation, I have tried to let the discussion of
models and numerical methods go hand in hand with numerical examples
that come fully equipped with codes and data, so that you can rerun and
reproduce the results by yourself and use them as a starting point for your
own research and experiments. All examples in the book are based on the
Matlab Reservoir Simulation Toolbox (MRST), which has been developed
by my group and published online as free open-source code under the GNU
General Public License since 2009.

The book can alternatively be seen as a comprehensive user-guide to
MRST. Over the years, MRST has become surprisingly popular (the latest re-
leases have more than a thousand unique downloads each) and has expanded
rapidly with new features. Unfortunately, the manuscript has not been able to
keep pace. The current version is up-to-date with respect to the latest devel-
opment in data structures and syntax, but only includes material on single-
phase flow. However, more material is being added almost every day, and the
manuscript will hopefully be expanded to cover multiphase flow and various
workflow tools and special-purpose solvers in the not too distant future.

VI Preface

I hereby grant you permission to use the manuscript and the accompa-
nying example scripts for your own educational purpose, but please do not
reuse or redistribute this material as a whole, or in parts, without explicit
permission. Moreover, notice that the current manuscript is a snapshot of
work in progress and is far from complete. The text may contain a number
of misprints and errors, and I would be grateful if you help to improve the
manuscript by sending me an email. Suggestions for other improvement are
also most welcome.

Oslo, Knut-Andreas Lie
May 27, 2014 Knut-Andreas.Lie@sintef.no

Contents

1 Introduction . 1
1.1 Reservoir Simulation . 2
1.2 About This Book . 4
1.3 The First Encounter with MRST . 5
1.4 More about MRST . 6
1.5 About examples and standard datasets . 9

Part I Geological Models and Grids

2 Modelling Reservoir Rocks . 15
2.1 Formation of a Sedimentary Reservoir . 15
2.2 Multiscale Modelling of Permeable Rocks 17

2.2.1 Macroscopic Models . 19
2.2.2 Representative Elementary Volumes 20
2.2.3 Microscopic Models: The Pore Scale 21
2.2.4 Mesoscopic Models . 23

2.3 Modelling of Rock Properties . 24
2.3.1 Porosity . 25
2.3.2 Permeability . 26
2.3.3 Other parameters . 28

2.4 Rock Modelling in MRST . 29
2.4.1 Homogeneous Models . 29
2.4.2 Random and Lognormal Models . 30
2.4.3 10th SPE Comparative Solution Project: Model 2 31
2.4.4 The Johansen Formation . 34
2.4.5 The SAIGUP Model . 36

3 Grids in Subsurface Modeling . 43
3.1 Structured Grids . 45
3.2 Unstructured Grids . 49

VIII Contents

3.2.1 Delaunay Tessellation . 50
3.2.2 Voronoi Diagrams . 53

3.3 Stratigraphic Grids . 55
3.3.1 Corner-Point Grids . 56
3.3.2 Layered 2.5D PEBI Grids . 66

3.4 Grid Structure in MRST . 70

4 Grid Coarsening . 87
4.1 Partition Vectors . 88

4.1.1 Uniform Partitions . 88
4.1.2 Connected Partitions . 89
4.1.3 Composite Partitions . 90

4.2 Coarse Grid Representation in MRST . 93
4.2.1 Subdivision of Coarse Faces . 94

4.3 Coarsening of Realistic Reservoir Models 97
4.3.1 The Johansen Aquifer . 97
4.3.2 The Shallow-Marine SAIGUP Model 100

4.4 General Advice and Simple Guidelines . 104

Part II Single-Phase Flow

5 Mathematical Models and Basic Discretizations 109
5.1 Fundamental concept: Darcy’s law . 109
5.2 General flow equations for single-phase flow 111
5.3 Auxiliary conditions and equations . 115

5.3.1 Boundary and initial conditions . 116
5.3.2 Models for injection and production wells 117
5.3.3 Field lines and time-of-flight . 119
5.3.4 Tracers and volume partitions . 120

5.4 Basic finite-volume discretizations . 121
5.4.1 A two-point flux-approximation (TPFA) method 122
5.4.2 Abstract formulation: discrete div and grad operators . 126
5.4.3 Discretizing the time-of-flight and tracer equations 128

6 Incompressible Solvers in MRST . 131
6.1 Basic data structures . 131

6.1.1 Fluid properties . 131
6.1.2 Reservoir states . 132
6.1.3 Fluid sources . 133
6.1.4 Boundary conditions . 134
6.1.5 Wells . 135

6.2 Incompressible two-point pressure solver . 137
6.3 Upwind solver for time-of-flight and tracer 140
6.4 Simulation examples . 143

Contents IX

6.4.1 Quarter-five spot . 143
6.4.2 Boundary conditions . 147
6.4.3 Structured versus unstructured stencils 151
6.4.4 Using Peaceman well models . 156

7 Single-Phase Solvers Based on Automatic Differentiation . . 161
7.1 Implicit discretization . 161
7.2 Automatic differentiation . 163
7.3 Automatic differentiation in MRST . 164
7.4 An implicit single-phase solver . 168

7.4.1 Model setup and initial state . 168
7.4.2 Discrete operators and equations . 170
7.4.3 Well model . 171
7.4.4 The simulation loop . 172

7.5 Rapid prototyping . 175
7.5.1 Pressure-dependent viscosity . 175
7.5.2 Non-Newtonian fluid . 178

8 Consistent Discretizations on Polyhedral Grids 185
8.1 The Mixed Finite-Element Method . 188

8.1.1 Continuous Formulation . 188
8.1.2 Discrete Formulation . 190
8.1.3 Hybrid formulation . 193

8.2 Consistent Methods on Mixed Hybrid Form 195
8.3 The Mimetic Method . 198

8.3.1 General Family of Inner Products 199
8.3.2 General Parametric Family . 202
8.3.3 Two-Point Type Methods . 202
8.3.4 Raviart–Thomas Type Inner Product 204
8.3.5 Default Inner Product in MRST. 206
8.3.6 Local-Flux Mimetic Method . 206

References . 209

1

Introduction

Modelling of flow processes in the subsurface is important for many applica-
tions. In fact, subsurface flow phenomena cover some of the most important
technological challenges of our time. The road toward sustainable use and
management of the earth’s groundwater reserves necessarily involves mod-
elling of groundwater hydrological systems. In particular, modelling is used
to acquire general knowledge of groundwater basins, quantify limits of sus-
tainable use, monitor transport of pollutants in the subsurface, and appraise
schemes for groundwater remediation.

A perhaps equally important problem is how to reduce emission of green-
house gases, such as CO2, into the atmosphere. Carbon sequestration in
porous media has been suggested as a possible means. The primary concern
related to storage of CO2 in subsurface rock formations is how fast the stored
CO2 will escape back to the atmosphere. Repositories do not need to store
CO2 forever, just long enough to allow the natural carbon cycle to reduce the
atmospheric CO2 to near pre-industrial level. Nevertheless, making a quali-
fied estimate of the leakage rates from potential CO2 storage facilities is a
nontrivial task, and demands interdisciplinary research and software based on
state-of-the art numerical methods for modelling subsurface flow. Other ques-
tions of concern is whether the stored CO2 will leak into fresh-water aquifers
or migrate to habitated or different legislative areas

The third challenge is petroleum production. The civilized world will (most
likely) continue to depend on the utilization of petroleum resources both as
an energy carrier and as a raw material for consumer products the next 30–
40 years. Given the decline in conventional petroleum production and the
reduced rate of new major discoveries, optimal utilization of current fields
and discoveries is of utter importance to meet the demands for petroleum
and lessen the pressure on exploration in vulnerable areas like in the arctic
regions. Likewise, there is a strong need to understand how unconventional
petroleum resources can be produced in an economic way that minimizes the
harm to the environment.

2 1 Introduction

Reliable computer modeling of subsurface flow is much needed to overcome
these three challenges, but is also needed to exploit deep geothermal energy,
ensure safe storage of nuclear waster, improve remediation technologies to
remove contaminants from the subsurface, etc. Indeed, the need for tools that
help us understand flow processes in the subsurface is probably greater than
ever, and increasing. More than fifty years of prior research in this area has led
to some degree of agreement in terms of how subsurface flow processes can be
modelled adequately with numerical simulation technology. Most of our prior
research in this area has targeted reservoir simulation, i.e., modelling flow
in oil and gas reservoirs, and hence we will mainly focus on this application
in this book. However, the general modelling framework, and the numerical
methods that are discussed, apply also to modelling other types of flow in
consolidated and saturated porous media.

Techniques developed for the study of subsurface flow are also applicable
to other natural and man-made porous media such as soils, biological tissues
and plants, filters, fuel cells, concrete, textiles, polymer composites, etc. A
particular interesting example is in-tissue drug delivery, where the challenge
is to minimize the volume swept by the injected fluid. This is the complete
opposite of the challenge in petroleum production, in which one seeks to max-
imize the volumetric sweep of the injected fluid to push as much petroleum
out as possible.

1.1 Reservoir Simulation

Reservoir simulation is the means by which we use a numerical model of the
petrophysical characteristics of a hydrocarbon reservoir to analyze and predict
fluid behavior in the reservoir over time. Simulation of petroleum reservoirs
started in the mid 1950’s and has become an important tool for qualitative
and quantitative prediction of the flow of fluid phases. Reservoir simulation is
a complement to field observations, pilot field and laboratory tests, well test-
ing and analytical models and is used to estimate production characteristics,
calibrate reservoir parameters, visualize reservoir flow patterns, etc. The main
purpose of simulation is to provide an information database that can help the
oil companies to position and manage wells and well trajectories to maximize
the oil and gas recovery. Generally, the value of simulation studies depends
on what kind of extra monetary or other profit they will lead to, e.g., by in-
creasing the recovery from a given reservoir. However, even though reservoir
simulation can be an invaluable tool to enhance oil-recovery, the demand for
simulation studies depends on many factors. For instance, petroleum fields
vary in size from small pockets of hydrocarbon that may be buried just a
few meters beneath the surface of the earth and can easily be produced, to
huge reservoirs stretching out several square kilometres beneath remote and
stormy seas, for which extensive simulation studies are inevitable to avoid
making incorrect, costly decisions.

1.1 Reservoir Simulation 3

To describe the subsurface flow processes mathematically, two types of
models are needed. First, one needs a mathematical model that describes how
fluids flow in a porous medium. These models are typically given as a set of
partial differential equations describing the mass-conservation of fluid phases,
accompanied by a suitable set of constitutive relations. Second, one needs a
geological model that describes the given porous rock formation (the reser-
voir). The geological model is realized as a grid populated with petrophysical
properties that are used as input to the flow model, and together they make
up the reservoir simulation model.

Unfortunately, obtaining an accurate prediction of reservoir flow scenarios
is a difficult task. One of the reasons is that we can never get a complete
and accurate characterization of the rock parameters that influence the flow
pattern. And even if we did, we would not be able to run simulations that ex-
ploit all available information, since this would require a tremendous amount
of computer resources that exceed by far the capabilities of modern multi-
processor computers. On the other hand, we do not need, nor do we seek a
simultaneous description of the flow scenario on all scales down to the pore
scale. For reservoir management it is usually sufficient to describe the general
trends in the reservoir flow pattern.

In the early days of the computer, reservoir simulation models were built
from two-dimensional slices with 102–103 Cartesian grid cells representing the
whole reservoir. In contrast, contemporary reservoir characterization methods
can model the porous rock formations by the means of grid-blocks down to the
meter scale. This gives three-dimensional models consisting of multi-million
cells. Stratigraphic grid models, based on extrusion of 2D areal grids to form
volumetric descriptions, have been popular for many years and are the current
industry standard. However, more complex methods based on unstructured
grids are gaining in popularity.

Despite an astonishing increase in computer power, and intensive research
on computation techniques, commercial reservoir simulators can seldom run
simulations directly on geological grid models. Instead, coarse grid models
with grid-blocks that are typically ten to hundred times larger are built using
some kind of upscaling of the geophysical parameters. How one should perform
this upscaling is not trivial. In fact, upscaling has been, and probably still is,
one of the most active research areas in the oil industry. This effort reflects
that it is a general opinion that, with the ever increasing size and complexity of
the geological reservoir models, one cannot generally expect to run simulations
directly on geological models in the foreseeable future.

Along with the development of better computers, new and more robust
upscaling techniques, and more detailed reservoir characterizations, there has
also been an equally significant development in the area of numerical methods.
State-of-the-art simulators employ numerical methods that can take advan-
tage of multiple processors, distributed memory workstations, adaptive grid
refinement strategies, and iterative techniques with linear complexity. For the
simulation, there exists a wide variety of different numerical schemes that all

4 1 Introduction

have their pros and cons. With all these techniques available we see a trend
where methods are being tuned to a special set of applications, as opposed
to traditional methods that were developed for a large class of differential
equations.

1.2 About This Book

The book is intended to serve several purposes. First, we wish to give a self-
contained introduction to the basic theory of flow in porous media and the
numerical methods used to solve the underlying differential equations. In doing
so, we will present both the basic model equations and physical parameters,
classical numerical methods that are the current industry standard, as well
as more recent methods that are still being researched by academia. The
presentation of computational methods and modeling concepts is accompanied
by illustrative examples ranging from idealized and highly simplified examples
to real-life cases.

All visual and numerical examples presented in this book have been created
using the MATLAB Reservoir Simulation Toolbox (MRST). This open-source
toolboxes contains a comprehensive set of routines and data structures for
reading, representing, processing, and visualizing structured and unstructured
grids, with particular emphasis on the corner-point format used within the
petroleum industry. The core part of the toolbox contains basic flow and
transport solvers that can be used to simulate incompressible, single- and
two-phase flow on general unstructured grids. Solvers for more complex flow
physics as well as special-purpose computational tools for various workflows
can be found in a large set of add-on modules. The second purpose of the
book is therefore to give a presentation of the various functionality in MRST.
By providing data and sufficient detail in all examples, we hope that the
interested reader will be able to repeat and modify our examples on his/her
own computer. We hope that this material can give other researchers, or
students about to embark on a Master or a PhD project, a head start.

MRST was originally developed to support our research on consistent dis-
cretization and multiscale solvers on unstructured, polyhedral grids, but has
over the years developed into an efficient platform for rapid prototyping and
efficient testing of new mathematical models and simulation methods. A par-
ticular aim of MRST is to accelerate the process of moving from simplified
and conceptual testing to validation of realistic setups. The book is therefore
focused on questions that are relevant to the petroleum industry. However,
to benefit readers that interested in developing more generic computational
methodologies, we also try to teach a few general principles and methods that
are useful for developing flexible and efficient MATLAB solvers for other ap-
plications of porous media flow or on unstructured polyhedral grids in general.
In particular, we seek to provide sufficient implementation details so that the
interested reader can use MRST as a starting point for his/her own develop-

1.3 The First Encounter with MRST 5

ment. Being an open-source software, it is our hope that readers of this book
can contribute to extend MRST in new directions.

Over the last few years, key parts of MRST have become relatively mature
and well tested. This has enabled a stable release policy with two releases per
year, typically in April and October. Throughout the releases, the basic func-
tionality like grid structures has remained largely unchanged, except for occa-
sional and inevitable bugfixes, and the primary focus has been on expanding
functionality by maturing and releasing in-house prototype modules. However,
MRST is mainly developed and maintained as an efficient prototyping tool
to support contract research carried out by SINTEF for the energy-resource
industry and public research agencies. Fundamental changes will therefore
occur from time to time, e.g., like when automatic differentiation was intro-
duced in 2012. In writing this, we (regretfully) acknowledge the fact that
specific code details (and examples) in books that describe evolving software
tend to become somewhat outdated. To countermand this, we intend to keep
an up-to-date version of all examples in the book on the MRST webpage:

http://www.sintef.no/Projectweb/MRST/

These examples are designed using cell-mode scripts, which can be seen as a
type of “MATLAB workbook” that allowes you break the scripts down into
smaller pieces that can be run individually to perform a specific subtask such
as creating a parts of a model or making an illustrative plot. In our opinion, the
best way to understand the examples is to go through the script, evaluating
one cell at at time. Alternatively, you can set a breakpoint on the first line,
and step through the script in debug mode. Some of the scripts contain more
text and are designed to make easily published documents. If you are not
familiar with cell-mode scripts, or debug mode, we strongly urge you to learn
these useful features in MATLAB as soon as possible.

You are now ready to start digging into the material. However, before
doing so, we present an example that will give you a first taste of flow in
porous media and the MATLAB Reservoir Simulation Toolbox.

1.3 The First Encounter with MRST

The purpose of the example is to show the basic steps for setting up, solving,
and visualizing a simple flow problem. To this end, we will compute a known
analytical solution: the linear pressure solution describing hydrostatic equilib-
rium for an incompressible, single-phase fluid. The basic model in subsurface
flow consists of an equation expressing conservation of mass and a constitu-
tive relation called Darcy’s law that relates the volumetric flow rate to the
gradient of flow potential

∇ · ~v = 0, ~v = −− K

µ

[
∇p+ ρg∇z

]
, (1.1)

http://www.sintef.no/Projectweb/MRST/

6 1 Introduction

where the unknowns are the pressure p and the flow velocity ~v. By eliminating
~v, we can reduce (1.1) to the elliptic Poisson equation. In (1.1), the rock is
characterized by the permeability K that gives the rock’s ability to transmit
fluid. Here, K is set to 100 milli-darcies (mD). The fluid has a density ρ of
1000 kg/m3 and viscosity µ equal 1 cP, g is the gravity constant, and z is the
depth. More details on these flow equations, the rock and fluid parameters,
the computational method, and its MATLAB implementation will be given
throughout the book.

The computational domain is a square column, [0, 1]× [0, 1]× [0, 30], which
we discretize using a regular 1×1×30 Cartesian grid. To close (1.1), we must
describe conditions on all boundaries. To this end, we prescribe p = 100 bar
at the top of the column and no-flow conditions (~v ·n = 0) elsewhere. The sim-
ulation model is set up by constructing a grid, setting the rock permeability,
instantiating a fluid object, and setting boundary conditions:

gravity reset on

G = cartGrid([1, 1, 30], [1, 1, 30]);
G = computeGeometry(G);
rock.perm = repmat(0.1*darcy(), [G.cells.num, 1]);
fluid = initSingleFluid('mu' , 1*centi*poise, ...

'rho' , 1014*kilogram/meterˆ3);
bc = pside([], G, 'TOP', 100.*barsa());

MRST works in SI units, and hence we must be careful to specify the correct
units for all physical quantities.

To solve (1.1), we will use a standard two-point finite-volume scheme
(which here coincides with the classical seven-point scheme for Poisson’s prob-
lem). First, we compute the matrix coefficient, which are called transmissibil-
ities, and then use these to assemble and solve the discrete system

T = computeTrans(G, rock);
sol = incompTPFA(initResSol(G, 0.0), G, T, fluid,'bc', bc);

Having computed the solution, we plot the pressure given in unit ’bar’:

plotFaces(G, 1:G.faces.num, convertTo(sol.facePressure, barsa()));
set(gca, 'ZDir', ' reverse '), title('Pressure [bar] ')
view(3), colorbar, set(gca,'DataAspect',[1 1 10])

The result is shown in Figure 1.1.

1.4 More about MRST

MRST is organized quite similar to MATLAB and consists of a collection of
core routines and a set of add-on modules. The core consists of routines and
data structures for creating and manipulating grids and physical properties,
utilities for performing automatic differentiation (you write the formulas and

1.4 More about MRST 7

0

0.5

1

0

0.5

1

0

5

10

15

20

25

30

Pressure [bar]

 100

100.5

101

101.5

102

102.5

Fig. 1.1. Hydrostatic pressure distribution in a gravity column computed by MRST.
This is example is taken from the MRST tutorial gravityColumn.m

specify the independent variables, MRST computes the corresponding Jaco-
bians), as well as a few routines for plotting cell and face data defined over
a grid. In addition, the core contains a few basic solvers for incompressible,
immiscible, single-phase and two-phase flow. The functionality in MRST core
is considered to be stable and not expected to change (significantly) in future
releases. The introductory parts of the book will rely entirely on routines from
MRST core.

Routines in MRST core are generally well documented in a format that
follows the MATLAB standard. In addition, MRST supplies several worked
tutorials that highlight functionality that we expect will be needed by most
users; the tutorials are distributed as part of the MRST release and a subset
of the tutorials are also available on the MRST webpage.

The add-on modules contain routines and functionality that extend, com-
plement, and override existing MRST features, typically in the form of special-
ized or more advanced solvers and workflow tools like upscaling, grid coarsen-
ing, etc. In addition, there are modules that contain support for special input
formats, Octave support, C-acceleration of selected routines in MRST core,
etc. Some of these modules are robust, well-documented, and contain features
that will likely not change in future releases, and could in principle had been
included in MRST core if we had not decided to keep the core as small as
possible. Examples of such modules are:

8 1 Introduction

� consistent discretizations on general polyhedral grids: mimetic and MPFA-O
methods;

� a small module for downloading and setting up flow models based on the
SPE10 data set [19], which are commonly used benchmarks encountered
in a multitude of papers;

� upscaling, including methods for flow-based single-phase upscaling as well
as steady-state methods for two-phase upscaling;

� extended data structures for representing coarse grids as well as routines
for partitioning logically Cartesian grids;

� agglomeration based grid coarsening: methods for defining coarse grids
that adapt to geological features, flow patterns, etc;

� multiscale mixed finite-element methods for incompressible flow on strati-
graphic and unstructured grids;

� multiscale finite-volume methods for incompressible flow on structured
grids;

� the simplified deck reader, which contains support for processing simula-
tion decks in the ECLIPSE format, including input reading, conversion to
SI units, and construction MRST objects for grids, fluids, rock properties,
and wells;

� C-acceleration of grid processing and basic solvers for incompressible flow.

Other modules and workflow tools, on the other hand, are constantly changing
to support ongoing research:

� fully-implicit solvers based on automatic differentiation: rapid prototyping
of flow models of industry-standard complexity;

� gui-based tools for interactive visualization of geological models and sim-
ulation results;

� flow diagnostics: simple, controlled numerical experiments that are run
to probe a reservoir model and establish connections and basic volume
estimates to compare, rank, and cluster models, or used as simplified flow
proxies

� a numerical CO2 that offers a chain of simulation tools of increasing com-
plexity: geometrical methods for identifying structural traps, percolation
type methods for identifying potential spill paths, and vertical-equilibrium
methods that can efficiently simulate structural, residual, and solubility
trapping in a thousand-year perspective;

� multiscale finite-volume methods for simulation of ’full physics’ on strati-
graphic and unstructured grids;

� production optimization based on adjoint methods.

All these modules are publicly available from the MRST webpage. In addi-
tion, there are several third-party modules that are available courtesy of their
developers, as well as in-house prototype modules and workflow examples that
are available upon request:

1.5 About examples and standard datasets 9

� two-point and multipoint solvers for discrete fracture-matrix systems, in-
cluding multiscale methods, developed by researchers at the University of
Bergen;

� an ensemble Kalman filter module developed by researchers at TNO, in-
cluding EnKF and EnRML schemes, localization, inflation, asynchronous
data, production and seismic data, updating of conventional and structural
parameters;

� polymer flooding based on a Todd–Longstaff model with adsorption and
dead pore space, permeability reduction, shear thinning, near-well (radial)
and standard grids;

� geochemistry with conventional and structural parameters and without
chemical equilibrium and coupling with fluid flow.

Discussing all these modules in detail is beyond the scope of the book. Instead,
we encourge the interested reader to download and explore the modules on
his/her own. Finally, the MRST webpage features several user-supplied cases
and code examples that are not discussed in this book.

1.5 About examples and standard datasets

The examples play an important role in this book. Most examples have been
equipped with codes the reader can rerun to reproduce the results discussed
in the example. Likewise, many of the figures include a small box with the
MATLAB and MRST commands necessary to create the plots. To the extent
possible, we have tried to make the examples self-contained, but in some case
we have for brevity omitted details that either have been discussed elsewhere
or should be part of the reader’s MATLAB basic repertoire.

MRST provides several routines that can be used to create examples in
terms of grids and petrophysical data. The grid-factory routines are mostly
deterministic and should enable the reader to create the exact same grids that
are discussed in the book. The routines for generating petrophysical data, on
the other hand, rely on random numbers, which means that the reader can
only expect to reproduce plots and numbers that are qualitatively similar
whenever these are used.

In addition, the book will use a few standard datasets that all can be
downloaded freely from the internet. Herein, we use the convention that these
datasets are stored in sub-directories of the following standard MRST path:

fullfile(ROOTDIR, 'examples', 'data')

We recommend that the reader adheres to this convention. In the following,
we will briefly introduce the datasets and describe how to obtain them.

The SPE10 dataset

Model 2 of the 10th SPE Comparative Solution Project [19] was originally
posed as a benchmark for upscaling methods. The 3-D geological model con-

10 1 Introduction

Fig. 1.2. Volumetric grid for three standard data sets used in the book: SPE10,
SAIGUP, and Johansen.

sists of 60× 220× 85 grid cells, each of size 20ft× 10ft× 2ft. The model is a
geostatistical realization from the Jurassic Upper Brent formations, in which
one can find the giant North Sea fields of Statfjord, Gullfaks, Oseberg, and
Snorre. In this specific model, the top 70 ft (35 layers) represent the shallow-
marine Tarbert formation and the lower 100 ft (50 layers) the fluvial Ness
formation. The data can be obtained from the SPE website

http://www.spe.org/web/csp/

To simplify the reader’s life, we supply a script make_spe10_data that checks
if the SPE10 dataset exists on disk and if not, downloads and reorganizes the
dataset and stores the result in the file spe10_rock.mat

SAIGUP dataset

As our primary example of a realistic petroleum reservoir, we will use a model
from the SAIGUP study [40], whose purpose was to conduct a sensitivity
analysis of the impact of geological uncertainties on production forecasting in
clastic hydrocarbon reservoirs. As part of this study, a broad suite of geosta-
tistical realizations and structural models were generated to represent a wide
span of shallow-marine sedimentological reservoirs. All models are synthetic,
but contain most of the type of complexities seen in real-life reservoirs. One
particular out of the many SAIGUP realizations can be downloaded from the
MRST website

http://www.sintef.no/Projectweb/MRST

The specific realization comes in the form of a GZip-compressed TAR file
(SAIGUP.tar.gz) that contains the structural model as well as petrophysi-
cal parameters, represented using the corner-point grid format, which is an
industry-standard in reservoir modelling.

The Johansen dataset

The Johansen formation is located in the deeper part of the Sognefjord delta,
40–90 km offshore Mongstad at the west coast of Norway. A gas-power plant

http://www.spe.org/web/csp/
http://www.sintef.no/Projectweb/MRST

1.5 About examples and standard datasets 11

with carbon capture and storage is planned at Mongstad and the water-
bearing Johansen formation is a possible candidate for storing the captured
CO2. The Johansen formation is part of the Dunlin group, and is interpreted
as a large sandstone delta 2200–3100 meters below sea level that is limited
above by the Dunlin shale and below by the Amundsen shale. The average
thickness of the formation is roughly 100 m and the lateral extensions are up
to 100 km in the north-south direction and 60 km in the east-west direction.
With average porosities of approximately 25 percent, this implies that the
theoretical storage capacity of the Johansen formation is more than one giga-
tons of CO2 [28]. The Troll field, one of the largest gas field in the North Sea,
is located some 500 meters above the north-western parts of the Johansen
formation. Through a collaboration between the Norwegian Petroleum Direc-
torate and researchers in the MatMoRA project, a set of geological models
have been created and made available from the MatMoRA webpage:

http://www.sintef.no/Projectweb/MatMorA/Downloads/Johansen/

Altogether, there are five models: one full-field model (149 × 189 × 16 grid),
three homogeneous sector models (100× 100× n for n = 11, 16, 21), and one
heterogeneous sector model (100× 100× 11).

http://www.sintef.no/Projectweb/MatMorA/Downloads/Johansen/

Part I

Geological Models and Grids

2

Modelling Reservoir Rocks

Aquifers and natural petroleum reservoirs consist of a subsurface body of
sedimentary rock having sufficient porosity and permeability to store and
transmit fluids. In this chapter, we will given an overview of how such rocks
are modelled to become part of a simulation model. We start by describing
very briefly how sedimentary rocks are formed and then move on to describe
how they are modelled. Finally, we discuss how rock properties are represented
in MRST and show several examples of rock models with varying complexity,
ranging from a homogeneous shoe-box rock body, via the widely used SPE 10
model, to two realistic models (one synthetic and one real-life).

2.1 Formation of a Sedimentary Reservoir

Sedimentary rocks are created by a process called sedimentation, in which min-
eral particles are broken off from a solid material by weathering and erosion in
a source area and transported e.g., by water, to a place where they settle and
accumulate to form what is called a sediment. Sediments may also contain or-
ganic particles that originate from the remains of plants, living creatures, and
small organisms living in water, and may be deposited by other geophysical
processes like wind, mass movement, and glaciers.

Sedimentary rocks have a layered structure with different mixtures of rock
types with varying grain size, mineral types, and clay content. Over millions of
years, layers of sediments built up in lakes, rivers, sand deltas, lagoons, choral
reefs, and other shallow-marine waters; a few centimetres every hundred years
formed sedimentary beds (or strata) that may extend many kilometres in the
lateral directions. A bed denotes the smallest unit of rock that is distinguish-
able from an adjacent rock layer unit above or below it, and can be seen as
bands of different color or texture in hillsides, cliffs, river banks, road cuts,
etc. Each band represents a specific sedimentary environment, or mode of
deposition, and can be from a few centimeters to several meters thick, of-
ten varying in the lateral direction. A sedimentary rock is characterized by

16 2 Modelling Reservoir Rocks

Fig. 2.1. Outcrops of sedimentary rocks from Svalbard, Norway. The length scale
is a few hundred meters.

Fig. 2.2. Layered geological structures as seen in these pictures typically occur on
both large and small scales in petroleum reservoirs. The right picture is courtesy of
Silje Støren Berg, University of Bergen.

its bedding, i.e., sequence of beds and lamina (less pronounced layers). The
bedding process is typically horizontal, but beds may also be deposited at
a small angle, and parts of the beds may be weathered down or completely
eroded way during deposition, allowing newer beds to form at an angle with
older ones. Figure 2.1 shows two photos of sedimentary rock outcrops from
Svalbard, which is one of the few places in Northern Europe where one can
observe large-scale outcrops of sedimentary rocks. Figure 2.2 shows two more
pictures of layered structures on meter and centimeter scales, respectively.

Each sedimentary environment has its own characteristic deposits and
forms what is called a sedimentary facies, i.e., a body of rock with distinct
characteristics. Different sedimentary environments usually exist alongside
each other in a natural succession. Small stones, gravel and large sand particles
are heavy and are deposited at the river bottom, whereas small sand particles
are easily transported and are found at river banks and on the surrounding
plains along with mud and clay. Following a rock layer of a given age, one will
therefore see changes in the facies (rock type). Similarly, depositional envi-
ronments change with time: shorelines move with changes in the sea level and
land level or because of formation of river deltas, rivers change their course
because of erosion or flooding, etc. Likewise, dramatic events like floods may

2.2 Multiscale Modelling of Permeable Rocks 17

create abrupt changes. At a given position, the accumulated sequence of beds
will therefore contain different facies.

As time passes by, more and more sediments accumulate and the stack of
beds piles up to hundreds of meters. Simultaneously, severe geological activity
takes place: Cracking of continental plates and volcanic activity changed what
is to become our reservoir from being a relatively smooth, layered sedimen-
tary basin into a complex structure where previously continuous layers were
cut, shifted, or twisted in various directions, introducing fractures and faults.
Fractures are cracks or breakage in the rock, across which there has been no
movement; faults are fractures across which the layers in the rock have been
displaced.

Over time, the depositional rock bodies got buried deeper and deeper, and
the pressure and temperature increased because of the overburden. The de-
posits not only consisted of sand grains, mud, and small rock particles but also
contained remains of plankton, algae, and other organisms living in the water
that had died and fallen down to the bottom. As the organic material was
compressed and ’cooked’, it eventually turned into crude oil and natural gas.
The lightest hydrocarbons (methane, ethane, etc.) usually escaped quickly,
whilst the heavier oils moved slowly towards the surface. At certain sites,
the migrating hydrocarbons were trapped in structural or stratigraphic traps.
Structural traps (domes, folds, and anticlines) are created as geological ac-
tivity deforms the layers containing hydrocarbon, near salt domes created by
buried salt deposits that rise unevenly, or by sealing faults forming a closure.
Stratigraphic traps form because of changes in facies (e.g., in clay content)
within the bed itself or when the bed is sealed by an impermeable bed. These
quantities of trapped hydrocarbons form todays oil and gas reservoirs. In the
North Sea (which the authors are most familiar with), reservoirs are typically
found 1 000–3 000 meters below the sea bed.

2.2 Multiscale Modelling of Permeable Rocks

All sedimentary rocks consist of a solid matrix with an interconnected void.
The void pore space allows the rocks to store and transmit fluids. The ability to
store fluids is determined by the volume fraction of pores (the rock porosity),
and the ability to transmit fluids (the rock permeability) is given by the
interconnection of the pores.

Rock formations found in natural petroleum reservoirs are typically het-
erogeneous at all length scales, from the micrometre scale of pore channels
between the solid particles making up the rock to the kilometre scale of a
full reservoir formation. On the scale of individual grains, there can be large
variation in grain sizes, giving a broad distribution of void volumes and inter-
connections. Moving up a scale, laminae may exhibit large contrasts on the
mm-cm scale in the ability to store and transmit fluids because of alternating
layers of coarse and fine-grained material. Laminae are stacked to form beds,

18 2 Modelling Reservoir Rocks

Fig. 2.3. Illustration of the hierarchy of flow models used in subsurface modeling.
The length scales are the vertical sizes of typical elements in the models.

which are the smallest stratigraphic units. The thickness of beds varies from
millimetres to tens of meters, and different beds are separated by thin layers
with significantly lower permeability. Beds are, in turn, grouped and stacked
into parasequences or sequences (parallel layers that have undergone similar
geologic history). Parasequences represent the deposition of marine sediments,
during periods of high sea level, and tend to be somewhere in the range from
1–100 meters thick and have a horizontal extent of several kilometres.

The trends and heterogeneity of parasequences depend on the deposi-
tional environment. For instance, whereas shallow-marine deposits may lead
to rather smoothly varying permeability distributions with correlation lengths
in the order 10–100 meters, fluvial reservoirs may contain intertwined patterns
of sand bodies on a background with high clay content, see Figure 2.8. The
reservoir geology can also consist of other structures like for instance shale
layers (impermeable clays), which are the most abundant sedimentary rocks.
Fractures and faults, on the other hand, are created by stresses in the rock
and may extend from a few centimeters to tens or hundreds of meters. Faults
may have a significantly higher or lower ability to transmit fluids than the
surrounding rocks, depending upon whether the void space has been filled
with clay material.

All these different length scales can have a profound impact on fluid flow.
However, it is generally not possible to account for all pertinent scales that
impact the flow in a single model. Instead, one has to create a hierarchy of
models for studying phenomena occurring at reduced spans of scales. This is il-
lustrated in Figure 2.3. Microscopic models represent the void spaces between
individual grains and are used to provide porosity, permeability, electrical and
elastic properties of rocks from core samples and drill cuttings. Mesoscopic
models are used to upscale these basic rock properties from the mm/cm-scale
of internal laminations, through the lithofacies scale (∼ 50 cm), to the macro-

2.2 Multiscale Modelling of Permeable Rocks 19

scopic facies association scale (∼ 100 m) of geological models. In this book,
we will primarily focus on another scale, simulation models, which represent
the last scale in the model hierarchy. Simulation models are obtained by up-
scaling geological models and are either introduced out of necessity because
geological models contain more details than a flow simulator can cope with,
or out of convenience to provide faster calculation of flow responses.

2.2.1 Macroscopic Models

Geological models are built using a combination of stratigraphy (the study of
rock layers and layering), sedimentology (study of sedimentary rocks), and in-
terpretation of measured data. Unfortunately, building a geological model for
a reservoir is like finishing a puzzle where most of the pieces are missing. Ide-
ally, all available information about the reservoir is utilized, but the amount
of data available is limited due to costs of acquiring them. Seismic surveys
give a sort of X–ray image of the reservoir, but they are both expensive and
time consuming, and can only give limited resolution (you cannot expect to
see structures thinner than ten meters from seismic data). Wells give invalu-
able information, but the results are restricted to the vicinity of the well.
While seismic has (at best) a resolution of ten meters, information on a finer
scale are available from well-logs. Well-logs are basically data from various
measuring tools lowered into the well to gather information, e.g., radiating
the reservoir and measuring the response. Even well-logs give quite limited
resolution, rarely down to centimetre scale. Detailed information is available
from cores taken from wells, where resolution is only limited by the apparatus
at hand. The industry uses X-ray, CT-scan as well as electron microscopes
to gather high resolution information from the cores. However, information
from cores and well-logs are from the well or near the well, and extrapolating
this information to the rest of the reservoir is subject to great uncertainty.
Moreover, due to costs, the amount of data acquisitions made is limited. You
cannot expect well-logs and cores to be taken from every well. All these tech-
niques give separately small contributions that can help build a geological
model. However, in the end we still have very limited information available
considering that a petroleum reservoir can have complex geological features
that span across all types of length scales from a few millimetres to several
kilometres.

In summary, the process of making a geological model is generally strongly
under-determined. It is therefore customary to use geostatistics to estimate
the subsurface characteristics between the wells. Using geostatistical tech-
niques one builds petrophysical realizations in the form of grid models that
both honor measured data and satisfy petrophysical trends and heterogeneity.
Since trends and heterogeneity in petrophysical properties depend strongly on
the structure of sedimentary deposits, high-resolution petrophysical realiza-
tions are not built directly. Instead, one starts by building a facies model. A
facies is the characteristics of a rock unit that reflects its origin and separates

20 2 Modelling Reservoir Rocks

it from surrounding rock units. By supplying knowledge of the depositional
environment (fluvial, shallow marine, deep marine, etc) and conditioning to
observed data, one can determine the geometry of the facies and how they
are mixed. In the second step, the facies are populated with petrophysical
data and stochastic simulation techniques are used to simulate multiple re-
alizations of the geological model in terms of high-resolution grid models for
petrophysical properties. Each grid model has a plausible heterogeneity and
can contain from a hundred thousand to a hundred million cells. The col-
lection of all realizations gives a measure of the uncertainty involved in the
modelling. Hence, if the sample of realizations (and the upscaling procedure
that converts the geological models into simulation models) is unbiased, then
it is possible to supply predicted production characteristics, such as the cu-
mulative oil production, obtained from simulation studies with a measure of
uncertainty.

This cursory overview of different models is all that is needed for what fol-
lows in the next few chapters, and the reader can therefore skip to Section 2.3
which discusses macroscopic modelling of reservoir rocks. The remains of this
section will discuss microscopic and mesoscopic modelling in some more detail.
First, however, we will briefly discuss the concept of representative elementary
volumes, which underlies the continuum models used to describe subsurface
flow and transport.

2.2.2 Representative Elementary Volumes

Choosing appropriate modelling scales is often done by intuition and expe-
rience, and it is hard to give very general guidelines. An important concept
in choosing model scales is the notion of representative elementary volumes
(REVs), which is the smallest volume over which a measurement can be made
and be representative of the whole. This concept is based on the idea that
petrophysical flow properties are constant on some intervals of scale, see Fig-
ure 2.4. Representative elementary volumes, if they exist, mark transitions
between scales of heterogeneity, and present natural length scales for mod-
elling.

To identify a range of length scales where REVs exist, e.g., for porosity,
we move along the length-scale axis from the micrometer-scale of pores to-
ward the kilometre-scale of the reservoir. At the pore scale, the porosity is a
rapidly oscillating function equal to zero (in solid rock) or one (in the pores).
Hence, obviously no REVs can exist at this scale. At the next characteristic
length scale, the core scale level, we find laminae deposits. Because the lami-
nae consist of alternating layers of coarse and fine grained material, we cannot
expect to find a common porosity value for the different rock structures. Mov-
ing further along the length-scale axis, we may find long thin layers, perhaps
extending throughout the entire horizontal length of the reservoirs. Each of
these individual layers may be nearly homogeneous because they are created

2.2 Multiscale Modelling of Permeable Rocks 21

Porosity: φ =
Vv

Vv + Vr

Fig. 2.4. The concept of a representative elementary volume (REV), here illustrated
for porosity.

by the same geological process, and probably contain approximately the same
rock types. Hence, at this scale it sounds reasonable to speak of an REV. If
we move to the high end of the length-scale axis, we start to group more and
more layers into families with different sedimentary structures, and REVs for
porosity will probably not exist.

The previous discussion gives some grounds to claim that reservoir rock
structures contain scales where REVs may exist. From a general point of
view, however, the existence of REVs in porous media is highly disputable. A
faulted reservoir, for instance, can have faults distributed continuously both
in length and aperture throughout the reservoir, and will typically have no
REVs. Moreover, no two reservoirs are identical, so it is difficult to capitalize
from previous experience. Indeed, porous formations in reservoirs may vary
greatly, also in terms of scales. Nevertheless, the concept of REVs can serve
as a guideline when deciding what scales to model.

2.2.3 Microscopic Models: The Pore Scale

Pore-scale model, as illustrated to the left in Figure 2.3, may be about the size
of a sugar cube and are based on measurements from core plugs obtained from
well trajectories during drilling. These rock samples are necessarily confined
(in dimension) by the radius of the well, although they lengthwise are only
confined by the length of the well. Three such rock samples are shown in
Figure 2.5. The main metods for obtaining pore-scale models from a rock
sample is by studying thin slices using an electron microscope with micromete
resolution or by CT-scans. In the following, we will give a simplified overview
of flow modelling on this scale.

22 2 Modelling Reservoir Rocks

Fig. 2.5. Three core plugs with diameter of one and a half inches, and a height of
five centimetres.

At the pore scale, the porous medium is either represented by a volumetric
grid or by a graph (see e.g., [48]). A graph is a pair (V,E), where V is a set
whose elements are called vertices (or nodes), and E is a subset of V × V
whose elements are called edges. The vertices are taken to represent pores,
and the edges represent pore-throats (i.e., connections between pores).

The flow process, in which one fluid invades the void space filled by another
fluid, is generally described as an invasion–percolation process. This process
is mainly dominated by capillary forces, although gravitational forces can
still be important. In the invasion, a fluid phase can invade a pore only if a
neighboring pore is already invaded. For each pore, there is an entry pressure,
i.e., the threshold pressure needed for the invading phase to enter the pore,
that depends on the size and shape of pores, the size of pore throats, as well
as other rock properties. The invading phase will first invade the neighboring
pore that has the lowest threshold pressure. This gives a way of updating
the set of pores that are neighbors to invaded ones. Repeating the process
establishes a recursive algorithm to determine the flow pattern of the invading
phase. In the invasion process, we are interested in whether a phase has a path
through the model, i.e., percolates, or not, and the time variable is often not
modelled at all. For pore networks, this is misleading because we are also
interested in modelling the flow after the first path through the model has
been established. After a pore has been invaded, the saturations in the pore
will vary with pressures and saturations in the neighboring pores (as well
as in the pore itself). New pores may also be invaded after the first path is
formed, so that we may get several paths through the model through which
the invading phase can flow. Once the invading phase percolates (i.e., has
a path through the model), one can start estimating flow properties. As the
simulation progresses, the saturation of the invading phase will increase, which

2.2 Multiscale Modelling of Permeable Rocks 23

can be used to estimate flow properties at different saturation compositions
in the model.

In reality, the process is more complicated that explained above because of
wettability. When two immiscible fluids (such as oil and water) contact a solid
surface (such as the rock), one of them tends to spread on the surface more
than the other. The fluid in a porous medium that preferentially contacts the
rock is called the wetting fluid. Note that wettability conditions are usually
changing throughout a reservoir. The flow process where the invading fluid
is non-wetting is called drainage and is typically modelled with invasion–
percolation. The flow process where the wetting fluid displaces the non-wetting
fluid is called imbibition, and is more complex, involving effects termed film
flow and snap-off.

Another approach to multiphase modelling is through the use of the lattice
Boltzmann method that represents the fluids as a set of particles that prop-
agate and collide according to a set of rules defined for interactions between
particles of the same fluid phase, between particles of different fluid phases,
and between the fluids and the walls of the void space. A further presentation
of pore-scale modelling is beyond the scope here, but the interested reader is
encouraged to consult, e.g., [48] and references therein.

From an analytical point of view, pore-scale modelling is very important
as it represents flow at the fundamental scale (or more loosely, where the flow
really takes place), and hence provides the proper framework for understand-
ing the fundamentals of porous media flow. From a practical point of view,
pore-scale modelling has a huge potential. Modelling flow at all other scales
can be seen as averaging of flow at the pore scale, and properties describing
the flow at larger scales are usually a mixture of pore-scale properties. At
larger scales, the complexity of flow modelling is often overwhelming, with
large uncertainties in determining flow parameters. Hence being able to single
out and estimate the various factors determining flow parameters is invalu-
able, and pore-scale models can be instrumental in this respect. However, to
extrapolate properties from the pore scale to an entire reservoir is very chal-
lenging, even if the entire pore space of the reservoir was known (of course, in
real life you will not be anywhere close to knowing the entire pore space of a
reservoir).

2.2.4 Mesoscopic Models

Models based on flow experiments on core plugs is by far the most common
mesoscopic models. The fundamental equations describing flow are continu-
ity of fluid phases and Darcy’s law, which basically states that flow rate is
proportional to pressure drop. The purpose of core-plug experiments is to de-
termine capillary pressure curves and the proportionality constant in Darcy’s
law that measures the ability to transmit fluids, see (1.1) in Section 1.3. To
this end, the sides of the core are insulated and flow is driven through the

24 2 Modelling Reservoir Rocks

core. By measuring the flow rate versus pressure drop, one can estimate the
proportionality constant for both single-phase or multi-phase flows.

In conventional reservoir modelling, the effective properties from core-scale
flow experiments are extrapolated to the macroscopic geological model, or di-
rectly to the simulation model. Cores should therefore ideally be representative
for the heterogeneous structures that one may find in a typical grid block in
the geological model. However, flow experiments are usually performed on rel-
atively homogeneous cores that rarely exceed one meter in length. Cores can
therefore seldom be classified as representative elementary volumes. For in-
stance, cores may contain a shale barrier that blocks flow inside the core, but
does not extend much outside the well-bore region, and the core was slightly
wider, there would be a passage past the shale barrier. Flow at the core scale
is also more influenced by capillary forces than flow on a reservoir scale.

As a supplement to core-flooding experiments, it has in recent years be-
come popular to build 3D grid models to represent small-scale geological de-
tails like the bedding structure and lithology (composition and texture). One
example of such a model is shown in Figure 2.3. Effective flow properties for
the 3D model can now be estimated in the same way as for core plugs by
replacing the flow experiment by flow simulations using rock properties that
are e.g., based on the input from microscopic models. This way, one can incor-
porate fine-scale geological details from lamina into the macroscopic reservoir
models.

This discussion shows that the problem of extrapolating information from
cores to build a geological model is largely under-determined. Supplementary
pieces of information are also needed, and the process of gathering geological
data from other sources is described next.

2.3 Modelling of Rock Properties

How to describe the flow through a porous rock structure is largely a question
of the scale of interest, as we saw in the previous section. The size of the rock
bodies forming a typical petroleum reservoir will be from ten to hundred me-
ters in the vertical direction and several hundred meters or a few kilometers
in the lateral direction. On this modelling scale, it is clearly impossible to
describe the storage and transport in individual pores and pore channels as
discussed in Section 2.2.3 or the through individual lamina as in Section 2.2.4.
To obtain a description of the reservoir geology, one builds models that at-
tempt to reproduce the true geological heterogeneity in the reservoir rock
at the macroscopic scale by introducing macroscopic petrophysical proper-
ties that are based on a continuum hypothesis and volume averaging over
a sufficiently large representative elementary volume (REV), as discussed in
Section 2.2.2. These petrophysical properties are engineering quantities that
are used as input to flow simulators and are not geological or geophysical
properties of the underlying media.

2.3 Modelling of Rock Properties 25

A geological model is a conceptual, three-dimensional representation of
a reservoir, whose main purpose is therefore to provide the distribution of
petrophysical parameters, besides giving location and geometry of the reser-
voir. The rock body itself is modelled in terms of a volumetric grid, in which
the layered structure of sedimentary beds and the geometry of faults and large-
scale fractures in the reservoir are represented by the geometry and topology
of the grid cells. The size of a cell in a typical geological grid-model is in the
range of 0.1–1 meters in the vertical direction and 10–50 meters in the hori-
zontal direction. The petrophysical properties of the rock are represented as
constant values inside each grid cell (porosity and permeability) or as values
attached to cell faces (fault multipliers, fracture apertures, etc). In the fol-
lowing, we will describe the main rock properties in more detail. More details
about the grid modelling will follow in Chapter 3.

2.3.1 Porosity

The porosity φ of a porous medium is defined as the fraction of the bulk
volume that is occupied by void space, which means that 0 ≤ φ < 1. Likewise,
1−φ is the fraction occupied by solid material (rock matrix). The void space
generally consists of two parts, the interconnected pore space that is available
to fluid flow, and disconnected pores (dead-ends) that is unavailable to flow.
Only the first part is interesting for flow simulation, and it is therefore common
to introduce the so-called “effective porosity” that measures the fraction of
connected void space to bulk volume.

For a completely rigid medium, porosity is a static, dimensionless quantity
that can be measured in the absence of flow. Porosity is mainly determined
by the pore and grain-size distribution. Rocks with nonuniform grain size
typically have smaller porosity than rocks with a uniform grain size, because
smaller grains tend to fill pores formed by larger grains. Similarly, for a bed of
solid spheres of uniform diameter, the porosity depends on the packing, vary-
ing between 0.2595 for a rhombohedral packing to 0.4764 for cubic packing.
For most naturally-occuring rocks, φ is in the range 0.1–0.4, although values
outside this range may be observed on occasion. Sandstone porosity is usually
determined by the sedimentological process by which the rock was deposited,
whereas for carbonate porosity is mainly a result of changes taking place after
deposition.

For non-rigid rocks, the porosity is usually modelled as a pressure-dependent
parameter. That is, one says that the rock is compressible, having a rock com-
pressibility defined by:

cr =
1

φ

dφ

dp
=
d ln(φ)

dp
, (2.1)

where p is the overall reservoir pressure. Compressibility can be significant
in some cases, e.g., as evidenced by the subsidence observed in the Ekofisk
area in the North Sea. For a rock with constant compressibility, (2.1) can be
integrated to give

26 2 Modelling Reservoir Rocks

φ(p) = φ0e
cr(p−p0), (2.2)

and for simplified models, it is common to use a linearization so that:

φ = φ0

[
1 + cr(p− p0)

]
. (2.3)

Because the dimension of the pores is very small compared to any interesting
scale for reservoir simulation, one normally assumes that porosity is a piece-
wise continuous spatial function. However, ongoing research aims to under-
stand better the relation between flow models on pore scale and on reservoir
scale.

2.3.2 Permeability

The permeability is the basic flow property of a porous medium and measures
its ability to transmit a single fluid when the void space is completely filled
with this fluid. This means that permeability, unlike porosity, is a parameter
that cannot be defined apart from fluid flow. The precise definition of the
(absolute, specific, or intrinsic) permeability K is as the proportionality factor
between the flow rate and an applied pressure or potential gradient ∇Φ,

~u = −K
µ
∇Φ. (2.4)

This relationship is called Darcy’s law after the french hydrologist Henry
Darcy, who first observed it in 1856 while studying flow of water through beds
of sand [21]. In (2.4), µ is the fluid viscosity and ~u is the superficial velocity,
i.e., the flow rate divided by the cross-sectional area perpendicular to the flow,
which should not be confused with the interstitial velocity ~v = φ−1~u, i.e., the
rate at which an actual fluid particle moves through the medium. We will
come back to a more detailed discussion of Darcy’s law in Section 5.2.

The SI-unit for permeability is m2, which reflects the fact that permeabil-
ity is determined by the geometry of the medium. However, it is more common
to use the unit ’darcy’ (D). The precise definition of 1D (≈ 0.987 · 10−12 m2)
involves transmission of a 1cp fluid through a homogeneous rock at a speed
of 1cm/s due to a pressure gradient of 1atm/cm. Translated to reservoir con-
ditions, 1D is a relatively high permeability and it is therefore customary to
specify permeabilities in milli-darcies (mD). Rock formations like sandstones
tend to have many large or well-connected pores and therefore transmit flu-
ids readily. They are therefore described as permeable. Other formations, like
shales, may have smaller, fewer or less interconnected pores and are hence
described as impermeable. Conventional reservoirs typically have permeabili-
ties ranging from 0.1 mD to 20 D for liquid flow and down to 10 mD for gas
flow. In recent years, however, there has been an increasing interest in uncon-
ventional resources, that is, gas and oil locked in extraordinarily impermeable
and hard rocks, with permeability values ranging from 0.1 mD and down to 1

2.3 Modelling of Rock Properties 27

µD or lower. Compared with conventional resources, the potential volumes of
tight gas, shale gas, shale oil are enormous, but cannot be easily produced at
economic rates unless stimulated, e.g., using a pressurized fluid to fracture the
rock (hydraulic fracturing). In this book, our main focus will be on simulation
of conventional resources.

In general, the permeability is a tensor, which means that the permeability
in the different directions depends on the permeability in the other directions.
The tensor is represented by a matrix in which the diagonal terms represent
direct flow, i.e., flow in one direction caused by a pressure drop in the same
direction. The off-diagonal terms represent cross-flow, i.e., flow caused by pres-
sure drop in directions perpendicular to the flow. A full tensor is needed to
model local flow in directions at an angle to the coordinate axes. For example,
in a layered system the dominant direction of flow will generally be along the
layers but if the layers form an angle to the coordinate axes, then a pres-
sure drop in one coordinate direction will produce flow at an angle to this
direction. This type of flow can be modelled correctly only with a permeabil-
ity tensor with nonzero off-diagonal terms. However, by a change of basis, K
may sometimes be diagonalized, and because of the reservoir structure, hori-
zontal and vertical permeability suffices for several models. We say that the
medium is isotropic (as opposed to anisotropic) if K can be represented as
a scalar function, e.g., if the horizontal permeability is equal to the vertical
permeability.

The permeability is obviously a function of porosity. Assuming a laminar
flow (low Reynolds numbers) in a set of capillary tubes, one can derive the
Carman–Kozeny relation,

K =
1

8τA2
v

φ3

(1− φ)2
, (2.5)

which relates permeability to porosity φ, but also shows that the permeability
depends on local rock texture described by tortuosity τ and specific surface
area Av. The tortuosity is defined as the squared ratio of the mean arc-chord
length of flow paths, i.e., the ratio between the length of a flow path and the
distance between its ends. The specific surface area is an intrinsic and char-
acteristic property of any porous medium that measures the internal surface
of the medium per unit volume. Clay minerals, for instance, have large spe-
cific surface areas and hence low permeability. The quantities τ and Av can
be calculated for simple geometries, e.g., for engineered beds of particles and
fibers, but are seldom measured for reservoir rocks. Moreover, the relation-
ship in (2.5) is highly idealized and only gives satisfactory results for media
that consist of grains that are approximately spherical and have a narrow
size distribution. For consolidated media and cases where rock particles are
far from spherical and have a broad size-distribution, the simple Carman–
Kozeny equation does not apply. Instead, permeability is typically obtained
through macroscopic flow measurements.

28 2 Modelling Reservoir Rocks

Permeability is generally heterogeneous in space because of different sort-
ing of particles, degree of cementation (filling of clay), and transitions between
different rock formations. Indeed, the permeability may vary rapidly over sev-
eral orders of magnitude, local variations in the range 1 mD to 10 D are not
unusual in a typical field. The heterogeneous structure of a porous rock for-
mation is a result of the deposition and geological history and will therefore
vary strongly from one formation to another, as we will see in a few of the
examples in Section 2.4.

Production of fluids may also change the permeability. When temperature
and pressure is changed, microfractures may open and significantly change
the permeability. Furthermore, since the definition of permeability involves a
certain fluid, different fluids will experience different permeability in the same
rock sample. Such rock-fluid interactions are discussed in Chapter ??.

2.3.3 Other parameters

Not all rocks in a reservoir zone are reservoir rocks. To account for the fact
that some portion of a cell may consist of impermeable shale, it is common
to introduce the so-called “net-to-gross” (N/G) property, which is a number
in the range 0 to 1 that represents the fraction of reservoir rock in the cell.
To get the effective porosity of a given cell, one must multiply the porosity
and N/G value of the cell. (The N/G values also act as multipliers for lateral
transmissibilities, which we will come back to later in the book). A zero value
means that the corresponding cell only contains shale (either because the
porosity, the N/G value, or both are zero), and such cells are by convention
typically not included in the active model. Inactive cells can alternatively be
specified using a dedicated field (called ’actnum’ in industry-standard input
formats).

Faults can either act as conduits for fluid flow in subsurface reservoirs or
create flow barriers and introduce compartmentalization that severely affects
fluid distribution and/or reduces recovery. On a reservoir scale, faults are gen-
erally volumetric objects that can be described in terms of displacement and
petrophysical alteration of the surrounding host rock. However, lack of geo-
logical resolution in simulation models means that fault zones are commonly
modelled as surfaces that explicitly approximate the faults’ geometrical prop-
erties. To model the hydraulic properties of faults, it is common to introduce
so-called multipliers that alter the ability to transmit fluid between two neigh-
boring cells. Multipliers are also used to model other types of subscale features
that affect communication between grid blocks, e.g., thin mud layers result-
ing from flooding even which may partially cover the sand bodies and reduce
vertical communication. It is also common to (ab)use multipliers to increase
or decrease the flow in certain parts of the model to calibrate the simulated
reservoir responses to historic data (production curves from wells, etc). More
details about multipliers will be given later in the book.

2.4 Rock Modelling in MRST 29

2.4 Rock Modelling in MRST

All flow and transport solvers in MRST assume that the rock parameters
are represented as fields in a structure. Our naming convention is that this
structure is called rock, but this is not a requirement. The fields for porosity
and permeability, however, must be called poro and perm, respectively. The
porosity field rock.poro is a vector with one value for each active cell in
the corresponding grid model. The permeability field rock.perm can either
contain a single column for an isotropic permeability, two or three columns
for a diagonal permeability (in two and three spatial dimensions, respectively,
or six columns for a symmetric, full tensor permeability. In the latter case,
cell number i has the permeability tensor

Ki =

[
K1(i) K2(i)
K2(i) K3(i)

]
, Ki =

K1(i) K2(i) K3(i)
K2(i) K4(i) K5(i)
K3(i) K5(i) K6(i)

 ,
where Kj(i) is the entry in column j and row i of rock.perm. Full-tensor, non-
symmetric permeabilities are currently not supported in MRST. In addition
to porosity and permeability, MRST supports a field called ntg that represents
the net-to-gross ratio and consists of either a scalar or a single column with
one value per active cell.

In the rest of the section, we present a few examples that demonstrate how
to generate and specify permeability and porosity values. In addition, we will
briefly discuss a few models with industry-standard complexity. Through the
discussion, you will also be exposed to a lot of the visualization capabilities
of MRST. Complete scripts necessary to reproduce the results and the figures
presented can be found in various scripts in the rock subdirectory of the
software module that accompanies the book.

2.4.1 Homogeneous Models

Homogeneous models are very simple to specify, as is illustrated by a simple
example. We consider a square 10× 10 grid model with a uniform porosity of
0.2 and isotropic permeability equal 200 mD:

G = cartGrid([10 10]);
rock.poro = repmat(0.2, [G.cells.num,1]);
rock.perm = repmat(200*milli*darcy, [G.cells.num,1]);

Because MRST works in SI units, it is important to convert from the field
units ’darcy’ to the SI unit ’meters2’. Here, we did this by multiplying with
milli and darcy, which are two functions that return the corresponding con-
version factors. Alternatively, we could have used the conversion function
convertFrom(200, milli*darcy). Homogeneous, anisotropic permeability can be
specified in the same way:

rock.perm = repmat([100 100 10].*milli*darcy, [G.cells.num,1]);

30 2 Modelling Reservoir Rocks

2.4.2 Random and Lognormal Models

Given the difficulty of measuring rock properties, it is common to use geo-
statistical methods to make realizations of porosity and permeability. MRST
contains two very simplified methods for generating geostatistical realizations.
For more realistic geostatistics, the reader should use GSLIB [24] or a com-
mercial geomodelling software.

In our first example, we will generate the porosity φ as a Gaussian field.
To get a crude approximation to the permeability-porosity relationship, we
assume that our medium is made up of uniform spherical grains of diame-
ter dp = 10µm, for which the specific surface area is Av = 6/dp. Using the
Carman–Kozeny relation (2.5), we can then calculate the isotropic permeabil-
ity K from

K =
1

72τ

φ3d2
p

(1− φ)2
,

where we further assume that τ = 0.81. As a simple approximation to a Gaus-
sian field, we generate a field of independent normally distributed variables
and convolve it with a Gaussian kernel.

G = cartGrid([50 20]);
p = gaussianField(G.cartDims, [0.2 0.4], [11 3], 2.5);
K = p.ˆ3.*(1e−5)ˆ2./(0.81*72*(1−p).ˆ2);
rock.poro = p(:);
rock.perm = K(:);

The resulting porosity field is shown in the left plot of Figure 2.6. The right
plot shows the permeability obtained for a 3D realization generated in the
same way.

In the second example, we use the same methodology as above to generate
layered realizations, for which the permeability in each geological layer is
independent of the other layers and lognormally distributed. Each layer can
be represented by several grid cells in the vertical direction. Rather than
using a simple Cartesian grid, we will generate a stratigraphic grid with wavy
geological faces and a single fault. Such grids will be described in more detail
in Chapter 3.

G = processGRDECL(simpleGrdecl([50 30 10], 0.12));
K = logNormLayers(G.cartDims, [100 400 50 350], ...

' indices ' , [1 2 5 7 11]);

Here we have specified four geological layers with mean values of 100 mD,
400 mD, 50 mD, and 350 mD from top to bottom (stratigraphic grids are
numbered from the top and downward). The layers are represented with one,
three, two, and four grid cells, respectively, in the vertical direction. The
resulting permeability is shown in Figure 2.7.

2.4 Rock Modelling in MRST 31

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

plotCellData (G , rock.poro);
colorbar ('horiz '); axis equal tight ;

0
5

10
15

20
25

30
35

40
45

50

0

5

10

15

20

0

5

10

50 100 150 200 250 300

plotCellData (G , convertTo (rock.perm , milli* darcy));
colorbar ('horiz '); axis equal tight ; view (3);

Fig. 2.6. The left plot shows a 50× 20 porosity field generated as a Gaussian field
with a larger filter size in x-direction than in the y-direction. The right plot shows
the permeability field computed from the Carman–Kozeny relation for a similar
50× 20× 10 porosity realization computed with filter size [3, 3, 3].

25 50 100 200 400 800

plotCellData (G , log10 (K), 'EdgeColor','k'); view (45,30);
axis tight off , set(gca , 'DataAspect',[0.5 1 1])
h=colorbar('horiz '); ticks=25*2.ˆ[0:5];
set(h , 'XTick',log10 (ticks), 'XTickLabel',ticks);

Fig. 2.7. A stratigraphic grid with a single fault and four geological layers, each
with a lognormal permeability distribution.

2.4.3 10th SPE Comparative Solution Project: Model 2

The model was originally posed as a benchmark for upscaling method, but has
later become very popular within the academic community as a benchmark
for comparing different computational methods. The model is structurally
simple but is highly heterogeneous, and, for this reason, some describe it as
a ’simulator-killer’. On the other hand, the fact that the flow is dictated by
the strong heterogeneity means that streamline methods will be particularly

32 2 Modelling Reservoir Rocks

Fig. 2.8. Rock properties for the SPE 10 model. The upper plot shows the porosity,
the lower left the horizontal permeability, and the lower right the vertical perme-
ability. (The permeabilities are shown using a logarithmic color scale).

efficient for this model [1]. The SPE 10 data set is used in a large number of
publications, and for this reason we have made a module spe10 in MRST that
downloads and provides simple access to this model. Because the geometry
is a simple Cartesian grid, we can use standard MATLAB functionality to
visualize the heterogeneity in the permeability and porosity (full details can
be found in the script rocks/showSPE10.m)

% load SPE 10 data set
mrstModule add spe10;
rock = SPE10_rock(); p=rock.poro; K=rock.perm;

% show p
slice(reshape(p,60,220,85), [1 220], 60, [1 85]);
shading flat, axis equal off, set(gca,'zdir', ' reverse '), box on;
colorbar('horiz');

% show Kx
slice(reshape(log10(K(:,1)),60,220,85), [1 220], 60, [1 85]);
shading flat, axis equal off, set(gca,'zdir', ' reverse '), box on;
h=colorbar('horiz');
set(h,'XTickLabel',10.ˆ[get(h,'XTick')]);
set(h,'YTick',mean(get(h,'YLim')),'YTickLabel','mD');

Figure 2.8 shows porosity and permeability; the permeability tensor is di-
agonal with equal permeability in the two horizontal coordinate directions.

2.4 Rock Modelling in MRST 33

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3
x 10

4

Ness
Tarbert

−4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5
x 10

4

Ness
Tarbert

−8 −6 −4 −2 0 2 4
0

0.5

1

1.5

2

2.5

3
x 10

4

Tarbert
Ness

Fig. 2.9. Histogram of rock properties for the SPE 10 model: φ (upper plot), logKx

(lower left), and logKz (lower right) The Tarbert formation is shown in blue and
the Ness formation in red.

Both formations are characterized by large permeability variations, 8–12 or-
ders of magnitude, but are qualitatively different. The Tarbert consists of
sandstone, siltstone, and shales and comes from a tidally influenced, trans-
gressive, shallow-marine deposit. The formation has good communication in
the vertical and horizontal directions. The fluvial Ness formation has been
deposited by rivers or running water in a delta-plain environment, leading
to a spaghetti of well-sorted high-permeable sandstone channels with good
communication (long correlation lengths) imposed on a low-permeable back-
ground of shales and coal, which gives low communication between different
sand bodies. The porosity field has a large span of values and approximately
2.5% of the cells have zero porosity and should be considered as being inactive.

Figure 2.9 shows histograms of the porosity and the logarithm of the hor-
izontal and vertical permeabilities. The nonzero porosity values and the hor-
izontal permeability of the Tarbert formation appear to follow a normal and
lognormal distribution, respectively. The vertical permeability follows a bi-
modal distribution. For the Ness formation, the nonzero porosities and the
horizontal permeability follow bi-modal normal and lognormal distributions,
respectively, as is to be expected for a fluvial formation. The vertical perme-
ability is tri-modal.

34 2 Modelling Reservoir Rocks

2.4.4 The Johansen Formation

The Johansen formation is a candidate site for large-scale CO2 storage offshore
the south-west coast of Norway; with good sand quality and depth levels
between 2200 and 3100 meters, the pressure regime should be ideal for CO2

storage. Herein, we will consider the heterogeneous sector model given as a
100 × 100 × 11 corner-point grid. All statements used to analyze the model
are found in the script rocks/showJohansenNPD5.m.

The grid consists of hexahedral cells and is given on the industry-standard
corner-point format, which will be discussed in details in Section 3.3.1. A
more detailed discussion of how to input the grid will be given in the next
section. The rock properties are given as plain ASCII files, with one entry per
cell. In the model, the Johansen formation is represented by five grid layers,
the low-permeable Dunlin shale above is represented by five layers, and the
Amundsen shale below is represented as one layer. The Johansen formation
consists of approximately 80% sandstone and 20% claystone, whereas the
Amundsen formation consists of siltstones and shales, see [28, 27, 8] for more
details.

We start by loading the data and visualizing the porosity, which is straight-
forward once we remember to use G.cells.indexMap to extract rock properties
only for active cells in the model.

G = processGRDECL(readGRDECL('NPD5.grdecl'));
p = load('NPD5 Porosity.txt')'; p = p(G.cells.indexMap);

Figure 2.10 shows the porosity field of the model. The left plot shows the Dun-
lin shale, the Johansen sand, and the Amundsen shale, where the Johansen

args = {'EdgeAlpha'; 0.1; 'EdgeColor'; 'k'};
plotCellData (G , p , args {:}); view(−45,15),
axis tight off , zoom (1.15),
caxis ([0 .1 0.3]), colorbar ;

plotGrid (G , 'FaceColor','none', args {:});
plotCellData (G , p , find (p>0.1), args{:})
view(−15,40); axis tight off , zoom (1.15),
caxis ([0 .1 0.3]), colorbar ;

Fig. 2.10. Porosity for the Johansen data set ’NPD5’. The left plot shows porosity
for the whole model, whereas in the right plot we have masked the low-porosity cells
in the Amundsen and Dunlin formations.

2.4 Rock Modelling in MRST 35

Fig. 2.11. Permeability for the Johansen data set ’NPD5’. The upper-left plot shows
the permeability for the whole model, the upper-right plot shows the Johansen sand
and the Amundsen shale, whereas the lower plot only shows the permeability of the
Johansen sand.

sand is clearly distinguished as a wedge shape that is pinched out in the front
part of the model and splits the shales laterally in two at the back. In the
right plot, we only plot the good reservoir rocks distinguished as the part of
the porosity field that has values larger than 0.1.

The permeability tensor is assumed to be diagonal with the vertical per-
meability equal one-tenth of the horizontal permeability. Hence, only the x-
component Kx is given in the data file

K = load('NPD5 Permeability.txt')'; K=K(G.cells.indexMap);

Figure 2.11 shows three different plots of the permeability. The first plot shows
the logarithm of whole permeability field. In the second plot, we have filtered
out the Dunlin shale above Johansen but not the Amundsen shale below. The
third plot shows the permeability in the Johansen formation using a linear
color scale, which clearly shows the depth trend that was used to model the
heterogeneity.

36 2 Modelling Reservoir Rocks

2.4.5 The SAIGUP Model

Most commercial simulators use a combination of an ’input language’ and a
set of data files to describe and set up a simulation model of a reservoir. How-
ever, although the principles for the input description has much in common,
the detail syntax is obviously unique to each simulator. Herein, we will mainly
focus on the ECLIPSE input format, which has emerged as an industry stan-
dard for describing static and dynamic properties of a reservoir system, from
the reservoir rock, via production and injection wells and up to connected top-
side facilities. ECLIPSE input decks use keywords to signify and separate the
different data elements that comprise a full model. These keywords define a
detailed language that can be used to specify how the data elements should be
put together, and modify each other, to form a full spatio-temporal model of
a reservoir. In the most general form, an ECLIPSE input file consists of eight
sets of keywords are organized into eight sections that must come in a pre-
scribed order. However, some of the sections are optional and may not always
be present. The order of the keywords within each section is arbitrary, except
in the section that defines wells and gives operating schedule, etc. Altogether,
the ECLIPSE format consists of thousands of keywords, and describing them
all is far beyond the scope of this presentation.

In the following, we will instead briefly outline some of the most common
keywords that are used in the GRID section that describes the reservoir geom-
etry and petrophysical properties. The purpose is to provide you with a basic
understanding of the required input for simulations of real-life reservoir mod-
els. Our focus is mainly on the ingredients of a model and not on the specific
syntax. For brevity, we will therefore not go through all Matlab and MRST
statements used to visualize the different data elements. All details necessary
to reproduce the results can be found in the script rocks/showSAIGUP.m.

As an example of a realistic representation of a shallow-marine reservoir,
we will use a simulation model taken from the SAIGUP study [40]. The
SAIGUP models mainly focus on shoreface reservoirs in which the deposi-
tion of sediments is caused by variation in sea level, so that facies are forming
belts in a systematic pattern (river deposits create curved facies belts, wave
deposits create parallel belts, etc). Sediments are in general deposited when
the sea level is increasing. No sediments are deposited during decreasing sea
levels; instead, the receding sea may affect the appearing shoreline and cause
the creation of a barrier.

Assuming that the archive file SAIGUP.tar.gz that contains the model
realization has been downloaded as described in Section 1.5, we used MAT-
LAB’s untar function to extract the data set and place it in a standardized
path relative to the root directory of MRST:

untar('SAIGUP.tar.gz', fullfile(ROOTDIR, 'examples', 'data', 'SAIGUP'))

This will create a new directory that contains seventeen data files that com-
prise the structural model, various petrophysical parameters, etc:

2.4 Rock Modelling in MRST 37

028_A11.EDITNNC 028.MULTX 028.PERMX 028.SATNUM SAIGUP.GRDECL
028_A11.EDITNNC.001 028.MULTY 028.PERMY SAIGUP_A1.ZCORN
028_A11.TRANX 028.MULTZ 028.PERMZ SAIGUP.ACTNUM
028_A11.TRANY 028.NTG 028.PORO SAIGUP.COORD

The main file is SAIGUP.GRDECL, which lists the sequence of keywords that
specifies how the data elements found in the other files should be put together
to make a complete model of the reservoir rock. The remaining files repre-
sent different keywords: the grid geometry is given in files SAIGUP_A1.ZCORN

and SAIGUP.COORD, the porosity in 028.PORO, the permeability tensor in the
three 028.PERM* files, net-to-gross properties in 028.NTG, the active cells in
SAIGUP.ACTNUM, transmissibility multipliers that modify the flow connections
between different cells in the model are given in 028.MULT*, etc. For now,
we will rely entirely on MRST’s routines for reading Eclipse input files; more
details about corner-point grids and the Eclipse input format will follow later
in the book, starting in Chapter 3.

The SAIGUP.GRDECL file contains seven of the eight possible sections that
may comprise a full input deck. The deckformat module in MRST contains
a comprehensive set of input routines that enable the user to read the most
important keywords and options supported in these sections. Here, however,
it is mainly the sections describing static reservoir properties that contain
complete and useful information, and we will therefore use the much simpler
function readGRDECL from MRST core to read and interprets the GRID section
of the input deck:

grdecl = readGRDECL(fullfile(ROOTDIR, 'examples', ...
'data' , 'SAIGUP','SAIGUP.GRDECL'));

This statement parses the input file and stores the content of all keywords it
recognizes in the structure grdecl:

grdecl =
cartDims: [40 120 20]

COORD: [29766x1 double]
ZCORN: [768000x1 double]

ACTNUM: [96000x1 int32]
PERMX: [96000x1 double]
PERMY: [96000x1 double]
PERMZ: [96000x1 double]
MULTX: [96000x1 double]
MULTY: [96000x1 double]
MULTZ: [96000x1 double]
PORO: [96000x1 double]
NTG: [96000x1 double]

SATNUM: [96000x1 double]

The first four data fields describe the grid, and we will come back to these
in Chapter 3.3.1. In the following, we will focus on the next eight data fields,
which contain the petrophysical parameters. We will also briefly look at the
last data field, which delineates the reservoir into different (user-defined) rock
types that can used to associated different rock-fluid properties.

MRST uses the strict SI conventions in all of its internal calculations. The
SAIGUP model, however, is provided using the Eclipse ’METRIC’ conventions

38 2 Modelling Reservoir Rocks

Fig. 2.12. The structural SAIGUP model. The left plot shows the full model with
faults marked in red and inactive cells marked in yellow, whereas the right plot
shows only the active parts of the model seen from the opposite direction.

(permeabilities in mD and so on). We use the functions getUnitSystem and
convertInputUnits to assist in converting the input data to MRST’s internal
unit conventions.

usys = getUnitSystem('METRIC');
grdecl = convertInputUnits(grdecl, usys);

Having converted the units properly, we generate a space-filling grid and ex-
tract petrophysical properties

G = processGRDECL(grdecl);
G = computeGeometry(G);
rock = grdecl2Rock(grdecl, G.cells.indexMap);

The first statement takes the description of the grid geometry and constructs
an unstructured MRST grid represented with the data structure outlined in
Section 3.4. The second statement computes a few geometric primitives like
cell volumes, centroids, etc., as discussed on page 75. The third statement
constructs a rock object containing porosity, permeability, and net-to-gross.

For completeness, we first show a bit more details of the structural model
in Figure 2.12. The left plot shows the whole 40 × 120 × 20 grid model1,
where we in particular should note the disconnected cells marked in yellow
that are not part of the active model. The relatively large fault throw that
disconnects the two parts is most likely a modelling artifact introduced to
clearly distinguish the active and inactive parts of the model. A shoreface
reservoir is bounded by faults and geological horizons, but faults also appear
inside the reservoir as the right plot in Figure 2.12 shows. Faults and barriers
will typically have a pronounced effect on the flow pattern, and having an
accurate representation is important to produce reliable flow predictions.

1 To not confuse the reader, we emphasize that only the active part of the model
is read with the MRST statements given above. How to also include the inactive
part, will be explained in more details in Chapter 3.

2.4 Rock Modelling in MRST 39

p = reshape (grdecl.PORO , G.cartDims);
slice (p , 1, 1, 1); view(−135,30), shading flat ,
axis equal off ,
set(gca , 'ydir ' , ' reverse ' , 'zdir ' , ' reverse ')
colorbar ('horiz '); caxis ([0 .01 0.3]);

args = {'EdgeAlpha'; 0.1; 'EdgeColor'; 'k'};
plotCellData (G , rock.poro , args {:});
axis tight off ; set(gca , 'DataAspect',[1 1 0.1]);
view(−65,55); zoom(1.4); camdolly (0,−0.2,0)
colorbar ('horiz '); caxis ([0 .1 0.3])

Fig. 2.13. Porosity for the SAIGUP model. The left plot shows porosity as generated
by geostatistics in logical ijk space. The right plot shows the porosity mapped to
the structural model shown in Figure 2.12.

The petrophysical parameters for the model were generated on a regular
40× 120× 20 Cartesian grid, as illustrated in the left plot of Figure 2.13, and
then mapped onto the structural model, as shown in the plot to the right. A
bit simplified, one can view the Cartesian grid model as representing the rock
body at geological ’time zero’ when the sediments have been deposited and
have formed a stack of horizontal grid layers. From geological time zero and
up to now, geological activity has introduced faults and deformed the layers,
resulting in the structural model seen in the left plot of Figure 2.13.

Having seen the structural model, we continue to study the petrophysical
parameters. The grid cells in our model are thought to be larger than the
laminae of our imaginary reservoir and hence each grid block will generally
contain both reservoir rock (with sufficient permeability) and impermeable
shale. This is modelled using the net-to-gross ratio, rock.ntg, which is shown
in Figure 2.14 along with the horizontal and vertical permeability. The plotting
routines are exactly the same as for the porosity in Figure 2.13, but with
different data and slightly different specification of the colorbar. From the
figure, we clearly see that the model has a large content of shale and thus low
permeability along the top. However, we also see high-permeable sand bodies
that cut through the low-permeable top. In general, the permeabilities seem
to correlate well with the sand content given by the net-to-gross parameter.

Some parts of the sand bodies are partially covered by mud that strongly
reduces the vertical communication, most likely because of flooding events.
These mud-draped surfaces occur on a sub-grid scale and are therefore mod-
elled through a multiplier value (MULTZ) between zero and one that can be
used to manipulate the effective communication (the transmissibility) between
a given cell (i, j, k) and the cell immediately above (i, j, k+ 1). For complete-

40 2 Modelling Reservoir Rocks

Fig. 2.14. The upper plots show the horizontal (left) and vertical permeability
(right) for the SAIGUP model, using a logarithmic color scale. The lower plots show
net-to-gross (left) and vertical multiplier values less than unity (right).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Porosity

−4 −3 −2 −1 0 1 2 3 4
0

500

1000

1500

2000

2500

3000

3500

Horizontal
Vertical

Fig. 2.15. Histogram of the porosity (left) and the logarithm of the horizontal and
vertical permeability (right).

ness, we remark that the horizontal multiplier values (MULTX and MULTY) play
a similar role for vertical faces, but are equal one in (almost) all cells for this
particular realization.

To further investigate the heterogeneity of the model, we next look at
histograms of the porosity and the permeabilities, as we did for the SPE 10
example (the MATLAB statements are omitted since they are almost iden-

2.4 Rock Modelling in MRST 41

% Key statements
SN = grdecl.SATNUM (G.cells.indexMap);
plotCellData (G , SN , args {:});
colorbar ('horiz '); caxis ([0 .5 6.5])
j = jet(60); colormap (j (1:10:end,:))
plotCellData (G , SN , find (SN==1), args{:});
plotCellData (G , SN , find (SN==5), args{:});

 0.01 1 100 10000
0

100

200

300

400

 0.01 1 100 10000
0

100

200

300

400

 0.01 1 100 10000
0

200

400

600

 0.01 1 100 10000
0

500

1000

1500

 0.01 1 100 10000
0

500

1000

1500

 0.01 1 100 10000
0

20

40

60

80

Fig. 2.16. The upper-left plot shows the rock type distribution for the SAIGUP
model. The right column shows the six rock types grouped in pairs; from top to
bottom, rock types number 1 and 5, 2 and 4, and 3 and 6. The bottom part of the
figure shows histograms of the lateral permeability in units [mD] for each of the six
rock types found in the SAIGUP model.

tical). In Figure 2.15, we clearly see that the distributions of porosity and
horizontal permeability are multi-modal in the sense that five different modes
can be distinguished, corresponding to the five different facies used in the
petrophysical modelling.

It is common modelling practice that different rock types are assigned
different rock-fluid properties (relative permeability and capillary functions),
more details about such properties will be given later in the book. In the
Eclipse input format, these different rock types are represented using the
SATNUM keyword. By inspection of the SATNUM field in the input data, we
see that the model contains six different rock types as depicted in Figure 2.16.

42 2 Modelling Reservoir Rocks

Fig. 2.17. Comparison of porosity (left) and the distribution of rock types (right)
for two different SAIGUP realizations.

For completeness, the figure also shows the permeability distribution inside
each rock type. Interestingly, the permeability distribution is multi-modal for
at least two of the rock types.

Finally, to demonstrate the large difference in heterogeneity resulting from
different depositional environment, we compare the realization we have stud-
ied above with another realization. In Figure 2.17 we show porosities and
rock-type distributions. Whereas our original realization seems to correspond
to a depositional environment with a flat shoreline, the other realization cor-
responds to a two-lobed shoreline, giving distinctively different facies belts.
The figure also clearly demonstrates how the porosity (which depends on the
grain-size distribution and packing) varies with the rock types. This can be
confirmed by a quick analysis:

for i=1:6, pavg(i) = mean(rock.poro(SN==i));
navg(i) = mean(rock.ntg(SN==i)); end

pavg = 0.0615 0.1883 0.1462 0.1145 0.0237 0.1924

navg = 0.5555 0.8421 0.7554 0.6179 0.3888 0.7793

In other words, rock types two and six are good sands with high porosity,
three and four have intermediate porosity, whereas one and five correspond
to less quality sand with a high clay content and hence low porosity.

3

Grids in Subsurface Modeling

The basic geological description of a petroleum reservoir or an aquifer system
will typically consist of two sets of surfaces. Geological horizons are lateral
surfaces that describe the bedding planes that delimit the rock strata, whereas
faults are vertical or inclined surfaces along which the strata may have been
displaced by geological processes. In this chapter, we will discuss how to turn
the basic geological description into a discrete model that can be used to
formulate various computational methods, e.g., for solving the equations that
describe fluid flow.

A grid is a tessellation of a planar or volumetric object by a set of contigu-
ous simple shapes referred to as cells. Grids can be described and distinguished
by their geometry, reflected by the shape of the cells that form the grid, and
their topology that tells how the individual cells are connected. In 2D, a cell is
in general a closed polygon for which the geometry is defined by a set of ver-
tices and a set of edges that connect pairs of vertices and define the interface
between two neighboring cells. In 3D, a cell is a closed polyhedron for which
the geometry is defined by a set of vertices, a set of edges that connect pairs of
vertices, and a set of faces (surfaces delimited by a subset of the edges) that
define the interface between two different cells, see Figure 3.1. Herein, we will
assume that all cells in a grid are non-overlapping, so that each point in the
planar/volumetric object represented by the grid is either inside a single cell,
lies on an interface or edge, or is a vertex. Two cells that share a common
face are said to be connected. Likewise, one can also define connections based
on edges and vertices. The topology of a grid is defined by the total set of
connections, which is sometimes also called the connectivity of the grid.

When implementing grids in modeling software, one always has the choice
between generality and efficiency. To represent an arbitrary grid, it is necessary
to explicitly store the geometry of each cell in terms of vertices, edges, and
faces, as well as storing the connectivity among cells, faces, edges, and vertices.
However, as we will see later, huge simplifications can be made for particular
classes of grids by exploiting regularity in the geometry and structures in
the topology. Consider, for instance, a planar grid consisting of rectangular

44 3 Grids in Subsurface Modeling

Fig. 3.1. Illustration of a single cell (left), vertices and edges (middle), and cell
faces (right).

cells of equal size. Here, the topology can be represented by two indices and
one only needs to specify a reference point and the two side lengths of the
rectangle to describe the geometry. This way, one ensures minimal memory
usage and optimal efficiency when accessing the grid. On the other hand,
exploiting the simplified description explicitly in your flow or transport solver
inevitably means that the solver must be reimplemented if you later decide
to use another grid format.

The most important goal for our development of MRST is to provide a
toolbox that both allows and enables the use of various grid types. To avoid
having a large number of different, and potentially incompatible, grid repre-
sentations, we have therefore chosen to store all grid types using a general
unstructured format in which cells, faces, vertices, and connections between
cells and faces are explicitly represented. This means that we, for the sake of
generality, have sacrificed some of the efficiency one can obtain by exploiting
special structures in a particular grid type and instead have focused on ob-
taining a flexible grid description that is not overly inefficient. Moreover, our
grid structure can be extended by other properties that are required by var-
ious discretization schemes for flow and transport simulations. A particular
discretization may need the volume or the centroid (grid-point, midpoint, or
generating point) of each cell. Likewise, for cell faces one may need to know the
face areas, the face normals, and the face centroids. Although these proper-
ties can be computed from the geometry (and topology) of the grid, it is often
useful to precompute and include them explicitly in the grid representation.

The first third of this chapter is devoted to standard grid formats that
are available in MRST. We introduce examples of structured grids, including
regular Cartesian, rectilinear, and curvilinear grids, and briefly discuss un-
structured grids, including Delaunay triangulations and Voronoi grids. The
purpose of our discussion is to demonstrate the basic grid functionality in
MRST and show some key principles that can be used to implement new
structured and unstructured grid formats. In the second part of the chap-
ter, we discuss industry-standard grid formats for stratigraphic grids that are
based on extrusion of 2D shapes (corner-point, prismatic, and 2.5D PEBI
grids). Although these grids have an inherent logical structure, representation
of faults, erosion, pinch-outs, etc, leads to cells that can have quite irregular

3.1 Structured Grids 45

shapes and an (almost) arbitrary number of faces. In the last part of the chap-
ter, we discuss how the grids introduced in the first two parts of the chapter
can be partitioned to form flexible coarse descriptions that preserve the ge-
ometry of the underlying fine grids. The ability to represent a wide range of
grids, structured or unstructured on the fine and/or coarse scale, is a strength
of MRST compared to the majority of research codes arising from academic
institutions.

3.1 Structured Grids

As we saw above, a grid is a tessellation of a planar or volumetric object by
a set of simple shapes. In a structured grid, only one basic shape is allowed
and this basic shape is laid out in a regular repeating pattern so that the
topology of the grid is constant in space. The most typical structured grids
are based on quadrilaterals in 2D and hexahedrons in 3D, but in principle it
is also possible to construct grids with a fixed topology using certain other
shapes. Structured grids can be generalized to so-called multiblock grids (or
hybrid grids), in which each block consists of basic shapes that are laid out
in a regular repeating pattern.

Regular Cartesian grids

The simplest form of a structured grid consists of unit squares in 2D and
unit cubes in 3D, so that all vertices in the grid are integer points. More
generally, a regular Cartesian grid can be defined as consisting of congruent
rectangles in 2D and rectilinear parallelepipeds in 3D, etc. Hence, the vertices
have coordinates (i1∆x1, i2∆x2, . . .) and the cells can be referenced using the
multi-index (i1, i2, . . .). Herein, we will only consider finite Cartesian grids
that consist of a finite number n2×n2×· · ·×nk of cells that cover a bounded
domain [0, L1]× [0, L2]× · · · × [0, Lk].

Regular Cartesian grids can be represented very compactly by storing ni
and Li for each dimension. In MRST, however, Cartesian grids are represented
as if they were fully unstructured using a general grid structure that will be
described in more detail in Section 3.4. Cartesian grids therefore have special
constructors,

G = cartGrid([nx, ny], [Lx Ly]);
G = cartGrid([nx, ny, nz], [Lx Ly Lz]);

that set up the data structures representing the basic geometry and topology
of the grid. The second argument is optional.

Rectilinear grids

A rectilinear grid (also called a tensor grid) consists of rectilinear shapes (rect-
angles or parallelepipeds) that are not necessarily congruent to each other. In

46 3 Grids in Subsurface Modeling

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3.2. Example of a rectilinear grid.

other words, whereas a regular Cartesian grid has a uniform spacing between
its vertices, the grid spacing can vary along the coordinate directions in a rec-
tilinear grid. The cells can still be referenced using a multi-index (i1, i2, . . .)
but the mapping from indices to vertex coordinates is nonuniform.

In MRST, one can construct a rectilinear grid by specifying the vectors
with the grid vertices along the coordinate directions:

G = tensorGrid(x, y);
G = tensorGrid(x, y, z);

This syntax is the same as for the MATLAB functions meshgrid and ndgrid.
As an example of a rectilinear grid, we construct a 2D grid that covers

the domain [−1, 1]× [0, 1] and is graded toward x = 0 and y = 1 as shown in
Figure 3.2.

dx = 1−0.5*cos((−1:0.1:1)*pi);
x = −1.15+0.1*cumsum(dx);
y = 0:0.05:1;
G = tensorGrid(x, sqrt(y));
plotGrid(G); axis([−1.05 1.05 −0.05 1.05]);

Curvilinear grids

A curvilinear grid is a grid with the same topological structure as a regular
Cartesian grid, but in which the cells are quadrilaterals rather than rectangles
in 2D and cuboids rather than parallelepipeds in 3D. The grid is given by the
coordinates of the vertices but there exists a mapping that will transform
the curvilinear grid to a uniform Cartesian grid so that each cell can still be
referenced using a multi-index (i1, i2, . . .).

3.1 Structured Grids 47

For the time being, MRST has no constructor for curvilinear grids. Instead,
the user can create curvilinear grids by first instantiating a regular Cartesian
or a rectilinear grid and then manipulating the vertices, as we will demonstrate
next. This method is quite simple as long as there is a one-to-one mapping
between the curvilinear grid in physical space and the logically Cartesian grid
in reference space. The method will not work if the mapping is not one-to-one
so that vertices with different indices coincide in physical space. In this case,
the user should create an Eclipse input file with keywords COORD[XYZ], see
Section 3.3.1, and use the function buildCoordGrid to create the grid.

To illustrate the discussion, we show two examples of how to create curvi-
linear grids. In the first example, we create a rough grid by perturbing all
internal nodes of a regular Cartesian grid (see Figure 3.3):

nx = 6; ny=12;
G = cartGrid([nx, ny]);
subplot(1,2,1); plotGrid(G);
c = G.nodes.coords;
I = any(c==0,2) | any(c(:,1)==nx,2) | any(c(:,2)==ny,2);
G.nodes.coords(˜I,:) = c(˜I,:) + 0.6*rand(sum(˜I),2)−0.3;
subplot(1,2,2); plotGrid(G);

0 2 4 6
0

2

4

6

8

10

12

0 2 4 6
0

2

4

6

8

10

12

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

0.9

0.95

1

1.05

1.1

Fig. 3.3. The middle plot shows a rough grid created by perturbing all internal
nodes of the regular 6 × 12 Cartesian grid in the left plot. The right plot shows a
curvilinear grid created using the function twister that uses a combination of sin
functions to perturbe a rectilinear grid. The color is determined by the cell volumes.

In the second example, we use the MRST example routine twister to perturb
the internal vertices. The function maps the grid back to the unit square,
perturbs the vertices according to the mapping

(xi, yi) 7→
(
xi+f(xi, yi), yi−f(xi, yi)

)
, f(x, y) = 0.03 sin(πx) sin

(
3π(y− 1

2)
)
,

and then maps the grid back to its original domain. The resulting grid is
shown in the right plot of Figure 3.3. To illuminate the effect of the mapping,

48 3 Grids in Subsurface Modeling

we have colored the cells according to their volume, which has been computed
using the function computeGeometry, which we will come back to below.

G = cartGrid([30, 20]);
G.nodes.coords = twister(G.nodes.coords);
G = computeGeometry(G);
plotCellData(G, G.cells.volumes, 'EdgeColor', 'k'), colorbar

Fictitious domains

One obvious drawback with Cartesian and rectilinear grids, as defined above,
is that they can only represent rectangular domains in 2D and cubic domains
in 3D. Curvilinear grids, on the other hand, can represent more general shapes
by introducing an appropriate mapping, and can be used in combination with
rectangular/cubic grids in multiblock grids for efficient representation of re-
alistic reservoir geometries. However, finding a mapping that conforms to a
given boundary is often difficult, in particular for complex geologies, and us-
ing a mapping in the interior of the domain will inadvertently lead to cells
with rough geometries that deviate far from being rectilinear. Such cells may
in turn introduce problems if the grid is to be used in a subsequent numerical
discretization, as we will see later.

As an alternative, complex geometries can be easily modelled using struc-
tured grids by a so-called fictitious domain method. In this method, the com-
plex domain is embedded into a larger ”fictitious” domain of simple shape (a
rectangle or cube) using, e.g., a boolean indicator value in each cell to tell
whether the cell is part of the domain or not. The observant reader will notice
that we already have encountered the use of this technique for the SAIGUP
dataset (Figure 2.12) and the Johansen dataset in Chapter 2. In some cases,
one can also adapt the structured grid by moving the nearest vertices to the
domain boundary.

MRST has support for fictitious domain methods through the function
removeCells, which we will demonstrate in the next example, where we create
a regular Cartesian grid that fills the volume of an ellipsoid:

x = linspace(−2,2,21);
G = tensorGrid(x,x,x);
subplot(1,2,1); plotGrid(G);view(3); axis equal

subplot(1,2,2); plotGrid(G,'FaceColor','none');
G = computeGeometry(G);
c = G.cells.centroids;
r = c(:,1).ˆ2 + 0.25*c(:,2).ˆ2+0.25*c(:,3).ˆ2;
G = removeCells(G, r>1);
plotGrid(G); view(−70,70); axis equal;

Worth observing here is the use of computeGeometry to compute cell cen-
troids which are not part of the basic geometry representation in MRST.

3.2 Unstructured Grids 49

−2

0

2

−2

0

2

−2

−1

0

1

2

−2

−1

0

1

2

−2
−1

0
1

2

−2

0

2

Fig. 3.4. Example of a regular Cartesian grid representing a domain in the form of
an ellipsoid. The underlying logical Cartesian grid is shown in the left plot and as
a wireframe in the right plot. The active part of the model is shown in yellow color
in the right plot.

Plots of the grid before and after removing the inactive parts are shown in
Figure 3.4. Because of the fully unstructured representation used in MRST,
calling computeGeometry actually removes the inactive cells from the grid struc-
ture, but from the outside, the structure behaves as if we had used a fictitious
domain method.

3.2 Unstructured Grids

An unstructured grid consists of a set of simple shapes that are laid out in an
irregular pattern so that any number of cells can meet at a single vertex. The
topology of the grid will therefore change throughout space. An unstructured
grid can generally consist of a combination of polyhedral cells with varying
number of faces, as we will see below. However, the most common forms of
unstructured grids are based on triangles in 2D and tetrahedrons in 3D. These
grids are very flexible and are relatively easy to adapt to complex domains
and structures or refine to provide increased local resolution.

Unlike structured grids, unstructured grids cannot generally be efficiently
referenced using a structured multi-index. Instead, one must describe a list of
connectivities that specifies the way a given set of vertices make up individual
element and element faces, and how these elements are connected to each
other via faces, edges, and vertices.

To understand the properties and construction of unstructured grids, we
start by a brief discussion of two concepts from computational geometry: De-
launay tessellation and Voronoi diagrams. Both these concepts are supported
by standard functionality in MATLAB.

50 3 Grids in Subsurface Modeling

3.2.1 Delaunay Tessellation

A tessellation of a set of generating points P = {xi}ni=1 is defined as a set of
simplices that completely fills the convex hull of P. The convex hull H of P is
the convex minimal set that contains P and can be described constructively
as the set of convex combinations of a finite subset of points from P,

H(P) =
{∑̀
i=1

λixi
∣∣ xi ∈ P, λi ∈ R, λi ≥ 0,

∑̀
i=1

λi = 1, 1 ≤ ` ≤ n
}
.

Delaunay tessellation is by far the most common method of generating a tes-
sellation based on a set of generating points. In 2D, the Delaunay tessellation
consists of a set of triangles defined so that three points form the corners of a
Delaunay triangle only when the circumcircle that passes through them con-
tains no other points, see Figure 3.5. The definition using circumcircles can
readily be generalized to higher dimensions using simplices and hyperspheres.

Fig. 3.5. Two triangles and their circumcircles.

The center of the circumcircle is called the circumcenter of the triangle. We
will come back to this quantity when discussing Voronoi diagrams in the next
subsection. When four (or more) points lie on the same circle, the Delaunay
triangulation is not unique. As an example, consider four points defining a
rectangle. Using either of the two diagonals will give two triangles satisfying
the Delaunay condition.

The Delaunay triangulation can alternatively be defined using the so-called
max-min angle criterion, which states that the Delaunay triangulation is the
one that maximizes the minimum angle of all angles in a triangulation, see
Figure 3.6. Likewise, the Delaunay triangulation minimizes the largest circum-
circle and minimizes the largest min-containment circle, which is the smallest
circle that contains a given triangle. Additionally, the closest two generating
points are connected by an edge of a Delaunay triangulation. This is called
the closest-pair property, and such two neighboring points are often referred
to as natural neighbors. This way, the Delaunay triangulation can be seen as
the natural tessellation of a set of generating points.

3.2 Unstructured Grids 51

Fig. 3.6. Example of two triangulations of the same five points; the triangulation
to the right satisfies the min-max criterion.

Delaunay tessellation is a popular research topic and there exists a large
body of literature on theoretical aspects and computer algorithms. Likewise,
there are a large number of software implementations available on the net.
For this reason, MRST does not have any routines for generating tessellations
based on simplexes. Instead, we have provided simple routines for mapping a
set of points and edges, as generated by MATLAB’s Delaunay triangulation
routines, to the internal data structure used to represent grids in MRST. How
they work, will be illustrated in terms of a few simple examples.

In the first example, we use routines from MATLAB’s polyfun toolbox to
triangulate a rectangular mesh and convert the result using the MRST routine
triangleGrid:

[x,y] = meshgrid(1:10,1:8);
t = delaunay(x(:),y (:));
G = triangleGrid([x(:) y(:)],t);
plot(x(:),y (:), 'o' , 'MarkerSize',8);
plotGrid(G,'FaceColor','none');

Depending on what version you have of MATLAB, the 2D Delaunay routine
delaunay will produce one of the triangulations shown in Figure 3.7. In older
versions of MATLAB, the implementation of delaunay was based on ’QHULL’
(see http://www.qhull.org), which produces the unstructured triangulation
shown in the right plot. MATLAB 7.9 and newer has improved routines for
2-D and 3-D computational geometry, and here delaunay will produce the
structured triangulation shown in the left plot. However, the n-D tessellation

Fig. 3.7. Two different Delaunay tessellations of a rectangular point mesh.

http://www.qhull.org

52 3 Grids in Subsurface Modeling

Fig. 3.8. The left plot shows the triangular grid from the seamount demo case. The
right plot shows a tetrahedral tessellation of a 3D point mesh.

routine delaunayn([x(:) y (:)]) is still based on ’QHULL’ and will generally
produce an unstructured tessellation, as shown in the right plot.

If the set of generating points is structured, e.g., as one would obtain by
calling either meshgrid or ndgrid, it is straightforward to make a structured
triangulation. The following skeleton of a function makes a 2D triangulation
and can easily be extended by the interested reader to 3D:

function t = mesh2tri(n,m)
[I,J]=ndgrid(1:n−1, 1:m−1); p1=sub2ind([n,m],I(:),J(:));
[I,J]=ndgrid(2:n , 1:m−1); p2=sub2ind([n,m],I(:),J (:));
[I,J]=ndgrid(1:n−1, 2:m); p3=sub2ind([n,m],I(:),J (:));
[I,J]=ndgrid(2:n , 1:m−1); p4=sub2ind([n,m],I(:),J (:));
[I,J]=ndgrid(2:n , 2:m); p5=sub2ind([n,m],I(:),J (:));
[I,J]=ndgrid(1:n−1, 2:m); p6=sub2ind([n,m],I(:),J (:));
t = [p1 p2 p3; p4 p5 p6];

In Figure 3.8, we have used the demo case seamount that is supplied with
MATLAB as an example of a more complex unstructured grid

load seamount;
plot(x(:),y (:), 'o');
G = triangleGrid([x(:) y (:)]);
plotGrid(G,'FaceColor',[.8 .8 .8]); axis off;

The observant reader will notice that here we do not explicitly generate a
triangulation before calling triangleGrid; if the second argument is omitted,
the routine uses MATLAB’s builtin delaunay triangulation as default.

For 3D grids, MRST supplies a conversion routine tetrahedralGrid(P, T)

that constructs a valid grid definition from a set of points P (m × 3 array
of node coordinates) and a tetrahedron list T (n array of node indices). The
tetrahedral tessellation shown to the right in Figure 3.8 was constructed from
a set of generating points defined by perturbing a regular hexahedral point
mesh:

3.2 Unstructured Grids 53

N=7; M=5; K=3;
[x,y,z] = ndgrid(0:N,0:M,0:K);
x(2:N ,2:M ,:) = x(2:N,2:M ,:) + 0.3*randn(N−1,M−1,K+1);
y(2:N ,2:M ,:) = y(2:N,2:M ,:) + 0.3*randn(N−1,M−1,K+1);
G = tetrahedralGrid([x(:) y(:) z (:)]);
plotGrid(G, 'FaceColor' ,[.8 .8 .8]); view(−40,60); axis tight off

3.2.2 Voronoi Diagrams

The Voronoi diagram of a set of points P = {xi}ni=1 is the partitioning of Eu-
clidean space into n (possibly unbounded) convex polytopes1 such that each
polytope contains exactly one generating point xi and every point inside the
given polytope is closer to its generating point than any other point in P.
The convex polytopes are called Voronoi cells (or Voronoi regions). Mathe-
matically, the Voronoi cell V (xi) of generating point xi in P can be defined
as

V (xi) =
{
x
∣∣ ‖x− xi‖ < ‖x− xj‖ ∀j 6= i

}
. (3.1)

A Voronoi region is not closed in the sense that a point that is equally close
to two or more generating points does not belong to the region defined by
(3.1). Instead, these points are said to lie on the Voronoi segments and can
be included in the Voronoi cells by defining the closure of V (xi), using “≤”
rather than “<” in (3.1).

The Voronoi cells for all generating points lying at the convex hull of P are
unbounded, all other Voronoi cells are bounded. For each pair of two points
xi and xj , one can define a hyperplane with co-dimension one consisting of
all points that lie equally close to xi and xj . This hyperplane is the perpen-
dicular bisector to the line segment between xi and xj and passes through
the midpoint of the line segment. The Voronoi diagram of a set of points
can be derived directly as the dual of the Delaunay triangulation of the same
points. To understand this, we consider the planar case, see Figure 3.9. For
every triangle, there is a polyhedron in which vertices occupy complementary
locations:

� The circumcenter of a Delaunay triangle corresponds to a vertex of a
Voronoi cell.

� Each vertex in the Delaunay triangulation corresponds to, and is the center
of, a Voronoi cell.

Moreover, for locally orthogonal Voronoi diagrams, an edge in the Delaunay
triangulation corresponds to a segment in the Voronoi diagram and the two
intersect each other orthogonally. However, as we can see in Figure 3.9, this

1 A polytope is a generic term that refers to a polygon in 2D, a polyhedron in 3D,
etc

54 3 Grids in Subsurface Modeling

Fig. 3.9. Duality between Voronoi diagrams and Delaunay triangulation. From top
left to bottom right: generating points, Delaunay triangulation, Voronoi diagram,
and Voronoi diagram (thick lines) and Delaunay triangulation (thin lines).

is not always the case. If the circumcenter of a triangle lies outside the trian-
gle itself, the Voronoi segment does not intersect the corresponding Delaunay
edge. To avoid this situation, one can perform a constrained Delaunay trian-
gulation and insert additional points where the constraint is not met (i.e., the
circumcenter is outside its triangle).

Figure 3.10 shows three examples of planar Voronoi diagrams generated
from 2D point lattices using the MATLAB-function voronoi. MRST has not
yet a similar function that generates a Voronoi grid from a point set, but
offers instead V=pebi(T) that generates a locally orthogonal, 2D Voronoi grid
V as a dual to a triangular grid T. The grids are constructed by connecting the
perpendicular bisectors of the edges of the Delaunay triangulation, hence the
name PErpendicular BIsector (PEBI) grids. To demonstrate the functionality,
we first consider the honeycombed grids to the left in Figure 3.10

Fig. 3.10. Three examples of Voronoi diagrams generated from 2D point lattices.
From left to right: square lattice, square lattice rotated 45 degrees, lattice forming
equilateral triangles.

3.3 Stratigraphic Grids 55

Fig. 3.11. Two examples of Voronoi grids. The left plot shows a honeycombed PEBI
grid and the right plot shows the PEBI grid derived from the seamount demo case.

[x,y] = meshgrid([0:4]*2*cos(pi/6),0:3);
x = [x (:); x(:)+cos(pi/6)];
y = [y (:); y(:)+sin(pi/6)];
G = triangleGrid([x,y]);
plotGrid(pebi(G), 'FaceColor','none'); axis equal off

The result is shown in Figure 3.11. As a second example, we reiterate the
seamount examples shown in Figure 3.8 is straightforward

load seamount

V = pebi(triangleGrid([x y]));
plotGrid(V,'FaceColor',[.8 .8 .8]); axis off;

Since pebi is a 2D code, we cannot apply it directly2 to the 3D tetrahedral grid
shown in Figure 3.8 to generate a dual 3D Voronoi grid. As we will see in the
next section, a more feasible approach in geological modeling is to construct a
2D Voronoi grid which can be extruded to 3D to preserve geological layering.

3.3 Stratigraphic Grids

In the previous chapter, we saw that grid models are used as an important
ingredient in describing the geometrical and petrophysical properties of a sub-
surface reservoir. This means that the grid is closely attached to the parameter
description of the flow model and, unlike in many other disciplines, cannot be
chosen arbitrarily to provide a certain numerical accuracy. Indeed, the grid
is typically chosen by a geologist who tries to describe the rock body by as
few volumetric cells as possible and who basically does not care too much
about potential numerical difficulties his or her choice of grid may cause in

2 Extending pebi to generate 3D Voronoi grid is probably an example of what
typically ends up as exercises in certain textbooks, i.e., something the authors
believe is possible to do but have actually not bothered to verify themselves.

56 3 Grids in Subsurface Modeling

subsequent flow simulations. This statement is, of course, grossly simplified
but is important to bear in mind throughout the rest of this chapter.

The industry standard for representing the reservoir geology in a flow simu-
lator is through the use of a stratigraphic grid that is built based on geological
horizons and fault surfaces. The volumetric grid is typically built by extrud-
ing 2D tessellations of the geological horizons in the vertical direction or in
a direction following major fault surfaces. For this reason, some stratigraphic
grids, like the PEBI grids that we will meet in Section 3.3.2, are often called
2.5D rather than 3D grids. These grids may be unstructured in the lateral
direction, but have a clear structure in the vertical direction to reflect the
layering of the reservoir.

Because of the role grid models play in representing geological formations,
real-life stratigraphic grids tend to be highly complex and have unstructured
connections induced by the displacements that have occured over faults. An-
other characteristic feature is high aspect ratios. Typical reservoirs extend
several hundred or thousand meters in the lateral direction, but the zones car-
rying hydrocarbon may be just a few tens of meters in the vertical direction
and consist of several layers with (largely) different rock properties. Getting
the stratigraphy correct is crucial, and high-resolution geological modeling
will typically result in a high number of (very) thin grid layers in the vertical
direction, resulting in two or three orders of magnitude aspect ratios.

A full exposition of stratigraphic grids is way beyond the scope of this
book. In next two subsections, we will discuss the basics of the two most
commonly used forms of stratigraphic grids.

3.3.1 Corner-Point Grids

To model the geological structures of petroleum reservoirs, the industry-
standard approach is to introduce what is called a corner-point grid [53],
which we already encountered in Chapter 2.4. A corner-point grid consists of
a set of hexahedral cells that are topologically aligned in a Cartesian fashion
so that the cells can be numbered using a logical ijk index. In its simplest
form, a corner-point grid is specified in terms of a set of vertical or inclined
pillars defined over an areal Cartesian 2D mesh in the lateral direction. Each
cell in the volumetric grid has eight logical corner points that are restricted
by four pillars and specified as two depth-coordinates on each pillar, see Fig-
ure 3.12. Each grid consists of nx×ny×nz grid cells and the cells are ordered
with the i-index (x-axis) cycling fastest, then the j-index (y-axis), and finally
the k-index (negative z-direction). All cellwise property data are assumed to
follow the same numbering scheme.

As discussed previously, a fictitious domain approach is used to embed the
reservoir in a logically Cartesian shoe-box. This means that inactive cells that
are not part of the physical model, e.g., as shown in Figure 2.12, are present
in the topological ijk-numbering but are indicated by a zero porosity or net-

3.3 Stratigraphic Grids 57

Fig. 3.12. Each cell in the corner-point grid is restricted by four pillars and two
points on each pillar.

Fig. 3.13. Examples of deformed and degenerate hexahedral cells arising in corner-
point grid models.

to-gross value, as discussed in Chapter 2.3 or marked by a special boolean
indicator (called ACTNUM in the input files).

So far, the topology and geometry of a corner-point grid have not devi-
ated from that of the mapped Cartesian grids studied in the previous section.
Somewhat simplified, one may view the logical ijk numbering as a reflection
of the sedimentary rock bodies as they may have appeared at geological ’time
zero’ when all rock facies have been deposited as part of horizontal layers in the
grid (i.e., cells with varying i and j but constant k). To model geological fea-
tures like erosion and pinch-outs of geological layers, the corner-point format
allows point-pairs to collapse along pillars. This creates degenerate hexahe-
dral cells that may have less than six faces, as illustrated in Figure 3.13. The
corner points can even collapse along all four pillars, so that a cell completely
disappears. This will implicitly introduce a new topology, which is sometimes
referred to as ’non-neighboring connections’, in which cells that are not logi-
cal k neighbors can be neighbors and share a common face in physical space.
An example of a model that contains both eroded geological layers and fully
collapsed cells is shown in Figure 3.14. In a similar manner, (simple) vertical
and inclined faults can be easily modelled by aligning the pillars with fault

58 3 Grids in Subsurface Modeling

Fig. 3.14. Side view in the xz-plane of corner-point grid with vertical pillars mod-
eling a stack of sedimentary beds (each layer indicated by a different color).

surfaces and displacing the corner points defining the neighboring cells on one
or both sides of the fault. This way, one creates non-matching geometries and
non-neighboring connections in the underlying ijk topology.

To illustrate the concepts introduced so far, we consider a low-resolution
version of the model from Figure 2.7 created by the simpleGrdecl grid-factory
routine, which generates the basic ’COORD’ and ’ZCORN’ properties that
are used to describe a corner-point grid in the Eclipse input deck. We start by
creating the input stream, from which we extract the pillars and the corner
points:

grdecl = simpleGrdecl([4, 2, 3], .12, ' flat ' , true);
[X,Y,Z] = buildCornerPtPillars(grdecl,'Scale',true);
[x,y,z] = buildCornerPtNodes(grdecl);

The pillars are given in the COORD field and the vertical positions of the corner
points along each pillar are given in the ZCORN field. Having obtained the
necessary data, we plot the pillars and the corner-points and mark pillars on
which the corner-points of logical ij neighbors do not coincide,

% Plot pillars
plot3(X',Y ',Z ', 'k');
set(gca,'zdir ' , ' reverse '), view(35,35), axis off, zoom(1.2);

% Plot points on pillars , mark pillars with faults red
hold on; I=[3 8 13];
hpr = plot3(X(I ,:)',Y(I ,:)', Z(I ,:)', 'r ' , 'LineWidth',2);
hpt = plot3(x(:),y (:),z (:), 'o'); hold off;

The resulting plots are shown in the upper row of Figure 3.15, in which we
clearly see how the pillars change slope from the east and west side toward the
fault in the middle, and how the grid points sit like beads-on-a-string along
each pillar.

Cells are now defined by connecting pairs of points from four neighboring
pillars that make up a rectangle in the lateral direction. To see this, we plot
two vertical stacks of cells and finally the whole grid with the fault surface
marked in blue:

3.3 Stratigraphic Grids 59

Fig. 3.15. Specification of a corner-point grid. Starting from the pillars (upper left),
we add corner-points and identify pillars containing non-matching corner marked in
red (upper right). A stack of cells is created for each set of four pillars (lower left),
and then the full grid is obtained (lower right). In the last plot, the fault faces have
been marked in blue.

% Create grid and plot two stacks of cells
G = processGRDECL(grdecl);
args = {'FaceColor'; 'r ' ; 'EdgeColor'; 'k'};
hcst = plotGrid(G,[1:8:24 7:8:24], 'FaceAlpha', .1, args{:});

% Plot cells and fault surface
delete([hpt; hpr; hcst]);
plotGrid(G,'FaceAlpha', .15, args{:});
plotFaces(G, G.faces.tag>0,'FaceColor','b','FaceAlpha',.4);

The upper-left plot in Figure 3.16 shows the same model sampled with even
fewer cells. To highlight the non-matching cell faces along the fault plane we
have used different coloring of the cell faces on each side of the fault. In MRST,
we have chosen to represent corner-point grids as matching unstructured grids
obtained by subdividing all non-matching cell faces, instead of using the more
compact non-matching hexahedral form. For the model in Figure 3.16, this
means that the four cells that have non-neighboring connections across the
fault plane will have seven and not six faces. For each such cell, two of the

60 3 Grids in Subsurface Modeling

Fig. 3.16. Subdivision of fault face in two three-dimensional models. In the left
column, the subfaces are all rectangular. In the right columns they are not. In both
the upper plots, the faces marked in red belong only to the cells behind the fault
surface, the blue faces belong only to the cells in front of the fault surface, and the
magenta ones belong to cells on both sides. The lower plot shows the cells behind
the surface, where each cell has been given its own color.

seven faces lie along the fault plane. For the regular model studied here, the
subdivision results in new faces that all have four corners (and are rectangu-
lar). However, this is not generally the case, as is shown in the right column
of Figure 3.16, where we can see cells with six, seven, eight faces, and faces
with three, four, and five corners. Indeed, for real-life models, subdivision of
non-matching fault faces can lead to cells that have much more than six faces.

Using the inherent flexibility of the corner-point format it is possible to
construct very complex geological models that come a long way in matching
the geologist’s perception of the underlying rock formations. Because of their
many appealing features, corner-point grids have been an industry standard
for years and the format is supported in most commercial software for reservoir
modeling and simulation.

A Synthetic Faulted Reservoir

In our first example, we consider a synthetic model of two intersecting faults
that make up the letter Y in the lateral direction. The two fault surfaces
are highly deviated, making an angle far from 90 degrees with the horizontal
direct. To model this scenario using corner-point grids, we basically have two

3.3 Stratigraphic Grids 61

deviated pillars zoom of fault intersection

stair-stepped zoom of fault intersection

Fig. 3.17. Modeling the intersection of two deviated faults using deviated pillars
(top) and stair-stepped approximation (bottom). Grids courtesy of Statoil.

different choices. The first choice, which is quite common, is to let the pillars
(and hence the extrusion direction) follow the main fault surfaces. For highly
deviated faults, like in the current case, this will lead to extruded cells that
are far from K-orthogonal and hence susceptible to grid-orientation errors
in a subsequent simulation, as will be discussed in more detail in Chapter 8.
Alternatively, we can choose a vertical extrusion direction and replace deviated
fault surfaces by stair-stepped approximations so that the faults zig-zag in
direction not aligned with the grid. This will create cells that are mostly
K-orthogonal and less prone to grid-orientation errors.

Figure 3.17 shows two different grid models, one with deviated pillars and
one with stair-stepped faults. Whereas the latter has orthogonal cells, the
former has cells with geometries degenerate or deviate strongly from being
orthogonal in the lateral direction. Likewise, some pillars are close to 45 de-
grees inclination, which will likely give significant grid-orientation effects in a
standard two-point scheme.

A Simulation Model of the Norne Field

Norne is an oil and gas field lies located in the Norwegian Sea. The reservoir
is found in Jurrasic sandstone at a depth of 2500 meter below sea level, and
was originally estimated to contain 90.8 million Sm3 oil, mainly in the Ile
and Tofte formations, and 12.0 billion Sm3 in the Garn formation. The field

62 3 Grids in Subsurface Modeling

is operated by Statoil and production started in November 1997, using a
floating production, storage and offloading (FPSO) ship connected to seven
subsea templates at a water depth of 380 meters. The oil is produced with
water injection as the main drive mechanisms and the expected ultimate oil
recovery is more than 60%, which is very high for a subsea oil reservoir. During
thirteen years of production, five 4D seismic surveys of high quality have been
recorded. Operator Statoil and partners (ENI and Petoro) have agreed with
NTNU to release large amounts of subsurface data from the Norne field for
research and education purposes. An important objective of this agreement is
to establish a number of international benchmark cases based on real data for
the testing of reservoir characterization/history matching and/or production
optimization methodologies. More specifically, the Norne Benchmark datasets
are hosted and supported by the Center for Integrated Operations in the
Petroleum Industry (IO Center) at NTNU:

http://www.ipt.ntnu.no/~norne/wiki/doku.php

Here, we will use the simulation model released as part of “Package 2: Full field
model” (2013) as an example of a real reservoir. We emphasize that the view
expressed in the following are the views of the authors and do not necessarily
reflect the views of Statoil and the Norne license partners.

The model consists of a 46×112×22 corner-point grid, given in the Eclipse
format, which can be read as discussed for the SAIGUP model in Chapter 2.4.
We start by plotting the whole model, including inactive cells. To this end,
we need to override3 the ACTNUM field before we start processing the input,
because if the ACTNUM flag is set, all inactive cells will be ignored when the
unstructured grid is built

actnum = grdecl.ACTNUM;
grdecl.ACTNUM = ones(prod(grdecl.cartDims),1);
G = processGRDECL(grdecl, 'checkgrid', false);

Having obtained the grid in the correct unstructured format, we first plot the
outline of the whole model and highlight all faults and the active part of the
model, see Figure 3.18. During the processing, all fault faces are tagged with
a positive number. This can be utilized to highlight the faults: we simply find
all faces with a positive tag, and color them with a specific color as shown
in the left box in the figure. We now continue with the active model only.
Hence, we reset the ACTNUM field to its original values so that inactive cells
are ignored when we process the Eclipse input stream. In particular, we will
examine some parts of the model in more detail. To this end, we will use the

3 At this point we hasten to warn the reader that inactive cells often contain garbage
data and may generally not be inspected in this manner. Here, however, most in-
active cells are defined in a reasonable way. By not performing basic sanity checks
on the resulting grid (option 'checkgrid'=false), we manage to process the grid
and produce reasonable graphical output. In general, however, we strongly advice
that 'checkgrid' remains set in its default state of true.

http://www.ipt.ntnu.no/~norne/wiki/doku.php

3.3 Stratigraphic Grids 63

plotGrid (G , 'FaceColor','none', 'EdgeAlpha',.1);
plotFaces (G , G.faces.tag >0, ...

'FaceColor','red' , 'FaceAlpha',.2, ...
'EdgeColor','r' , 'EdgeAlpha',.1);

axis off ; view(−155,80); zoom(1.7);

plotGrid (G , ˜ actnum (G.cells.indexMap), ...
'FaceColor','none', 'EdgeAlpha',.1);

plotGrid (G , actnum (G.cells.indexMap), ...
'FaceColor','y' , 'EdgeAlpha',.1);

axis off ; view(−155,80); zoom(1.7);

Fig. 3.18. The Norne field, a real model from the Norwegian Sea. The plots show
the whole grid with fault faces marked in red (left) and active cells marked in yellow
(right).

function cutGrdecl that extracts a rectangular box in index space from the
Eclipse input stream, e.g., as follows

cut_grdecl = cutGrdecl(grdecl, [6 15; 80 100; 1 22]);
g = processGRDECL(cut_grdecl);

In Figure 3.19, we have zoomed in on four different regions. The first region
(red color), is sampled near a laterally stair-stepped fault, which is a curved
fault surface that has been approximated by a surface that zig-zags in the
lateral direction. We also notice how the fault displacement leads to cells
that are non-matching across the fault surface and the presence of some very
thin layers (the thinest layers may actually appear to be thick lines in the
plot). The thin layers are also clearly seen in the second region (magenta
color), which represents a somewhat larger sample from an area near the tip
of one of the ’fingers’ in the model. Here, we clearly see how similar layers
have been strongly displaced across the fault zone. In the third (blue) region,
we have colored the fault faces to clearly show the displacement and the hole
through the model in the vertical direction, which likely corresponds to a shale
layer that has been eliminated from the active model. Gaps and holes, and
displacement along fault faces, are even more evident for the vertical cross-
section (green region) for which the layers have been given different colors as
in Figure 3.14. Altogether, the four views of the model demonstrate typical
patterns that can be seen in realistic models.

Extensions, Difficulties, and Challenges

The original corner-point format has been extended in several directions, for
instance to enable vertical intersection of two straight pillars in the shape of

64 3 Grids in Subsurface Modeling

a) The whole model with active and inactive
cells and four regions of interest marked in dif-
ferent colors

b) Zoom of the red region with
pillars and corner-points shown
as red circles

c) The magenta region with col-
oring according to cell volumes,
which vary by a factor 700.

d) The blue region in which fault faces
have been colored gray and the corre-
sponding grid lines have been colored blue.

e) The green cross-section with coloring according to layer number from top to
bottom of the model.

Fig. 3.19. Detailed view of subsets from the Norne simulation model.

3.3 Stratigraphic Grids 65

the letter Y. The pillars may also be piecewise polynomial curves, resulting
in what is sometimes called S-faulted grids. Likewise, two neighboring pillars
can collapse so that the basic grid shape becomes a prism rather than a hex-
ahedron. However, there are several features that cannot easily be modelled,
including multiple fault intersections (e.g., as in the letter ’F’) and for this
reason, the industry is constantly in search for improved gridding methods.
One example is discussed in the next subsection. First, however, we will dis-
cuss some difficulties and challenges, seen from the side of a computational
scientist seeking to use corner-point grids for computations.

The flexible cell geometry of the corner-point format poses several chal-
lenges for numerical implementations. Indeed, a geocellular grid is typically
chosen by a geologist who tries to describe the rock body by as few volumetric
cells as possible and who basically does not care too much about potential
numerical difficulties his or her choice of geometries and topologies may cause
in subsequent flow simulations.

First of all, writing a robust grid-processing algorithm to compute geom-
etry and topology or determine an equivalent matching, polyhedral grid can
be quite a challenge. Displacements across faults will lead to geometrically
complex, non-conforming grids, e.g., as illustrated in Figure 3.19. Since each
face of a grid cell is specified by four (arbitrary) points, the cell interfaces in
the grid will generally be bilinear, possibly strongly curved, surfaces. Geomet-
rically, this can lead to several complications. Cell faces on different sides of
a fault may intersect each other so that cells overlap volumetrically; cell faces
need not be matching, which may leave void spaces; there may be tiny overlap
ares between cell faces on different sides a fault; etc, which all contribute that
fault geometries may be hard to interpret in a consistent way: a subdivision
into triangles is, for instance, not unique. Likewise, top and bottom surfaces
may intersect for highly curved cells with high aspect ratios, cell centroids
may be outside the cell volume, etc.

The presence of degenerate cells, in which the corner-points collapse in
pairs, implies that the cells will generally be polyhedral and possibly con-
tain both triangular and bilinear faces (see Figure 3.13). Corner-point cells
will typically be non-matching across faults or may have zero volume, which
both introduces coupling between non-neighboring cells and gives rise to dis-
cretization matrices with complex sparsity patterns. All these facts call for
flexible discretizations that are not sensitive to the geometry of each cell or
the number of faces and corner points. Although not a problem for industry-
standard two-point discretizations, it will pose implementational challenges
for more advanced discretization methods that rely on the use of dual grids or
reference elements. Figure 3.20 illustrates some geometrical and topological
challenges seen in standard grid models.

Third, to adapt to sloping faults, curved horizons and layers, lateral fea-
tures, and so on, cell geometries may often deviate significantly from being
orthogonal, which may generally introduce significant grid-orientation effects,
in particular for the industry-standard two-point scheme (as we will see later).

66 3 Grids in Subsurface Modeling

a) Many faces resulting from subdivi-
sion to give matching grid at faults

b) A 800×800×0.25 m celll, very high
aspect ratio and centroid outside cell

c) Difficult geometries d) Small interface between two cells

Fig. 3.20. Illustration of difficulties and challenges associated with real-life corner-
point geometries.

Fourth, stratigraphic grids will often have aspect ratios that are two or
three orders of magnitude. Such high aspect ratios can introduce severe nu-
merical difficulties because the majority of the flow in and out of a cell occurs
across the faces with the smallest area. Similarly, the possible presence of
strong heterogeneities and anisotropies in the permeability fields, e.g., as seen
in the SPE 10 example in Chapter 2, typically introduces large condition
numbers in the discretized flow equations.

Finally, corner-point grids generated by geological modeling typically con-
tain too many cells. Once created by the geologist, the grid is handed to a
reservoir engineer, whose first job is to reduce the number of cells if he or she
is to have any hope of getting the model through a simulator. The generation
of good coarse grids for use in upscaling, and the upscaling procedure itself,
is generally work-intensive, error prone, and not always sufficiently robust, as
we will come back to later in the book.

3.3.2 Layered 2.5D PEBI Grids

Corner-point grids are well suited to represent stratigraphic layers and faults
which laterally coincide with one of the coordinate directions. Although the
great flexibility inherent in the corner-point scheme can be used to adapt to
areally skewed or curved faults, or other areal features, the resulting cell ge-
ometries will typically deviate far from being orthogonal, and hence introduce
numerical problems in a subsequent flow simulation, as discussed above.

So-called 2.5D PEBI grids are often used to overcome the problem of
areal adaption. These grids have been designed to combine the advantages
of two different gridding methods: the (areal) flexibility of unstructured grids

3.3 Stratigraphic Grids 67

a) Triangulated point set b) Perpendicular bisector grid

c) Pillars aligned with faults d) Volumetric extrusion

Fig. 3.21. Illustration of a typical process for generating 2.5D PEBI grids.

and the orthogonality of Cartesian grids. The PEBI grids are constructed
in much of the same way as corner-point grids. One can, for instance, start
with a point set, generate a lateral along one or more horizons, construct
a lateral polyhedral grid by connecting the perpendicular bisectors of the
triangle edges, one define a set of pillars that align with the major faults, and
use these to extrude the areal grid cells to a volumetric grid, see Figure 3.21.
The areal grids are typically constructed starting with a set of points, from
which a Delaunay triangulation and then a perpendicular bisector grid is
constructed. The resulting volumetric grid now is unstructured in the lateral
direction, but has a layered structure in the vertical direction (and can thus
be indexed using a [I,K] index pair). Because the grid is unstructured in the
lateral direction, there is quite large freedom in choosing the size and shape of
the grid cells, meaning that (almost) any number of complex features can be
modelled, including adaption to curved faults, accurate resolution of near-well
phenomena, etc.

As a first example of a 2.5D PEBI grid, we will consider a simple box
geometry and generate a grid that can be seen as the dual of the tetrahedral
tessellation shown to the right in Figure 3.8:

N=7; M=5; [x,y] = ndgrid(0:N,0:M);
x(2:N ,2:M) = x(2:N,2:M) + 0.3*randn(N−1,M−1);
y(2:N ,2:M) = y(2:N,2:M) + 0.3*randn(N−1,M−1);
aG = pebi(triangleGrid([x(:) y(:)]));
G = makeLayeredGrid(aG, 3);
plotGrid(G, 'FaceColor' ,[.8 .8 .8]); view(−40,60); axis tight off

68 3 Grids in Subsurface Modeling

Fig. 3.22. The left plot shows a 2.5D Voronoi grid derived from a perturbed 2D
point mesh extruded in the z-direction, whereas the right plot shows a radial grid.

That is, we first construct a lateral 2D Voronoi grid from a set of generating
points obtained by perturbing the vertices of a regular Cartesian grid, then
use the function makeLayeredGrid to extrude this Voronoi grid to 3D along
vertical pillars in the z-direction. The resulting grid is shown in the left plot
of Figure 3.22.

As a second example, we will generate a radial grid that is graded towards
the origin

P = [];
for r = exp(−3.5:.25:0),

[x,y,z] = cylinder(r,16); P = [P [x (1,:); y (1,:)]];
end
P = unique([P'; 0 0], 'rows');
G = makeLayeredGrid(pebi(triangleGrid(P)), 5);
plotGrid(G,'FaceColor',[.8 .8 .8]); view(30,50), axis tight off

giving the grid shown to the right in Figure 3.22. Typically, the main difficulty
lies in generating a good point set (and a set of pillars). Once this is done,
the rest of the process is almost straightforward.

Our third example is a simulation model of a real reservoir. The model
shown in Figure 3.23 consists of an unstructured areal grid that has been
extruded vertically to model different geological layers. Some of the layers
are very thin, which can be seen in particular in Figure 3.23a in which these
thin layers appear as if they were thick lines. Figure 3.23b shows part of the
perimeter of the model; we notice that the lower layers (yellow to red colors)
have been eroded away in most of the grid columns, and although the vertical
dimension is strongly exaggerated, we see that the layers contain steep slopes.
To a non-geologist looking at the plot in Figure 3.23e, it may appear as if the
reservoir was formed by sediments being deposited along a sloping valley that
ends in a flat plain. Figures 3.23c and d show more details of the permeability
field inside the model. The layering is particularly distinct in plot d, which is
sampled from the flatter part of the model. The cells in plot c, on the other
hand, show examples of pinch-outs. The layering provides a certain structure
in the model, and it is therefore common to add a logical ik index, similar

3.3 Stratigraphic Grids 69

a) The whole model with three areas of interested marked in different colors.

b) Layers 41 to 99 of the red region
with colors representing the k-index.

c) Horizontal permeability in the
green region of plot a).

d) Horizontal permeability in the ma-
genta region of plot a).

e) Horizontal permeability along the
perimeter and bottom of the model.

Fig. 3.23. A real petroleum reservoir modelled by a 2.5D PEBI grid having 1174
cells in the lateral direction and 150 cells along each pillar. Only 90644 out of the
176100 cells are active. The plots show the whole model as well as selected details.

to the logical ijk index for corner-point grids, where i refers to the areal
numbering and k to the different layers. Moreover, it is common practice to
associate a virtual logically Cartesian grid as an ’overlay’ to the 2.5D grid that
can be used e.g., to simplify lookup of cells in visualization. In this setup, more
than one grid cell may be associated with a cell in the virtual grid.

70 3 Grids in Subsurface Modeling

Fig. 3.24. Example of a virtual grid used for fast lookup in a 2.5D PEBI grid. The
virtual grid has dimensions 37 × 20 × 150 while the PEBI grid has ik dimensions
1174× 150.

3.4 Grid Structure in MRST

In the two previous sections we have given an introduction to structured and
unstructured grid types that can be created using MRST. In this section, we
will go into more detail about the internal data structure used to represent
various grid types. This data structure is in many ways the most fundamental
part of MRST since almost all solvers and visualization routines require an
instance of a grid as input argument. By convention, instances of the grid
structure are denoted G. Readers who are mainly interested in using solvers
and visualization routines already available in MRST, need no further knowl-
edge of the grid structure beyond what has been encountered in the examples
presented so far and can safely skip the remains of this section. For readers
who wish to use MRST to prototype new computational methods, however,
knowledge of the inner workings of the grid structure is essential. To read the
MRST documentation, type

help grid_structure

As was stated in the introduction to the chapter, we have chosen to store
all grid types using a general unstructured grid format that represents cells,
faces, vertices, and connections between cells and faces. To this end, the main
grid structure G contains three fields—cells, faces, and nodes—that specify
individual properties for each individual cell/face/vertex in the grid. Grids
in MRST can either be volumetric or lie on a 2D or 3D surface. The field
griddim is used to distinguish volumetric and surface grids; all cells in a grid
are polygonal surface patches if griddim=2 and polyhedral volumetric entities
otherwise. In addition, the grid contains a field type consisting of a cell array
of strings describing the history of grid-constructor and modifier functions
through which a particular grid structure has been defined, e.g., 'tensorGrid'.
For grids that have an underlying logical Cartesian structure, we also include
the field cartDims.

The cell structure, G.cells, consists of the following mandatory fields:

3.4 Grid Structure in MRST 71

– num: the number nc of cells in the global grid.
– facePos: an indirection map of size [num+1,1] into the faces array. Specifi-

cally, the face information of cell i is found in the submatrix
faces(facePos(i) : facePos(i+1)−1, :)

The number of faces of each cell may be computed using the state-
ment diff(facePos) and the total number of faces is given as nf =
facePos(end)−1.

– faces: an nf × 3 array that gives the global faces connected to a given
cell. Specifically, if faces(i,1)==j, then global face number faces(i,2) is
connected to global cell number j. The last component, faces(i,3), is
optional and can for certain types of grids contain a tag used to distinguish
face directions: East, West, South, North, Bottom, Top.
The first column of face is redundant: it consists of each cell index j re-
peated facePos(j+1)−facePos(j) times and can therefore be reconstructed
by decompressing a run-length encoding with the cell indices 1:num as en-
coded vector and the number of faces per cell as repetition vector. Hence,
to conserve memory, only the last two columns of face are stored, while
the first column can be reconstructed using the statement:

rldecode(1:G.cells.num, diff(G.cells.facePos), 2) .'

This construction is used a lot throughout MRST and has therefore been
implemented as a utility function inside mrst−core/utils/gridtools

f2cn = gridCellNo(G);

– indexMap: an optional nc×1 array that maps internal cell indices to external
cell indices. For models with no inactive cells, indexMap equals 1 : nc. For
cases with inactive cells, indexMap contains the indices of the active cells
sorted in ascending order. An example of such a grid is the ellipsoid in
Figure 3.4 that was created using a fictitious domain method. For logically
Cartesian grids, a map of cell numbers to logical indices can be constructed
using the following statements in 2D:

[ij{1:2}] = ind2sub(dims, G.cells.indexMap(:));
ij = [ij{:}];

and likewise in 3D:

[ijk{1:3}] = ind2sub(dims, G.cells.indexMap(:));
ijk = [ijk{:}];

In the latter case, ijk(i:) is the global (I, J,K) index of cell i.

In addition, the cell structure can contain the following optional fields that
typically will be added by a call to computeGeometry:

– volumes: an nc × 1 array of cell volumes
– centroids: an nc × d array of cell centroids in IRd

72 3 Grids in Subsurface Modeling

The face structure, G.faces, consists of the following mandatory fields:

– num: the number nf of global faces in the grid.
– nodePos: an indirection map of size [num+1,1] into the nodes array. Specifi-

cally, the node information of face i is found in the submatrix
nodes(nodePos(i) : nodePos(i+1)−1, :)

The number of nodes of each face may be computed using the state-
ment diff(nodePos). Likewise, the total number of nodes is given as nn =
nodePos(end)−1.

– nodes: an Nn × 2 array of vertices in the grid. If nodes(i,1)==j, the local
vertex i is part of global face number j and corresponds to global ver-
tex nodes(i,2). For each face the nodes are assumed to be oriented such
that a right-hand rule determines the direction of the face normal. As
for cells.faces, the first column of nodes is redundant and can be easily
reconstructed. Hence, to conserve memory, only the last column is stored,
while the first column can be constructed using the statement:

rldecode(1:G.faces.num, diff(G.faces.nodePos), 2) .'

– neighbors: an nf × 2 array of neighboring information. Global face i is
shared by global cells neighbors(i,1) and neighbors(i,2). One of the entries
in neighbors(i,:), but not both, can be zero, to indicate that face i is an
external face that belongs to only one cell (the nonzero entry).

In addition to the mandatory fields, G.faces has optional fields that are typ-
ically added by a call to computeGeometry and contain geometry information:

– areas: an nf × 1 array of face areas.

– normals: an nf × d array of area weighted, directed face normals in IRd.
The normal on face i points from cell neighbors(i,1) to cell neighbors(i,2).

– centroids: an nf × d array of face centroids in IRd.

Moreover, G.faces can sometimes contain an nf ×1 (int8) array, G.faces.tag,
that can contain user-defined face indicators, e.g., to specify that the face is
part of a fault.

The vertex structure, G.nodes, consists of two fields:

– num: number Nn of global nodes (vertices) in the grid,
– coords: an Nn × d array of physical nodal coordinates in IRd. Global node

i is at physical coordinate coords(i,:).

To illustrate how the grid structure works, we consider two examples. We
start by considering a regular 3× 2 grid, where we take away the second cell
in the logical numbering,

G = removeCells(cartGrid([3,2]), 2)

This produces the output

3.4 Grid Structure in MRST 73

1 2

3 4 5

 1 2 3 4

 5 6 7 8

 9 10

11 12 13

14 15 16

 1 2 3 4

 5 6 7 8

 9 10 11 12 cells.faces = faces.nodes = faces.neighbors =

1 1 1 (East) 1 1 0 1

1 9 3 (South) 1 5 1 0

1 2 2 (West) 2 2 0 2

1 11 4 (North) 2 6 2 0

2 3 1 (East) 3 3 0 3

2 10 3 (South) 3 7 3 4

2 4 2 (West) 4 4 4 5

2 13 4 (North) 4 8 5 0

3 5 1 (East) 5 5 0 1

3 11 3 (South) 5 9 0 2

3 6 2 (West) 6 6 1 3

3 14 4 (North) 6 10 0 4

4 6 1 (East) 7 7 2 5

4 12 3 (South) 7 11 3 0

4 7 2 (West) 8 8 4 0

4 15 4 (North) 8 12 5 0

5 7 1 (East) 9 2

5 13 3 (South) 9 1

5 8 2 (West) : :

5 16 4 (North) : :

Fig. 3.25. Illustration of the cell and faces fields of the grid structure: cell numbers
are marked by circles, node numbers by squares, and face numbers have no marker.

G =

cells: [1x1 struct]

faces: [1x1 struct]

nodes: [1x1 struct]

cartDims: [3 2]

type: {’tensorGrid’ ’cartGrid’ ’removeCells’}

griddim: 2

Examining the output from the call, we notice that the field G.type con-
tains three values, ’cartGrid’ indicates the creator of the grid, which again
relies on ’tensorGrid’, whereas the field ’removeCells’ indicates that cells have
been removed from the Cartesian topology. The resulting 2D geometry con-
sists of five cells, twelve nodes, and sixteen faces. All cells have four faces
and hence G.cells.facePos = [1 5 9 13 17 21]. Figure 3.25 shows4 the geome-
try and topology of the grid, including the content of the fields cells.faces,
faces.nodes, and faces.neighbors. We notice, in particular, that all interior
faces (6, 7, 11, and 13) are represented twice in cells.faces as they belong
to two different cells. Likewise, for all exterior faces, the corresponding row
in faces.neighbors has one zero entry. Finally, being logically Cartesian, the
grid structure contains a few optional fields:

� G.cartDims equals [3 2],
� G.cells.indexMap equals [1 3 4 5 6] since the second cell in the logical

numbering has been removed from the model, and
� G.cells.faces contains a third column with tags that distinguish global

directions for the individual faces.

As a second example, we consider an unstructured triangular grid given
by seven points in 2D:

4 To create the plot in Figure 3.25, we first called plotGrid to plot the grid, then
called computeGeometry to compute cell and face centroids, which were used to
place a marker and a text label with the cell/face number in the correct position.

74 3 Grids in Subsurface Modeling

1

2

3

4

5

6

7

8

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

1

2

3

4

5

6

7

cells.faces = faces.nodes = faces.neighbors =

1 10 1 1 0 2

1 8 1 2 2 3

1 7 2 1 3 5

2 1 2 3 5 0

2 2 3 1 6 2

2 5 3 4 0 6

3 3 4 1 1 3

3 7 4 7 4 1

3 2 5 2 6 4

4 8 5 3 1 8

4 12 6 2 8 5

4 9 6 6 4 7

5 3 7 3 7 8

5 4 7 4 0 7

5 11 8 3

6 9 8 5

6 6 9 3

6 5 9 6

7 13 10 4

7 14 10 5

: : : :

Fig. 3.26. Illustration of the cell and faces fields of the grid structure: cell numbers
are marked by circles, node numbers by squares, and face numbers have no marker.
squares.

p = [0.0, 1.0, 0.9, 0.1, 0.6, 0.3, 0.75; ...
0.0, 0.0, 0.8, 0.9, 0.2, 0.6, 0.45]'; p = sortrows(p);

G = triangleGrid(p)

which produces the output

G =

faces: [1x1 struct]

cells: [1x1 struct]

nodes: [1x1 struct]

type: {’triangleGrid’}

griddim: 2

Because the grid contains no structured parts, G only consists of the three
mandatory fields cells, faces, and nodes that are sufficient to determine
the geometry and topology of the grid, the type tag naming its creator, and
griddim giving that it is a surface grid. Altogether, the grid consists of eight
cells, fourteen faces, and seven nodes, which are shown in Figure 3.26 along
with the contents of the fields cells.faces, faces.nodes, and faces.neighbors.
Notice, in particular, the absence of the third column in cells.faces, which
generally does not make sense for a (fully) unstructured grid. Likewise, the
cells structure does not contain any indexMap as all cells in the model are
active.

Surface grids do not necessary have to follow a planar surface in 2D, but
can generally be draped over a (continuous) surface in 3D. In MRST, such
grids are used in the co2lab module for simulating CO2 storage in deep saline
aquifers using vertically-integrated models that describe the thickness of a
supercritical CO2 plume under a sealing caprock. To demonstrate the basic
feature of a surface grid, we generate a 2D PEBI grid and drape it over
MATLAB’s peaks surface.

3.4 Grid Structure in MRST 75

Fig. 3.27. Example of a surface grid: 2D PEBI grid draped over the peaks surface.

[x,y] = meshgrid([0:6]*2*cos(pi/6),0:7);
x = [x (:); x(:)+cos(pi/6)]; x=(x − mean(x(:)))/2;
y = [y (:); y(:)+sin(pi/6)]; y=(y − mean(y(:)))/2;
G = pebi(triangleGrid([x(:),y(:)]));
G.nodes.coords(:,3) = −peaks(G.nodes.coords(:,1),G.nodes.coords(:,2));

The resulting grid is shown in Figure 3.27. At the time of writing, the resulting
grid is not a proper grid in the sense that although computeGeometry gives
sensible results, the grid may not work properly with any of the flow and
transport solvers supplied with MRST.

Computing geometry information

All grid factory routines in MRST generate the basic geometry and topol-
ogy of a grid, that is, how nodes are connected to make up faces, how faces
are connected to form cells, and how cells are connected over common faces.
Whereas this information is sufficient for many purposes, more geometrical
information may be required in many cases. As explained above, such informa-
tion is provided by the routine computeGeometry, which computes cell centroids
and volumes and face areas, centroids, and normals. Whereas computing this
information is straightforward for simplexes and Cartesian grids, it is not so
for general polyhedral grids that may contain curved polygonal faces. In the
following we will therefore go through how it is done in MRST.

For each cell, the basic grid structure provides us with a list of vertices,
a list of cell faces, etc, as shown in the upper-left plots of Figures 3.28 and
3.29. The routine starts by computing face quantities (areas, centroids, and
normals). To utilize MATLAB efficiently, the computations are programmed
using vectorization so that each derived quantity is computed for all points,
all faces, and all cells in one go. To keep the current presentation as simple
as possible, we will herein only give formulas for a single face and a single
cell. Let us consider a single face given by the points ~p(i1), . . . , ~p(im) and let
α = (α1, . . . , αm) denote a multi-index that describes how these points are

76 3 Grids in Subsurface Modeling

a) A single cell with face numbers
(squares) and node numbers (circles)

b) Tessellation of faces with vectors
~vk1 (blue), ~vk2 (green), and ~nk (red)

c) Face centroids and normal vectors
computed from tessellation

d) Triangulation of cell volume with
vectors ~nk (blue) and ~ckr (green)

Fig. 3.28. Steps in the computation of geometry information for a single corner-
point cell using computeGeometry.

connected to form the perimeter of the faces. For the face with global number
j, the multi-index is given by the vector

G.faces.nodes(G.faces.nodePos(j):G.faces.nodePos(j+1)−1)

Let us consider two faces. Global face number two in Figure 3.28 is planar
and consists of points ~p(2), ~p(4), ~p(6), ~p(8) with the ordering α = (2, 4, 8, 6).
Likewise, we consider global face number one in Figure 3.29, which is curved
and consists of points ~p(1), . . . , ~p(5) with the ordering α = (4, 3, 2, 1, 5). For
curved faces, we need to make a choice of how to interpret the surface spanned
by the node points. In MRST (and some commercial simulators) this is done
as follows: We start by defining a so-called hinge point ~ph, which is often
given as part of the input specification of the grid. If not, we use the m points
that make up the face and compute the hinge point as the centre point of

3.4 Grid Structure in MRST 77

the face, ~ph =
∑m
k=1 ~p(αk)/m. The hinge point can now be used to tessellate

the face into m triangles, as shown to the upper left in Figures 3.28 and
3.29. The triangles are defined by the points ~p(αk), ~p(αmod(k,m)+1), and ~ph
for k = 1, . . . ,m. Each triangle has a center point ~pkc defined in the usual way
as the average of its three vertexes and a normal vector and area given by

~nk =
(
~p(αmod(k,m)+1)− ~p(αk)

)
×
(
~ph − ~p(αk)

)
= ~vk1 × ~vk2

Ak =
√
~nk · ~nk.

The face area, centroid, and normal are now computed as follows

Af =

m∑
k=1

Ak, ~cf = (Af)−1
m∑
k=1

~pkcA
k, ~nf =

m∑
k=1

~nk. (3.2)

The result is shown to the lower left in Figures 3.28, where the observant
reader will see that the centroid ~cf does not coincide with the hinge point
~ph unless the planar face is a square. This effect is more pronounced for the
curved faces of the PEBI cell in Figure 3.29.

The computation of centroids in (3.2) requires that the grid does not have
faces with zero area, because otherwise the second formula would involve
a division by zero and hence incur centroids with NaN values. The reader
interested in creating his/her own grid-factory routines for grids that may
contain degenerate (pinched) cells should be aware of this and make sure that
all faces with zero area are removed in a preprocessing step.

To compute the cell centroid and volume, we start by computing the centre
point ~cc of the cell, which we define as the average of the face centroids,
~cc =

∑mf

k=1 ~cf/mf , where mf is the number of faces of the cell. By connecting
this centre point to the mt face triangles, we define a unique triangulation of
the cell volume, as shown to the lower right in Figures 3.28 and 3.29. For each
tetrahedron, we define the vector ~ckr = ~pkc −~cc, modify the triangle normals ~nk

so that they point outward, and compute the volume (which may be negative
if the centre point ~cc lies outside the cell)

V k = 1
3~c
k
r · ~nk.

Finally, we can define the volume and the centroid of the cell as follows

V =

mt∑
k=1

V k, ~c = ~cc +
3

4V

mt∑
k=1

V k~ckr . (3.3)

In MRST, all cell quantities are computed inside a loop, which may not be as
efficient as the computation of the face quantities.

Example-grids in MRST

To help the user generate test cases, MRST supplies a routines for generating
example grids. We have previously encountered twister, which perturbs the

78 3 Grids in Subsurface Modeling

a) A single cell with face numbers
(squares) and node numbers (circles)

b) Tessellation of faces with vectors
~vk1 (blue), ~vk2 (green), and ~nk (red)

c) Face centroids and normal vectors
computed from tessellation

d) Triangulation of cell volume with
vectors ~nk (blue) and ~ckr (green)

Fig. 3.29. Steps in the computation of geometry information for a single PEBI cell
using computeGeometry.

x and y coordinates in a grid. Likewise, in Chapter 2.4 we used simpleGrdecl

to generate a simple Eclipse input stream for a stratigraphic grid describing
a wavy structure with a single deviated fault. The routine routine has several
options that allow the user to specify the magnitude of the fault displacement,
flat rather than a wavy top and bottom surfaces, and vertical rather than
inclined pillars, see Figure 3.30.

Similarly, the routine with the somewhat cryptic name makeModel3 gen-
erates a corner-point input stream that models parts of a dome that is cut
through by two faults, see Figure 3.31. Similarly, extrudedTriangleGrid.m gen-
erates a 2.5D prismatic grid with a laterally curved fault in the middle. Al-
ternatively, the routine can generate a 2.5D PEBI grid in which the curved
fault is laterally stair-stepped, see Figure 3.31.

3.4 Grid Structure in MRST 79

simpleGrdecl ([20, 20, 5]); simpleGrdecl ([20, 20, 5], ...
@(x) .05*(sin(2*pi*x)−1.5));

simpleGrdecl ([20, 20, 5], ...
@(x) .25*(x−.5),' flat ' , true);

Fig. 3.30. The simpleGrdecl routine can be used to produce faulted, two-block
grids of different shapes.

makeModel3 ([30,20,5]); extrudedTriangleGrid (50); extrudedTriangleGrid (50, true);

Fig. 3.31. Three different example grids created by the grid example functions
makeModel3 and extrudedTriangleGrid.

The SAIGUP Model

Having discussed the corner-point format in some detail, it is now time to
return to the SAIGUP model. In the following, we will look at the grid rep-
resentation in more detail and show some examples of how to interact and
visualize different features of the grid. In Chapter 2.4, we saw that parsing
the input file creates the following structure

grdecl =

cartDims: [40 120 20]

COORD: [29766x1 double]

ZCORN: [768000x1 double]

ACTNUM: [96000x1 int32]

PERMX: [96000x1 double]

: : :

In the following, we will (mostly) use the first four fields:

1. The dimension of the underlying logical Cartesian grid: Eclipse keyword
SPECGRID, equal 40× 120× 20.

2. The coordinates of the pillars: Eclipse keyword COORD, top and bottom
coordinate per vertex in the logical 40× 120 areal grid, i.e., 6× 41× 121
values.

80 3 Grids in Subsurface Modeling

3. The coordinates along the pillars: Eclipse keyword ZCORN, eight values per
cell, i.e., 8× 40× 120× 20 values.

4. The boolean indicator for active cells: Eclipse keyword ACTNUM, one value
per cell, i.e., 40× 120× 20 values.

As we have seen above, we can use the routine processGRDECL to process the
Eclipse input stream and turn the corner-point grid into MRST’s unstructured
description. The interested reader may ask the processing routine to display
diagnostic output

G = processGRDECL(grdecl, 'Verbose', true);
G = computeGeometry(G)

and consult the SAIGUP tutorial (saigupModelExample.m) or the technical
documentation of the processing routine for an explanation of the resulting
output.

The model has been created using vertical pillars with lateral resolution of
75 meters and a vertical resolution of 4 meters, giving a typical aspect ratio
of 18.75. This can be seen, e.g., by extracting the pillars and corner points
and analyzing the results as follows:

[X,Y,Z] = buildCornerPtPillars(grdecl,'Scale',true);
dx = unique(diff(X)).'
[x,y,z] = buildCornerPtNodes(grdecl);
dz = unique(reshape(diff(z,1,3),1,[]))

The resulting grid has 78 720 cells that are almost equal in size (as can easily
be seen by plotting hist(G.cells.volumes)), with cell volumes varying between
22 500 m3 and 24 915 m3. Altogether, the model has 264 305 faces: 181 649 ver-
tical faces on the outer boundary and between lateral neighbors, and 82 656
lateral faces on the outer boundary and between vertical neighbors. Most of
the vertical faces are not part of a fault and are therefore parallelograms with
area equal 300 m2. However, the remaining 26–27 000 faces are a result of the
subdivision introduced to create a matching grid along the (stair-stepped)
faults. Figure 3.32 shows where these faces appear in the model and a his-
togram of their areas: the smallest face has an area of 5.77·10−4 m2 and there
are 43, 202, and 868 faces with areas smaller than 0.01, 0.1, and 1 m2, re-
spectively. The processGRDECL has an optional parameter 'Tolerance' that sets
the minimum distance used to distinguish points along the pillars (the default
value is zero). By setting this to parameter to 5, 10, 25, or 50 cm, the area of
the smallest face is increased to 0.032, 0.027, 0.097, or 0.604 m2, respectively.
In general, we advice against aggressive use of this tolerance parameter; one
should instead develop robust discretization schemes and, if necessary, suitable
post-processing methods that eliminate or ignore faces with small areas.

Next, we will show a few examples of visualizations of the grid model that
will highlight various mechanisms for interacting with the grid and accessing
parts of it. As a first example, we start by plotting the layered structure of

3.4 Grid Structure in MRST 81

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

1600

1800

Face area, m2

plotFaces (G , G.faces.tag >0 & ...
G.faces.areas >=290),'y','edgea',.1);

plotFaces (G , G.faces.areas <290,'r', 'edgea',.1);

Fig. 3.32. Faces that have been subdivided for the SAIGUP mode. The left plot
shows a histogram of the faces areas. The right plot shows all fault faces (yellow)
and fault faces having area less than 290 m2 (red).

the model. To this end, we use a simple trick: create a matrix with ones in all
cells of the logical Cartesian grid and then do a cumulative summation in the
vertical direction to get increasing values,

val = cumsum(ones(G.cartDims),3);

which we then plot using a standard call to plotCellData, see the left plot in
Figure 3.33. Unfortunately, our attempt at visualizing the layered structure
was not very successful. We therefore try to extract and visualize only the
cells that are adjacent to a fault:

cellList = G.faces.neighbors(G.faces.tag>0, :);
cells = unique(cellList(cellList>0));

In the first statement, we go through all faces and extract the neighbors
of all faces that are marked with a tag (i.e., lies at a fault face). The list
may have repeated entries if a cell is attached to more than one fault face
and contain zeros if a fault face is part of the outer boundary. We get
rid of these in the second statement, and can then plot the result using
plotCellData(G,val(G.cells.indexMap),cells), giving the result in the right
plot of Figure 3.33. Let us inspect the fault structure in the lower-right corner
of the plot. If we disregard using cutGrdecl as discussed on page 63, there are
basically two ways we can extract parts of the model, that both rely on the
construction of a map of cell numbers of logical indices. In the first method,
we first construct a logical set for the cells in a logically Cartesian bounding
box and then use the builtin function ismember to extract the members of
cells that lie within this bounding box:

[ijk{1:3}] = ind2sub(G.cartDims, G.cells.indexMap); ijk = [ijk{:}];
[I,J,K] = meshgrid(1:9,1:30,1:20);
bndBox = find(ismember(ijk,[I(:), J(:), K (:)], 'rows'));
inspect = cells(ismember(cells,bndBox));

82 3 Grids in Subsurface Modeling

Fig. 3.33. Visualizing the layered structure of the SAIGUP model.

Fig. 3.34. Details from the SAIGUP model showing a zoom of the fault structure
in the lower-right corner of the right plot in Figure 3.33. The left plot shows the cells
attached to the fault faces, and in the right plot the fault faces have been marked
with gray color and red edges.

The ismember function has an operational count of O(n log n). A faster alter-
native is to use logical operations having an operational count of O(n). That
is, we construct a vector of booleans that is true for the entries we want to
extract and false for the remaining entries

[ijk{1:3}] = ind2sub(G.cartDims, G.cells.indexMap);

I = false(G.cartDims(1),1); I(1:9)=true;
J = false(G.cartDims(2),1); J(1:30)=true;
K = false(G.cartDims(3),1); K(1:20)=true;

pick = I(ijk{1}) & J(ijk{2}) & K(ijk{3});
pick2 = false(G.cells.num,1); pick2(cells) = true;
inspect = find(pick & pick2);

Both approaches produce the same index set; the resulting plot is shown in
Figure 3.34. To mark the fault faces in this subset of the model, we do the
following steps

cellno = rldecode(1:G.cells.num, diff(G.cells.facePos), 2) .';
faces = unique(G.cells.faces(pick(cellno), 1));
inspect = faces(G.faces.tag(faces)>0);
plotFaces(G, inspect, [.7 .7 .7], 'EdgeColor','r ');

3.4 Grid Structure in MRST 83

Fig. 3.35. A ’sieve’ plot of the porosity in the SAIGUP model. Using this technique,
one can more easily see the structure in the interior of the model.

The first statement constructs a list of all cells in the model, the second
extracts a unique list of face numbers associated with the cells in the logical
vector pick (which represents the bounding box in logical index space), and the
third statement extracts the faces within this bounding box that are marked
as fault faces.

Logical operations are also useful in other circumstances. As an example,
we will extract a subset of cells forming a sieve that can be used to visualize
the petrophysical quantities in the interior of the model:

% Every fifth cell in the x−direction
I = false(G.cartDims(1),1); I(1:5:end)=true;
J = true(G.cartDims(2),1);
K = true(G.cartDims(3),1);
pickX = I(ijk{1}) & J(ijk{2}) & K(ijk{3});

% Every tenth cell in the y−direction
I = true(G.cartDims(1),1);
J = false(G.cartDims(2),1); J(1:10:end) = true;
pickY = I(ijk{1}) & J(ijk{2}) & K(ijk{3});

% Combine the two picks
plotCellData(G,rock.poro, pickX | pickY, 'EdgeColor','k','EdgeAlpha',.1);

Composite Grids

One advantage of an unstructured grid description is that it easily allows
the use of composite grids consisting of geometries and topologies that vary

84 3 Grids in Subsurface Modeling

Fig. 3.36. A composite grid consisting of a regular Cartesian mesh with radial
refinement around two well positions.

throughout the model. That is, different grid types or different grid resolution
may be used locally to adapt to well trajectories and special features in the
geology

As an example, we will generate a Cartesian grid that has a radial refine-
ment around two wells in the interior of the domain. This composite grid will
be constructed from a set of control points using the pebi routine. To this
end, we first construct the generating point for a unit refinement, as discussed
in Figure 3.22 above.

Pw = [];
for r = exp(−3.5:.2:0),

[x,y,z] = cylinder(r,28); Pw = [Pw [x (1,:); y (1,:)]];
end
Pw = [Pw [0; 0]];

Then this point set is translated to the positions of the wells and glued into
a standard regular point lattice (generated using meshgrid):

Pw1 = bsxfun(@plus, Pw, [2; 2]);
Pw2 = bsxfun(@plus, Pw, [12; 6]);
[x,y] = meshgrid(0:.5:14, 0:.5:8);
P = unique([Pw1'; Pw2'; x (:) y (:)], 'rows');
G = pebi(triangleGrid(P));

The resulting grid is shown in Figure 3.36. To get a good grid, it is important
that the number of points around the cylinder has a reasonable match with the
density of the points in the regular lattice. If not, the transition cells between
the radial and the regular grid may exhibit quite unfeasible geometries. The
observant reader will also notice the layer of small cells at the boundary, which
is an effect of the particular distribution of the generating points (see the left
plot in Figure 3.10) and can, if necessary be avoided by a more meticulous
choice of points.

3.4 Grid Structure in MRST 85

Fig. 3.37. Examples of composite grids. The upper plot shows an areal grid con-
sisting of Cartesian, hexagonal, and radial parts. The lower plot shows the same
grid extruded to 3D with two stair-stepped faults added.

More complex grids can be generated using the same approach. The left
plot in Figure 3.37 shows an areal grid consisting of three parts: a Cartesian
grid at the outer boundary, a hexagonal grid in the internal, and a radial grid
with exponential radial refinement around two wells. The right plot shows
an extruded 2.5D Voronoi grid that has been extruded to 3D along vertical
pillars. In addition, structural displacement has been added along two are-
ally stair-stepped faults that intersect near the west boundary. Petrophysical
parameters have been sampled from layers 40–44 of the SPE10 data set [19].

4

Grid Coarsening

Over the last decades, methods for mapping and characterizing subsurface
rock formations have improved tremendously. This, together with a dramatic
increase in computational power, has enabled the industry to build increas-
ingly detailed and complex models to account for heterogeneous structures on
different spatial scales. Using the gridding techniques outlined above, one can
today easily build complex geological models consisting of multiple million
cells that account for most of the features seen in typical reservoirs. In fact,
it is generally possible to identify many more geological layers and fine-scale
heterogeneity features than it is practical to include in flow simulations.

Through parallelization and use of high-performance computers it is pos-
sible to simulate fluid flow on grid models with multimillion cells, at least in
principle. In many practical engineering workflows, however, such large-scale
computations many not be feasible. The user may not have access to parallel
hardware or software, or he/she may want to spend the available computa-
tional power on running a large number of model realizations instead of a
few highly resolved ones. To obtain simulation models that are computation-
ally tractable within a given computational budget, it is therefore common
to develop reduced models through some kind of upscaling (homogenization)
procedure that removes spatial detail from the geological description. Typi-
cally, a coarser model is developed by identifying regions consisting of several
cells and then replacing each region by a single, coarse cell with homogeneous
properties that represent the heterogeneity inside the region in some averaged
sense. Upscaling, and alternative multiscale approaches, will be discussed later
in the book.

Coarse grids required for upscaling can obviously be generated as dis-
cussed earlier in this chapter, using a coarser spatial resolution. However, this
approach has two obvious disadvantages: First of all, if the original grid has
a complex geometry, it will generally not be possible to preserve the exact
geometry of the fine grid for an arbitrary coarse resolution. Second, there will
generally not be a one-to-one mapping between cells in the fine and coarse
grids. Herein, we have therefore chosen a different approach. In MRST, a

88 4 Grid Coarsening

’coarse grid’ always refers to a grid that is defined as a partition of another
grid, which is referred to as the ’fine’ grid. Tools for partitioning and coars-
ening of grids are found in two different modules of MRST: The coarsegrid

module defines a basic grid structure for representing coarse grids, and sup-
plies simple routines for partitioning logically Cartesian grids, whereas the
agglom module offers tools for defining flexible coarse grids that adapt to ge-
ological features, flow patterns, etc. In the remains of this chapter, we will
outline functionality for generating and representing coarse grids found in the
coarsegrid module. In an attempt to distinguish fine and coarse grids, we
will henceforth refer to fine grids as consisting of cells, whereas coarse grids
are said to consist of blocks. (These two terms, ’cell’ and ’block’, are normally
used interchangeable in the literature).

Coarse grids in MRST are represented by a structure that consists entirely
of topological information stored in the same topological fields as for the
general grid structure discussed in Section 3.4. As a naming convention, we
will use CG to refer to a coarse-grid structure and G to refer to the usual (fine)
grid. A coarse grid is always related to a fine grid in the sense that

� each cell in the fine grid G belongs to one, and
only one, block in the coarse grid CG

� each block in CG consists of a connected subset
of cells from G

� CG is defined by a partition vector p defined
such that p(i) = ` if cell i in G belongs to block
` in CG 5

2

2

6

6

1

1

1

4

6

3

1

1

4

4

7

3

1

1

8

7

3

3

8

8

This concept is quite simple, but has proved to be very powerful in defining
coarse grids that can be applied in a large variety of computational algorithms.
We will come back to the details of the grid structure in Section 4.2. First,
let us discuss how to define partition vectors in some detail as this is more
useful from a user perspective than understanding the details of how the CG

structure is implemented.

4.1 Partition Vectors

To demonstrate the simplicity and power of using a partition vectors to define
coarse grids, we will go through a set of examples. Once you get the idea, it
should be straightforward to use your own creativity for defining new parti-
tions. (Complete codes for all examples discussed in this section are found in
showPartition.m.)

4.1.1 Uniform Partitions

For all grids having a logically Cartesian structure, i.e., grids that have a
valid field G.cartDims, one can use the function partitionUI to generate

4.1 Partition Vectors 89

a relatively uniform partition that will consist of the tensor product of a
load-balanced linear partition in each index direction. As an example, let us
partition a 7× 7 fine grid into a 2× 2 coarse grid:

G = cartGrid([7,7]);
p = partitionUI(G, [2,2]);

plotCellData(G, p, 'EdgeColor', 'y');
outlineCoarseGrid(G, p, 'k');
axis tight off,
caxis([.5 max(p)+.5]);
colormap(lines(max(p)));
set(colorbar,'YTick',1:max(p));

1

2

3

4

The call to partitionUI returns a vector with one element per cell taking
one of the integer values 1, 2, 3, 4 that represent the four blocks. Since seven is
not divisible by two, the coarse blocks will not have the same size: we will have
blocks of size 4× 4, 3× 3, 4× 3, and 3× 4. To better distinguish the different
blocks in the plot, we have used the function outlineCoarseGrid(G, p),
which will find and plot all faces in G for which the neighboring cells have
different values of p.

The same procedure can, of course, also be applied to partition any grid in
3D that has a logically Cartesian topology as well. As an example, we consider
a simple box geometry:

G = cartGrid([10,10,4]);
p = partitionUI(G, [3,3,2]);

plotCellData(G, p, 'Edgecolor', 'w');
outlineCoarseGrid(G, p, ...

'EdgeColor','k' , ' lineWidth' ,4);
colormap(colorcube(max(p)))
view(3); axis off

Here, we have used the colorcube colormap, which is particularly useful for
visualizing partition vectors since it contains as many regularly spaced colors
in RGB color space as possible. The careful reader will also observe that the
arguments to outlineCoarseGrid changes somewhat for 3D grids.

4.1.2 Connected Partitions

All one generally needs to partition the grid is a partition vector, which can
be given by the user, read from a file, generated by evaluating a function, or
as the output of some user-specified algorithm. As a simple example of the
latter, let us partition the box model [−1, 1]× [−1, 1] into nine different blocks
using the polar coordinates of the cell centroids. The first block is defined as
r ≤ 0.3, while the remaining eight are defined by segmenting 4θ/π:

90 4 Grid Coarsening

G = cartGrid([11, 11],[2,2]);
G.nodes.coords = ...
bsxfun(@minus, G.nodes.coords, 1);
G = computeGeometry(G);
c = G.cells.centroids;
[th,r] = cart2pol(c(:,1),c (:,2));
p = mod(round(th/pi*4)+4,4);
p(r<.3) = max(p)+1;

1

2

3

4

5

In the second last line, the purpose of the modulus operation is to avoid
wrap-around effects as θ jumps from −π to π.

While the human eye should be able to distinguish nine different coarse
blocks in the plot above, the partition does unfortunately not satisfy all the
criteria we prescribed on page 88. Indeed, as you can see from the colorbar, the
partition vector only has five unique values and thus corresponds to five blocks
according to our definition of p: cell i belongs to block ` if p(i) = `. Hence, what
the partition describes is one connected block at the center surrounded by four
disconnected blocks. A block is said to be disconnected if there are cells in the
block that cannot be connected by a path that only crosses faces between cells
inside the block. To get a grid that satisfies our requirements, we must split
the four disconnected blocks. This can be done by the following call, which
essentially forms an adjacency matrix for each block and finds the connected
components by a Dulmage-Mendelsohn permutation (see help dmperm):

q = processPartition(G, p);

The routine will split cells that have the same p-value, but are not connected
according to a face-neighborship topology into multiple blocks and update the
partition vector accordingly. The routine can also take an additional parame-
ter facelist that specifies a set of faces across which the connections will be
removed before processing:

q = processPartition(G, p, facelist)

Using this functionality one can, for instance, prevent coarse blocks from
crossing faults inside the model.

4.1.3 Composite Partitions

In many cases, the best way to create a good partition vector is by combining
more than one partition criterion or principle. As an example, we can think
of a heterogeneous medium consisting of two different facies, one with high
permeability and one with low, that each form large contiguous regions. After
coarsening, each coarse block will be assigned a homogeneous property, and
it is therefore advantageous if the faces of the grid blocks follow the facies
boundaries. Within each facies, we can use a standard Cartesian partition

4.1 Partition Vectors 91

generated by the routine partitionCartGrid, which is simpler and less com-
putationally expensive than partitionUI but only works correctly if the fine
grid has a fully intact logically Cartesian topology, i.e., if there are no inactive
cells, no cells have been removed by removeGrid, and so on.

G = cartGrid([20, 20], [1 1]);
G = computeGeometry(G);

% Facies partition
f = @(c) sin(4*pi*(c(:,1)−c (:,2)));
pf = 1 + (f(G.cells.centroids) > 0);

% Cartesian partition
pc = partitionCartGrid(G.cartDims, [4 4]);

% Alternative 1:
[b,i,p] = unique([pf, pc], 'rows');
% Alternative 2:
q = compressPartition(pf + max(pf)*pc);

+

=

The example also shows two alternative techniques for combining different
partitions. In the first alternative, we collect the partitions as columns in an
array A. The call [b,i,p]=unique(A,’rows’) will return b as the unique rows
of A so that b=A(i) and A=b(p). Hence, p will be a partition vector that repre-
sents the unique intersection of all the partitions collected in A. In the second
method, we treat the partition vectors as multiple subscripts, from which we
compute a linear index. This index may obviously not be contiguous. To avoid
having to treat special cases that may arise from non-contiguous partition vec-
tors, most routines in MRST require that partition vectors are contiguous. To
fulfill this requirement, we use the function compressPartition that renum-
bers a partition vector to remove any indices corresponding to empty grid
blocks. The two alternatives have more or less the same computational com-
plexity, and which alternative you choose in your implementation is largely a
matter of what you think will be easiest to understand for others who may
have to go through your code.

Altogether, the examples above explain the basic concepts of how the au-
thors tend to create partition vectors. However, before we go on to explain
details of the coarse-grid structure and how to generate this structure from a
given partition vector, we will show one last example that is a bit more fancy.
To this end, we will create a cup-formed grid, partition it, and then visualize
the partition using a nice technique. To generate the cup-shaped grid, we use
the same fictitious-domain technique that we previously used for the ellip-
soidal grid shown in Figure 3.4 on page 49.

92 4 Grid Coarsening

x = linspace(−2,2,41);
G = tensorGrid(x,x,x);
G = computeGeometry(G);
c = G.cells.centroids;
r = c(:,1).ˆ2 + c(:,2).ˆ2+c(:,3).ˆ2;
G = removeCells(G, (r>1) | (r<0.25) | (c(:,3)<0));

Assume that we wish to partition this cup model into one hundred coarse
blocks. To this end, we could, for instance try to use partitionUI to impose
a regular 5× 5× 4 partition. Because of the fictitious method, a large number
of the ijk indices from the underlying Cartesian topology will correspond to
cells that are not present in the actual grid. Imposing a regular Cartesian par-
tition on such a grid will typically give block indices in the range [1,max(p)]
that do not correspond to any cells in the underlying fine grid. In this par-
ticular case, only seventy-nine out of the one desired one hundred blocks will
correspond to a volume that is within the grid model. To see this, we used the
function accumarray to count the number of cells for each block index and
plotted the result as a bar chart:

subplot(2,1,1);
p = partitionUI(G,[5 5 4]);
bar(accumarray(p,1)); shading flat

q = compressPartition(p);
subplot(2,1,2);
bar(accumarray(q,1)); shading flat

set(gca,'XLim',[0 100]);

0 20 40 60 80 100
0

20

40

60

0 20 40 60 80 100
0

20

40

60

Figure 4.1 shows the partition obtained after we have compressed the partition
vector. To clearly distinguish the different blocks, we have used an explosion
view, which is a useful technique for visualizing coarse partitions. The com-
plete code for this visualization method can be found in explosionView.m.

Fig. 4.1. The partition of the cup-formed grid visualized using an ’explosion view’
type method.

4.2 Coarse Grid Representation in MRST 93

4.2 Coarse Grid Representation in MRST

Now that you have seen how to generate coarse partitions, it is time to intro-
duce how partition vectors can be developed into coarse grids. Given a grid
structure G and a partition vector p, the structure CG representing the coarse
grid can be generated by the following call:

CG = generateCoarseGrid(G, p)

The coarse-grid structure CG consists entirely of topological information stored
in the same way as described in Section 3.4 for G: the fields cells and faces

represent the coarse blocks and their connections. As a result, CG can be
used seamlessly with many of the standard (incompressible) solvers in MRST.
Unlike the original grid structure, however, CG does not represent the geometry
of the coarse blocks and faces explicitly and does therefore not have a nodes

field. The geometry information can instead be obtained from the parent grid
G and the partition vector p; copies of these are stored within the coarse grid
in the fields parent and partition, respectively.

The structure, CG.cells, that represents the coarse blocks consists of the
following mandatory fields:

– num: the number Nb of blocks in the coarse grid.
– facePos: an indirection map of size [num+1,1] into the faces array, which

is defined completely analogously as for the fine grid. Specifically, the
connections information of block i is found in the submatrix

faces(facePos(i) : facePos(i+1)−1, :)

The number of connections of each block may be computed using the
statement diff(facePos).

– faces: an Nc×2 array of connections associated with a given block. Specifi-
cally, if faces(i,1)==j, then connection faces(i,2) is associated with block
number j. To conserve memory, only the second column is actually stored
in the grid structure, and can be reconstructed by a call to rldecode. Op-
tionally, one may append a third column that contains a tag that has been
inherited from the parent grid.

In addition, the cell structure can contain the following optional fields that
typically will be added by a call to CG=coarsenGeometry(CG), assuming that
the corresponding information is available in the parent grid:

– volumes: an Nb × 1 array of block volumes
– centroids: an Nb × d array of block centroids in IRd

The face structure, CG.faces, consists of the following mandatory fields:

– num: the number Nc of global connections in the grid.
– neighbors: an Nc × 2 array of neighboring information. Connection i is

between blocks neighbors(i,1) and neighbors(i,2). One of the entries in
neighbors(i,:), but not both, can be zero, to indicate that connection i is
between a single block (the nonzero entry) and the exterior of the grid.

94 4 Grid Coarsening

– connPos, fconn: packed data-array representation of the coarse → fine
mapping. Specifically, the elements fconn(connPos(i):connPos(i+1)−1) are
the connections in the parent grid (i.e., rows in G.faces.neighbors) that
constitute coarse-grid connection i.

In addition to the mandatory fields, CG.faces has optional fields that are typ-
ically added by a call to coarsenGeometry and contain geometry information:

– areas: an Nc × 1 array of face areas.
– normals: an Nc × d array of accumulated area-weighted, directed face nor-

mals in IRd.
– centroids: an Nc × d array of face centroids in IRd.

Like in G, the coarse grid structure also contains a field CG.griddim that
is used to distinguish volumetric and surface grids, as well as a cell array
CG.type of strings describing the history of grid-constructor and modifier
functions used to define the coarse grid.

As an illustrative example, let us partition a 4 × 4 Cartesian grid into a
2× 2 coarse grid. This gives the following structure:

CG =

cells: [1x1 struct]

faces: [1x1 struct]

partition: [16x1 double]

parent: [1x1 struct]

griddim: 2

type: {’generateCoarseGrid’}

with the cells and faces fields given as

CG.cells = CG.faces =

num: 4 num: 12

facePos: [5x1 double] neighbors: [12x2 double]

faces: [16x2 double] connPos: [13x1 double]

fconn: [24x1 double]

Figure 4.2 shows relations between entities in the coarse grid and in its parent
grid. For instance, we see that block number one consists of cells one, two, five
and six because these are the rows in CG.partition that have value equal one.
Likewise, we see that because CG.faces.connPos(1:2)=[1 3], coarse connection
number one is made up of two cell faces that correspond to faces number one
and six in the parent grid because CG.faces.fconn(1:2)=[1 6], and so on.

4.2.1 Subdivision of Coarse Faces

In the discussion above, we have always assumed that there is only a single
connection between two neighboring coarse blocks and that this connection is
built up of a set of cell faces corresponding to all faces between pairs of cells
in the fine grid that belong to the two different blocks. While this definition
is useful for many workflows like in standard upscaling methods, there are

4.2 Coarse Grid Representation in MRST 95

 1 2 3 4

 5 6 7 8

 9 10 11 12

13 14 15 16

1 2

3 4

CG.partition =

(1) 1

(2) 1

(3) 2

(4) 2

(5) 1

(6) 1

(7) 2

(8) 2

(9) 3

(10) 3

(11) 4

(12) 4

(13) 3

(14) 3

(15) 4

(16) 4

 1 2 3 4 5

 6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

 1

 2

 3

 4

 5

 6

 7

 8

 9

10 11

12

CG.faces.connPos = CG.faces.fconn=

1 1

3 6

5 21

7 22

9 5

11 10

13 23

15 24

17 11

19 16

21 37

23 38

25 15

20

39

40

:

Fig. 4.2. Illustration of the relation between blocks in the coarse grid and cells in
the parent grid (top) and between connections in the coarse grid and faces from the
parent grid (bottom).

also problems for which one may want to introduce more than one connection
between neighboring blocks. To define the subdivision of the coarse faces, we
will once again use a partition vector with one scalar value per face in the
fine grid, i.e., defined completely analogous to the partition vectors used for
the volumetric partition. Assuming that we have two such partition vectors,
pv describing the volumetric partition and pf describing the partition of cell
faces, the corresponding coarse grid is built through the call:

CG = generateCoarseGrid(G, pv, pf);

In our experience, the simplest way to build a face partition is to compute it
from an ancillary volumetric partition using the routine:

pf = cellPartitionToFacePartition(G, pv)

which assigns a unique, non-negative integer for each pair of cell values occur-
ring in the volumetric partition vector pv, and hence constructs a partitioning
of all faces in the grid. Fine-scale faces that are not on the interface between
coarse blocks are assigned zero value.

As an illustration, we continue the example from page 91 and use facies
information to subdivide coarse faces so that each connection corresponds to
a given combination of facies values on opposite sides of the interface:

96 4 Grid Coarsening

G = computeGeometry(cartGrid([8, 8], [1 1]));
f = @(c) sin(3*pi*(c(:,1)−c (:,2)));
pf = 1 + (f(G.cells.centroids) > 0);
plotCellData(G, pf); axis off;
colormap((jet(16)+ones(16,3))/2);

pv = partitionCartGrid(G.cartDims, [2 2]);
pf = cellPartitionToFacePartition(G,pf);
pf = processFacePartition(G, pv, pf);
CG = generateCoarseGrid(G, pv, pf);

CG = coarsenGeometry(CG);
plotFacesNew(CG,1:CG.faces.num,'Marker','+','MarkerSize',8,'LineWidth',2);
text(CG.faces.centroids(:,1), CG.faces.centroids(:,2), ...
num2str((1:CG.faces.num)'),'FontSize',20, 'HorizontalAlignment','center ');

 1

 2

 3 4 5

 6

 7

 8 9

10

11

12 13

14

15

16

1718

19

20

21

22

23 24 25 26 27 28 29

30

31

32

As for the volumetric partition, we require that each interface that defines
a connection in the face partition consists of a connected set of cell faces.
That is, it must be possible to connect any two cell faces belonging to given
interface by a path that only crosses edges between cell faces that are part
of the interface. To ensure that all coarse interfaces are connected collections
of fine faces, we have used the routine processFacePartition, which splits
disconnected interfaces into one or more connected interfaces.

The same principles apply equally well in three dimensions, as shown in
the next example:

G = computeGeometry(cartGrid([20 20 6]));
c = G.cells.centroids;
G = removeCells(G, ...

(c(:,1)<10) & (c(:,2)<10) & (c(:,3)<3));
plotGrid(G); view(3); axis off

p = partitionUI(G,[2, 2, 2]);
q = partitionUI(G,[4, 4, 2]);
CG = generateCoarseGrid(G, p, ...

cellPartitionToFacePartition(G,q));

plotCellDataNew(CG,(1:max(p))');
plotFacesNew(CG,1:CG.faces.num,...

'FaceColor' , 'none' , 'LineWidth' ,2);
view(3); axis off

The coarse-grid structure CG also contains lookup tables for mapping
blocks and interfaces in the coarse grid to cells and faces in the fine grid.
To demonstrate this, we will visualize one connection of a subdivided coarse
face that consists of several fine faces, along with the fine cells that belong to
the neighboring blocks:

4.3 Coarsening of Realistic Reservoir Models 97

face = 66;
sub = CG.faces.connPos(face):CG.faces.connPos(face+1)−1;
ff = CG.faces.fconn(sub);
neigh = CG.faces.neighbors(face,:);

show = false(1,CG.faces.num);
show(boundaryFaces(CG)) = true;
show(boundaryFaces(CG,neigh)) = false;
plotFacesNew(CG, show,'FaceColor',[1 1 .7]);
plotFacesNew(G, ff, 'FaceColor', 'g')
plotFacesNew(CG,boundaryFaces(CG,neigh), ...

'FaceColor', 'none', 'LineWidth', 2);
plotGrid(G, p == neigh(1), 'FaceColor', 'none', 'EdgeColor', 'r ')
plotGrid(G, p == neigh(2), 'FaceColor', 'none', 'EdgeColor', 'b')

4.3 Coarsening of Realistic Reservoir Models

To demonstrate that the coarsening principles outlined above can be applied
to realistic models, we finish the chapter by discussing how to coarsen two
corner-point models of industry-standard complexity: the sector model of the
Johansen aquifer introduced in Section 2.4.4 and the SAIGUP model from
Section 2.4.5. The complete code for the two examples can be found in the
scripts coarsenJohansen.m and coarsenSAIGUP.m.

4.3.1 The Johansen Aquifer

As we saw in Section 2.4.4, the heterogeneous ’NPD5’ sector model of the Jo-
hansen aquifer developed as a collaboration between the Norwegian Petroleum
Directorate and researchers from the University of Bergen contains three dif-
ferent formations: the Johansen sandstone delta bounded above by the Dun-
lin shale and below by the Amundsen shale. As shown in Figure 2.11, these
three formations have distinctively different permeabilities. The model was
originally developed to study a potential site for geological storage of CO2 in-
jected as a supercritical fluid deep in the formation. The injected CO2 is much
lighter than the resident brine and will form a separate, buoyant phase. The
low-permeable Dunlin shale will act as a caprock, under which the CO2 will
accumulate as a thin plume that migrates upward under the caprock in the
up-dip direction. The formations play a very different role in the sequestration
process, the Johansen sandstone is the container in which the CO2 is to be
kept, while the Dunlin shale acts like a seal that prevents the CO2 to escape
back to the sea bottom. To accurately simulate the sequestration process, it
is therefore important to preserve the three formations in the coarse model
and avoid creating coarse blocks that contain large media contrasts. We will

98 4 Grid Coarsening

Fig. 4.3. A 4× 4× 11 coarsening of the NPD5 model of the Johansen aquifer that
preserves the Amundsen, Dunlin, and Johansen formations.

Table 4.1. Permeability values used to distinguish the different formations in the
NPD5 sector model of the Johansen formation.

Dunlin Johansen Amundsen

K ≤ 0.01mD 0.1 mD < K 0.01 mD < K ≤ 0.1mD

therefore coarsen the three formations separately. To distinguish which for-
mation each particular cell belongs to, we will use permeability values K as
indicator as shown in Table 4.1

Likewise, to correctly resolve the formation and migration of the thin
plume it is essential that the grid has as high vertical resolution as possi-
ble. In a real simulation, we would therefore normally only reduce the lateral
resolution, say by a factor four in each lateral direction. Here, however, we
first use only a single block in the vertical direction inside each formation
to more clearly demonstrate how the coarsening can adapt to the individual
formations.

Assuming that the grid G and the permeability field K in units [mD] have
been initialized properly as described in Section 2.4.4, the coarsening proce-
dure reads

pK = 2*ones(size(K)); pK(K<=0.1) = 3; pK(K<=0.01)= 1;
pC = partitionUI(G, [G.cartDims(1:2)/4 1]);
[b,i,p] = unique([pK, pC], 'rows');
p = processPartition(G,p);
CG = generateCoarseGrid(G, p);
plotCellData(G,log10(K),'EdgeColor','k','EdgeAlpha',.4); view(3)
outlineCoarseGrid(G,p,'FaceColor','none','EdgeColor','k', 'LineWidth',1.5);

The resulting coarse grid is shown in Figure 4.3. By intersecting the partition
vector pC, which has only one block in the vertical direction, with the parti-
tion vector pK that represents the different formations, we get three blocks in

4.3 Coarsening of Realistic Reservoir Models 99

Fig. 4.4. Six coarse blocks sampled from the top grid layer of the Dunlin formation
in a 4× 4× 1 coarsening of the NPD5 sector model of the Johansen formation.

the vertical direction where all formations are present and two blocks in the
vertical direction where only the Dunlin and Amundsen shales are present.

The aquifer model contains one big and several small faults. As a result,
1.35% of the cells in the original grid have more than six neighbors. Coarsening
a model that has irregular geometry (irregular perimeter, faults, degenerate
cells, etc) uniformly in index space will in most cases give quite a few blocks
whose geometry deviate quite a lot from being rectangular, and the resulting
coarse grid will generally contain a larger percentage of unstructured connec-
tions than the original fine model. For the NPD5 aquifer model, 20.3% of the
blocks in the coarse model have more then six coarse faces. If we look at a
more realistic coarsening that retains the vertical resolution of the original
model, 16.5% of the blocks have more than six neighboring connections. This
model is obtained if we repeat the construction above using

pC = partitionUI(G, G.cartDims./[4 4 1]);

Figure 4.4 six different coarse blocks sampled from the top grid layer of the
Dunlin shale. Here, the blue block has an irregular geometry because it is
sampled from a part of the aquifer perimeter that does not follow the primary
grid directions. The other five blocks contain (parts of) a fault and will there-
fore potentially have extra connections to blocks in grid layers below. Despite
the irregular geometry of the blocks, the coarse grid can be used directly with
the basic incompressible flow and transport solvers described in Chapter 6.
In our experience, the quality of the coarse solution will generally be more
affected by the quality of the upscaling of the petrophysical parameters (see
Chapter ??) than the irregularity of the block geometry. In fact, having ir-
regular blocks that preserve geometry of the fine-scale model will respect the
layering and connections in the fine-scale geology and therefore often give
more accurate results than a coarse model with hexahedral blocks.

100 4 Grid Coarsening

4.3.2 The Shallow-Marine SAIGUP Model

As our next example, we will revisit the SAIGUP model discussed on page 79.
As shown in Figure 2.16 in Section 2.4.5, the model has six user-defined rock
types (also known as saturation regions) that can be used to specify different
rock-fluid behavior. Depending upon the purpose of the reduced model, one
may want to preserve these rock types using the same type of technique as
described in the previous example. This has the advantage that if each coarse
block is made up of one rock type only, one would not have to upscale the
rock-fluid properties. On the other hand, this will typically lead to coarse
grids with (highly) irregular block geometries and large variations in block
volumes. To illustrate this point, we start by partitioning the grid uniformly
into 6× 12× 3 coarse blocks in index space:

p = partitionUI(G,[6 12 3]);

This will introduce a partition of all cells in the logical 40 × 120 × 20 grid,
including cells that are inactive. To get a contiguous partition vector, we
remove blocks that contain no active cells, and then renumber the vector,
which reduces the total number of blocks from 216 to 201. Some of the blocks
may contain disconnected cells because of faults and other nonconformities,
and we therefore need to postprocess the grid in physical space and split each
disconnected block into a new set of connected sub-blocks:

p = compressPartition(p);
p = processPartition(G,p);

The result is a partition with 243 blocks, in which each coarse block consists
of a set of connected cells in the fine grid. Figure 4.5 shows the individual
coarse blocks using the explosion-view technique introduced above. Whereas
all cells in the original model are almost exactly the same size, there is almost
two orders difference between the volumes of the smallest and largest blocks
in the coarsened model. In particular, the irregular boundary near the crest
of the model will introduce small blocks that consist of only a single fine cell
in the lateral direction. Large variations in block volumes will adversely affect
any flow solver that is later run on the model and to get a more even size
distribution for the coarse blocks, we will therefore remove these small blocks
by merging them with the neighbor that has the smallest block volume. This is
done repeatedly until the volumes of all blocks are above the lower threshold.

The merging algorithm is quite simple: we compute the block volumes,
select the block with the smallest volume, and then merge this block with one
of its neighbors. Then we update the partition vector by relabling all cells in
the block with the new block number, compress the partition vector to get rid
of empty entries, regenerate a coarse grid, recompute block volumes, pick the
block with the smallest volume in the new grid, and so on. In each iteration,
we plot the selected block and its neighbors:

4.3 Coarsening of Realistic Reservoir Models 101

Fig. 4.5. Logically Cartesian partition of the SAIGUP model. The plot to the left
shows the individual blocks in an explosion view using the colorcube colormap. The
bar graph to the right shows the volumes in units [m3] for each of the blocks in the
partition.

blockVols = CG.cells.volumes;
meanVol = mean(blockVols);
[minVol, block] = min(blockVols);
while minVol<.1*meanVol

% Find all neighbors of the block
clist = any(CG.faces.neighbors==block,2);
nlist = reshape(CG.faces.neighbors(clist,:),[],1);
nlist = unique(nlist(nlist>0 & nlist˜=block));

plotBlockAndNeighbors(CG, block, ...
'PlotFaults' , [false, true], 'Alpha', [1 .8 .8 .8]);

% Merge with neighbor having largest volume
[˜,merge] = max(blockVols(nlist));

% Update partition vector
p(p==block) = nlist(merge);
p = compressPartition(p);

% Regenerate coarse grid and pick the block with the smallest volume
CG = generateCoarseGrid(G, p);
CG = coarsenGeometry(CG);
blockVols = CG.cells.volumes;
[minVol, block] = min(blockVols);

end

102 4 Grid Coarsening

To find the neighbors of a given block, we first select all connections that
involve block number block, which we store in the logical mask clist. We
then extract the indices of the blocks involved in these connections by using
clist to index the connection list CG.faces.neighbors. The block cannot
be merged with the exterior or itself, so the values 0 and block are filtered
out. In general, there may be more than one connection between a pair of
blocks, so as a last step we use unique to remove multiple occurrences of the
same block number.

When selecting which neighbor a block should be merged with, there are
several points to consider from a numerical point of view. We will typically
want to keep the blocks as regular and equally sized as possible, make sure
that the cells inside each new block are well connected, and limit the number
of new connections we introduce between blocks.

Figure 4.6 shows several of the small blocks and their neighbors. In the
algorithm above, we have chosen a simple merging criterion: each block is
merged with the neighbor having the largest volume. In iterations one and
three, the blue blocks will be merged with the cyan blocks, which is probably
fine in both cases. However, if the algorithm later wants to merge the yellow
blocks, using the same approach may not give good results as shown in it-
eration ten. Here, it is natural to merge the blue block with the cyan block
that lies in the same geological layer (same K index) rather than merging it
with the magenta block that has the largest volume. The same problem is
seen in iteration number four, where the blue block is merged with the yellow
block, which is in another geological layer and only weakly connected to the
blue block. As an alternative, we could choose to merge with the neighbor
having the smallest volume, in which case the blue block would be merged
with the yellow block in iterations one and three, with the magenta block in
iteration four, and with the cyan block in iteration six. This would tend to
create blocks consisting of cells from a single column in the fine grid, which
may not be what we want.

Altogether, the figure and the discussion illustrate that there are mutually
conflicting criteria that makes it difficult to merge blocks in the grid in a simple
and robust manner. A more advanced strategy could, for instance, include
additional constrains that penalize merging blocks belonging to different layers
in the coarse grid. Likewise, one may want to avoid to create connections that
only involve small surface areas. However, such connections may already be
present in the coarsening we start from, as shown in the lower-right plot in
Figure 4.6. Here, the yellow and cyan blocks were created when partitioning
the grid uniformly in index space. The basic processPartition routine only
checks that there is a connection between all cells inside a block. A more
sophisticated routine could obviously also check the size of the face areas
associated with each connection and consider different parts of the block to
be disconnected if the area that connects them is too small. As a step in this
direction, we could consider the face are when we postprocess the first uniform
partition, e.g., do something like the following,

4.3 Coarsening of Realistic Reservoir Models 103

Iteration 1:

blue → cyan

Iteration 4: blue → yellow

Iteration 6:
blue → yellow

Iteration 3: blue → cyan

Iteration 10:
blue → magenta

Fig. 4.6. Examples of small blocks (in blue) being merged with one of their neigh-
bors shown in semi-transparent color with fault faces in gray.

p = partitionUI(G,[6 12 3]);
p = compressPartition(p);
p = processPartition(G, p, G.faces.areas<250);

This will increase the number of blocks in the final grid, after merging small
blocks, from 220 to 273, but will avoid constructing blocks looking like the
yellow and cyan block in the lower-right plot in Figure 4.6. On the other hand,
this approach will obviously involve a threshold parameter that will vary from
case to case and will need to be set by an expert. The result may also be very
sensitive to the choice of this parameter. To see this, you can try to redo the
initial partition with threshold values 300 and 301 for the face areas.

104 4 Grid Coarsening

4.4 General Advice and Simple Guidelines

In most cases, the coarse partition will be used as input to some kind of
flow simulation, which we will continue to discuss in the rest of the book.
We conclude the discussion of grid coarsening by suggesting some simple and
conceptual guidelines that we think can serve as a good starting point if you
want to develop your own custom partitions. The guidelines refer to the left
plot in Figure 4.7 for illustrations:

1. The partition should preferably minimize the occurrence of bidirectional
flow across coarse-grid interfaces. Examples of grid structures that increase
the likelihood for bidirectional flow are:
� Coarse-grid faces with (highly) irregular shapes, like the ’saw-tooth’

faces between Blocks 6 and 7 and Blocks 3 and 8.
� Blocks that have only one neighbor, like Block 4 (unless the block

contains source terms). A simple remedy for this is to split the interface
into at least two sub-faces, and define a basis function for each sub-
face.

� Blocks having interfaces only along and not transverse to the major
flow directions, like Block 5. To represent flow in a certain direction,
there must be at least one non-tangential face that defines a basis
function in the given flow direction.

2. Blocks and faces in the coarse grid should follow geological layers whenever
possible. This is not fulfilled for Blocks 3 and 8.

3. Blocks in the coarse-grid should adapt to flow obstacles (shale barriers,
etc.) whenever possible.

In addition, to enhance the efficiency of a simulator, one should try to keep
the number of connections between coarse-grid blocks as low as possible (to
minimize the bandwidth of the discretized systems), and avoid having too
many small blocks which will increase the dimension of the discrete system

1 2 3
4

5

6 7 8

Flow direction Flow direction Flow direction Flow direction Flow direction Flow direction

1 3
2

5

6 7 8

Flow direction Flow direction

Fig. 4.7. Illustration of some of the guidelines for choosing a good coarse grid. In
the left plot, all blocks except for Block 1 violate at least one of the guidelines each.
In the right plot, the blocks have been improved at the expense of an increased
number of connections.

4.4 General Advice and Simple Guidelines 105

and adversely affect its stability without necessarily improving the accuracy
significantly.

In the right plot of Figure 4.7, we have used the guidelines above to improve
the coarse grid from the left plot. In particular, we have increased the size of
Block 5 to homogenise the block volumes and introduce basis functions in
the major flow direction for this block. In doing so, we increase the number of
couplings from nine to twelve (by removing the coupling between Blocks 2 and
4 and introducing extra coupling among Blocks 1, 3, 5, 6, and 8). In general,
it may be difficult to obtain an ’optimal’ coarse grid, since guidelines may be
in conflict with each other. Indeed, having worked with coarsening algorithms
for many years, it is our experience that the criteria that determine whether
a coarsening is good or not will to a large degree depend on what purpose the
grid is to be used for after coarsening. In particular, the coarsening strategy
should reflect the type of process one wants to simulate and how the flow
process is affected by the petrophysical properties the grid is populated with.
To explain this, we will give a few examples:

� For a strongly heterogeneous system in which the fluid flow will mainly
be dictated by the media properties (think of the Upper Ness formation
from the SPE10 model in Section 2.4.3), a geometrically complex parti-
tion that adapts to contrasts in the media properties will most likely give
better accuracy than a regular (Cartesian-like) partition in which individ-
ual blocks contain strong media contrasts. On the other hand, for media
with small or smooth variations in the petrophysical parameters (think of
a homogeneous medium, the Tarbert formation from SPE10, or something
in between), one might be better off with a regular partition that follows
the axial directions to minimize the introduction of geometrical artifacts
in the numerical discretization.

� If your grid model contains different rock types (think of the SAIGUP
model shown in Figure 2.16), you may want the partition to adapt to
interfaces between these rock types if they correspond to significantly dif-
ferent petrophysical or rock-fluid properties. If they do not, creating an
adapted grid will only introduce unnecessary geometrical complexities.

� If you study a fluid system in which one fluid is much lighter than the other
fluid(s), as is the case when simulating gas injection or CO2 sequestration,
you may want to have high grid resolution near the top of your model to
be able to capture the lighter fluid’s tendency to override the other fluid(s)
or retain the vertical resolution of the original grid to accurately resolve
the gravity segregation in the fluid system.

In summary, it is our general and perhaps somewhat disappointing observation
that making a good coarse grid is more an art than an exact science. As a
result, MRST does not provide well-defined workflows for coarsening, but
rather offers tools that (hopefully) are sufficiently flexible to support you in
combining your creativity, physical intuition, and experience to generate good
coarse grids.

Part II

Single-Phase Flow

5

Mathematical Models and Basic Discretizations

If you have read the chapters of the book in chronological order, you have
already encountered the equations modeling flow of a single, incompressible
fluid through a porous media twice: first in Section 1.3 where we showed how
to use MRST to compute vertical equilibrium inside a gravity column, and
then in Section 2.3.2, in which we discussed the concept of rock permeabil-
ity. In this section, we will review the mathematical modeling of single-phase
flow in more detail, introduce basic numerical methods for solving the result-
ing equations, and discuss how these are implemented in MRST and can be
combined with the tools introduced in Chapters 2 and 3 to develop efficient
simulators for single-phase incompressible flow. Solvers for compressible flow
will be discussed in more detail in Chapter 7.

5.1 Fundamental concept: Darcy’s law

Mathematical modeling of single-phase flow in porous media started with the
work of Henry Darcy, a french hydraulic engineer, who in the middle of the
19th century was engaged by to enlarge and modernize the waterworks of the
city of Dijon. To understand the physics of flow through the sand filters that
were used to clean the water supply, Darcy designed a vertical experimental
tank filled with sand, in which water was injected at the top and allowed to
flow out at the bottom of the tank; Figure 5.1 shows a conceptual illustration.
Once the sand pack is filled with water, and the inflow and outflow rates
are equal, the hydraulic head at the inlet and at the outlet can be measured
using mercury-filled manometers. The hydraulic head is given as, h = E/mg =
z+p/ρg, relative to a fixed datum. As water flows through the porous medium,
it will experience a loss of energy. In a series of experiments, Darcy measured
the water volumetric flow rate out of the tank and compared this rate with
the loss of hydrostatic head from top to bottom of the column. From the
experiments, he established that for the same sand pack, the discharge (flow
rate) Q [m3/s] is proportional to the cross-sectional area A [m2], proportional

110 5 Mathematical Models and Basic Discretizations

Q

Q

A

L

hb

ht

Fig. 5.1. Conceptual illustration of Darcy’s experiment.

Fig. 5.2. The macroscopic Darcy velocity represents an average of microscopic fluid
fluxes.

to the difference in hydraulic head (height of the water) ht − hb [m], and
inversely proportional to the flow length of the tank L [m]. Altogether, this
can be summarized as

Q

A
= κ

ht − hb
L

(5.1)

which was presented in 1856 as an appendix to [21] entitled “Determination of
the laws of flow of water through sand” and is what we today call Darcy’s law.
In (5.1), κ [m/s] denotes the hydraulic conductivity, which is a function both
of the medium and the fluid flowing through it. It follows from a dimensional
analysis that κ = ρgK/µ, where g [m/s2] is the gravitational acceleration, µ
[kg/ms] is the dynamic viscosity, and K [m2] is the intrinsic permeability of
a given sand pack.

The specific discharge v = Q/A, or Darcy flux, through the sand pack rep-
resents the volume of fluid per total area per time and has dimensions [m/s].
Somewhat misleading, v is often referred to as the Darcy velocity. However,
since only a fraction of the cross-sectional area is available for flow (the major-

5.2 General flow equations for single-phase flow 111

Fig. 5.3. Illustration of a control volume Ω on which one can apply the principle
of conservation to derive macroscopic continuity equations.

ity of the area is blocked by sand grains), v is not a velocity in the microscopic
sense. Instead, v is the apparent macroscopic velocity obtained by averaging
the microscopic fluxes inside representative elementary volumes (REVs) which
were discussed in Section 2.2.2. The macroscopic fluid velocity, defined as vol-
ume per area occupied by fluid per time, is therefore given by v/φ, where φ
is the porosity associated with the REV.

Henceforth, we will, with a slight abuse of notation, refer to the specific
discharge as the Darcy velocity. In modern differential notation, Darcy’s law
for a single-phase fluid reads,

~v =
K

µ
(∇p− gρ∇z), (5.2)

where p is the fluid pressure and z is the vertical coordinate. The equation
expresses conservation of momentum and was derived from the Navier–Stokes
equations by averaging and neglecting inertial and viscous effects by Hubbert
in 1956. The observant reader will notice that Darcy’s law 5.2 is analogous
to Fourier’s law (1822) for heat conduction, Ohm’s law (1827) in the field of
electrical networks, or Fick’s law (1855) for fluid concentrations in diffusion
theory, except that for Darcy there are two driving forces, pressure and gravity.
Notice also that Darcy’s law assumes a reversible fluid process, which is a
special case of the more general physical laws of irreversible processes that
were first described by Onsager.

5.2 General flow equations for single-phase flow

To derive a mathematical model for single-phase flow on the macroscopic scale,
we first make a continuum assumption based on the existence of representative
elementary volumes as discussed in the previous section and then look at a
control volume as shown in Figure 5.3. From the fundamental law of mass
conservation, we know that the accumulation of mass inside this volume must
equal the net flux over the boundaries,

112 5 Mathematical Models and Basic Discretizations

∂

∂t

∫
Ω

φρ d~x+

∫
∂Ω

ρ~v · ~n ds =

∫
Ω

q d~x, (5.3)

where ρ is the density of the fluid, φ is the rock porosity, ~v is the macroscopic
Darcy velocity, ~n denotes the normal at the boundary ∂Ω of the computa-
tional domain Ω, and q denotes fluid sources and sinks, i.e., outflow and inflow
of fluids per volume at certain locations. Applying Gauss’ theorem, this con-
servation law can be written on the alternative integral form∫

Ω

[∂
∂t
φρ+∇ · (ρ~v)

]
d~x =

∫
Ω

q d~x. (5.4)

This equation is valid for any volume Ω, and in particular volumes that are
infinitesimally small, and hence it follows that the macroscopic behavior of
the single-phase fluid must satisfy the continuity equation

∂(φρ)

∂t
+∇ · (ρ~v) = q. (5.5)

Equation (5.5) contains more unknowns than equations and to derive a closed
mathematical model, we need to introduce what is commonly referred to as
constitutive equations that give the relationship between different states of
the system (pressure, volume, temperature, etc) at given physical conditions.
Darcy’s law, discussed in the previous section, is an example of a constitutive
relation that has been derived to provide a phenomenological relationship be-
tween the macroscale ~v and the fluid pressure p. In Section 2.3.1 we introduced
the rock compressibility cr = d ln(φ)/dp, which describes the relationship be-
tween the porosity φ and the pressure p. In a similar way, we can introduce
the fluid compressibility to relate the density ρ to the fluid pressure p.

A change in density will generally cause a change in both the pressure p
and the temperature T . The usual way of describing these changes in ther-
modynamics is to consider the change of volume V for a fixed number of
particles,

dV

V
=

1

V

(
∂V

∂p

)
T

dp+
1

V

(
∂V

∂T

)
p

dT, (5.6)

where the subscripts T and p indicate that the change takes place under
constant temperature and pressure, respectively. Since ρV is constant for a
fixed number of particles, dρV = ρdV , and (5.6) can written in the equivalent
form

dρ

ρ
=

1

ρ

(
∂ρ

∂p

)
T

dp+
1

ρ

(
∂ρ

∂T

)
p

dT = cfdp+ αfdT, (5.7)

where the cf denotes the isothermal compressibility and αf denotes the ther-
mal expansion coefficient. In many subsurface systems, the density changes
slowly so that heat conduction keeps the temperature constant, in which case
(5.7) simplifies to

cf =
1

ρ

dρ

dp
=
d ln(ρ)

dp
. (5.8)

5.2 General flow equations for single-phase flow 113

The factor cf , which we henceforth will refer to as the fluid compressibility,
is non-negative and will generally depend on both pressure and temperature,
i.e., cf = cf (p, T).

Introducing Darcy’s law and fluid and rock compressibilities in (5.5), we
obtain the following parabolic equation for the fluid pressure

ctφρ
∂p

∂t
−∇ ·

[ρK
µ

(∇p− gρ∇z)
]

= q, (5.9)

where ct = cr + cf denotes the total compressibility. Notice that this equation
is generally nonlinear since both ρ and ct may depend on p. In the following,
we will look briefly at several special cases in which the governing single-
phase equation becomes a linear equation for the primary unknown; more
extensive discussions can be found in standard textbooks like [50, Chap. 1],
[18, Chap. 2]. For completeness, we will also briefly review the concept of an
equation-of-state.

Incompressible flow

In the special case of an incompressible rock and fluid (that is, ρ and φ are
independent of p so that ct = 0), (5.9) simplifies to an elliptic equation with
variable coefficients,

∇ ·
[ρK
µ
∇(p− gρz)

]
= q. (5.10)

If we introduce the fluid potential, Φ = p − gρz, (5.10) can be recognized as
the (generalized) Poisson’s equation ∇ · K∇Φ = q or as the Laplace equation
∇ · K∇Φ = 0 if there are no volumetric fluid sources or sinks. In the next
section, we will discuss in detail how to discretize the second-order spatial
Laplace operator L = ∇ · K∇, which is a key technological component that
will enter almost any software for simulation of flow in porous rock formations.

Constant compressibility

If the fluid compressibility is constant and independent of pressure, (5.8) can
be integrated from a known density ρ0 at a pressure datum p0 to give the
following equation,

ρ(p) = ρ0e
cf (p−p0) (5.11)

which applies well to most liquids that do not contain large quantities of
dissolved gas. To develop the differential equation, we first assume that the
porosity and the fluid viscosity do not depend on pressure. Going back to the
definition of fluid compressibility (5.8), it also follows from this equation that
∇p = (cfρ)−1∇ρ, which we can use to eliminate ∇p from Darcy’s law (5.2).
Inserting the result into (5.5) gives us the following continuity equation

∂ρ

∂t
− 1

µφcf
∇ ·
(
K∇ρ− cgρ2K∇z

)
= q, (5.12)

114 5 Mathematical Models and Basic Discretizations

which in the absence of gravity forces and source terms is a linear equation
for the fluid density that is similar to the classical heat equation with variable
coefficients,

∂ρ

∂t
=

1

µφcf
∇ ·
(
K∇ρ

)
. (5.13)

Slightly compressible flow

In the case that the fluid compressibility is small, it is sufficient to use a linear
relationship

ρ = ρ0

[
1 + cf (p− p0)

]
. (5.14)

We further assume that φ is a function of ~x only and that µ is constant. For
simplicity, we also assume that g and q are both zero. Then, we can simplify
(5.9) as follows:

(cfφρ)
∂p

∂t
=
cfρ

µ
∇p · K∇p+

ρ

µ
∇ · (K∇p)

If cf is sufficiently small, in the sense that cf∇p · K∇p � ∇ · (K∇p), we can
neglect the first term on the right-hand side to derive a linear equation similar
to (5.13) for the fluid pressure

∂p

∂t
=

1

µφcf
∇ ·
(
K∇p

)
. (5.15)

Ideal gas

If the fluid is a gas, compressibility can be derived from the gas law, which
for an ideal gas can be written in two alternative forms,

pV = nRT, ρ = p(γ − 1)e. (5.16)

In the first form, T is temperature, V is volume, R is the gas constant (8.314
J K−1mol−1), and n = m/M is the amount of substance of the gas in moles,
where m is the mass and M is the molecular weight. In the second form, γ
is the adiabatic constant, i.e., ratio of specific heats at constant pressure and
constant volume, and e is the specific internal energy (internal energy per unit
mass). In either case, it follows from (5.8) that cf = 1/p.

If the fluid is a gas, we can neglect gravity, and once again we assume that
φ is a function of ~x only. Inserting (5.16) into (5.9) gives

∂(ρφ)

∂t
= φ(γ − 1)e

∂p

∂t
=

1

µ
∇ ·
(
ρK∇p

)
=

(γ − 1)e

µ
∇ ·
(
pK∇p

)
from which it follows that

φµ
∂p

∂t
= ∇ ·

(
pK∇p

)
⇔ φµ

p

∂p2

∂t
= ∇ ·

(
K∇p2

)
. (5.17)

5.3 Auxiliary conditions and equations 115

Equation of state

Equations (5.11), (5.14), and (5.16) are all examples of what is commonly
referred to as equations of state, which provide constitutive relationships be-
tween mass, pressures, temperature, and volumes at thermodynamic equilib-
rium. Another popular form of these equations are the so-called cubic equa-
tions of state, which can be written as cubic functions of the molar volume
Vm = V/n = M/ρ involving constants that depend on the pressure pc, the
temperature Tc, and the molar volume Vc at the critical point, i.e., the point at

which (∂p∂V)T = (∂
2p

∂V 2)T ≡ 0. A few particular examples include the Redlich–
Kwong–Soave equation of state

p =
RT

Vm − b
− aα√

T Vm(Vm + b)
,

a =
0.427R2T 2

c

pc
, b =

0.08664RTc
pc

α =
[
1 +

(
0.48508 + 1.55171ω − 0.15613ω2

)
(1−

√
T/Tc)

]2
(5.18)

and the Peng–Robinson equation of state,

p =
RT

Vm − b
− aα

V 2
m + 2bVm − b2)

,

a =
0.4527235R2T 2

c

pc
, b =

0.077796RTc
pc

α =
[
1 +

(
0.37464 + 1.54226ω − 0.26992ω2

)
(1−

√
T/Tc)

]2
(5.19)

In both equations, ω denotes the acentric factor of the species, which is a
measure of the centricity (deviation from spherical form) of the molecules in
the fluid. The Peng–Robinson model is much better at predicting the densities
of liquids than the Redlich–Kwong–Soave model, which was developed to fit
pressure data of hydrocarbon vapor phases. If we introduce

A =
aαp

(RT)2
, B =

bp

RT
, Z =

pV

RT
,

the Redlich–Kwong–Soave equation (5.18) and the Peng–Robinson equation
(5.19) can be written in alternative polynomial forms,

0 = Z3 − Z2 + Z(A−B −B2)−AB, (5.20)

0 = Z3 − (1−B)Z2 + (A− 2B − 3B2)Z − (AB −B2 −B3), (5.21)

which explain the why they are called cubic equations of state.

5.3 Auxiliary conditions and equations

The governing equations for single-phase flow discussed above are all parabolic
equations, except for the incompressible case in which the governing equation

116 5 Mathematical Models and Basic Discretizations

is elliptic. For the solution to be well-posed1 inside a finite domain for any of
the equations, one needs to supply boundary conditions that determine the
behavior on the external boundary. For the parabolic equations describing
unsteady flow, one also needs to impose an initial condition that determines
the initial state of the fluid system. In this section, we will discuss these
conditions in more detail. We will also discuss models for representing flow in
and out of the reservoir rock through wellbores. Because this flow typically
takes place on a length scale that is much smaller than the length scales of
the global flow inside the reservoir, it is customary to model it using special
analytical models. Finally, we also discuss a set of auxiliary equations for
describing the movement of fluid elements and/or neutral particles that follow
the single-phase flow without affecting it.

5.3.1 Boundary and initial conditions

In reservoir simulation one is often interested in describing closed flow systems
that have no fluid flow across its external boundaries. This is a natural assump-
tion when studying full reservoirs that have trapped and contained petroleum
fluids for million of years. Mathematically, no-flow conditions across external
boundaries are modeled by specifying homogeneous Neumann conditions,

~v · ~n = 0 for ~x ∈ ∂Ω. (5.22)

With no-flow boundary conditions, any pressure solution of (5.10) is imma-
terial and only defined up to an additive constant, unless a datum value is
prescribed at some internal point or along the boundary.

It is also common that parts of the reservoir may be in communication
with a larger aquifer system that provide external pressure support, which
can be modeled in terms of a Dirichlet condition of the form

p(~x) = pa(~x, t) for ~x ∈ Γa ⊂ ∂Ω. (5.23)

The function pa can, for instance, be given as a hydrostatic condition. Alter-
natively, parts of the boundary may have a certain prescribed influx, which
can be modeled in terms of an inhomogeneous Neumann condition,

~v · ~n = ua(~x, t) for ~x ∈ Γa ⊂ ∂Ω. (5.24)

Combinations of these conditions are used when studying parts of a reservoir
(e.g., a sector models). There are also cases, e.g., when describing ground-
water systems or CO2 sequestration in saline aquifers, where (parts of) the
boundaries are open or the system contains a background flow. More infor-
mation of how to set boundary conditions will be given in Section 6.1.4. In

1 A solution is well-posed if it exists, is unique, and depends continuously on the
initial and boundary conditions.

5.3 Auxiliary conditions and equations 117

the compressible case in (5.9), we also need to specify an initial pressure dis-
tribution. Typically, this pressure distribution will be hydrostatic, as in the
gravity column we discussed briefly in Section 1.3, and hence be given by the
ordinary differential equation,

dp

dz
= ρg, p(z0) = p0. (5.25)

5.3.2 Models for injection and production wells

In a typical reservoir simulator, the inflow and outflow in wells occur on a
subgrid scale. Therefore, special models have to be developed to model this
particular flow. Normally, fluids are injected in a grid block at either con-
stant surface rate or at constant bottom-hole pressure, which is sometimes
also called wellbore flowing pressure. Similarly, fluids are produced at con-
stant bottom-hole pressure or constant surface liquid rate. The expression
inflow performance relation (IPR) denotes the relation between the bottom-
hole pressure and the surface flow rate.

The simplest and most widely used inflow-performance relation is the lin-
ear law

qo = J(pR − pbh), (5.26)

which states that the flow rate is directly proportional to the pressure draw-
down in the well; that is, flow rate is proportional to the difference between
the average reservoir pressure pR in the grid cell and the bottom-hole pressure
pbh in the well. The constant of proportionality J is called the productivity
index (PI) for production wells or the well injectivity index (WI) for injectors
and accounts for all rock and fluid properties, as well as geometric factors
that affect the flow. In MRST, we do not distinguish between productivity
and injectivity indices, and henceforth we will only use the shorthand ’WI’.

The basic linear relation (5.26) can be derived from Darcy’s law. Consider a
vertical well that drains a rock with uniform permeability K. As an equation
of state, we introduce the formation volume factor B defined as the ratio
between the volume of the fluid at reservoir conditions and the volume of
the fluid at surface conditions. (For incompressible flow, B ≡ 1). The well
penetrates the rock completely a height h and is open in the radial direction.
We assume a pseudo-steady, radial flow that can be described by Darcy’s law

v =
qB

2πrh
=
K

µ

dp

dr
.

We now integrate this equation from the wellbore and to the drainage bound-
ary r = re where the pressure is constant

2πKh

∫ pe

pbh

1

qµB
dp =

∫ re

rw

1

r
dr.

118 5 Mathematical Models and Basic Discretizations

Here, B and µ are pressure-dependent quantities; B decreases with pressure
and µ increases. The composite effect is that (µB)−1 decreases (almost) lin-
early with pressure. We can therefore approximate µB by (µB)avg evaluated
at the average pressure pavg = (pbh + pe)/2. For convenience, we drop the
subscript in the following. This gives us the pressure as a function of radial
distance

pe = pbh +
qµB

2πKh
ln(re/rw). (5.27)

To close the system, we need to know the location of the drainage boundary
r = re where the pressure is constant. This is often hard to know, and it is
customary to relate q to the volumetric average pressure instead. For pseudo-
steady flow the volumetric average pressure occurs at r = 0.472re. Hence,

q =
2πKh

µB
(
ln(re/rw)− 0.75

)(pR − pbh). (5.28)

The above relation (5.28) was developed for an ideal well under several simpli-
fied assumptions: homogeneous and isotropic formation of constant thickness,
clean wellbore, etc. In practice, a well will rarely produce under these ideal
conditions. Typically the permeability is altered close to the wellbore under
drilling and completion, the well will only be partially completed, and so on.
The actual pressure performance will therefore deviate from (5.28). To model
this, it is customary to include a skin factor S to account for extra pressure
loss due to alterations in the inflow zone. The resulting equation is

q =
2πKh

µB
(
ln(re/rw)− 0.75 + S

)(pR − pbh). (5.29)

Often the constant −0.75 is included in the skin factor S, and for stimulated
wells the skin factor could be negative. Sometimes h is modified to ch, where
c is the completion factor, i.e., a dimensionless number between zero and one
describing the fraction of the wellbore open to flow.

To use the radial model in conjunction with a reservoir model, the volumet-
ric average pressure in the radial model must be related to the computed cell
average pressure. This was first done by Peaceman [51]. Assuming isotropic
permeabilities, square grid blocks, single phase flow and a well at a center of
an interior block, Peaceman showed that the equivalent radius is

re ≈ 0.2
√
∆x∆y.

This basic model has later been extended to cover a lot of other cases, e.g., off-
center wells, multiple wells, non-square grids, anisotropic permeability, hor-
izontal wells; see for instance [9, 29, 5]. For anisotropic permeabilities–and
horizontal wells–the equivalent radius is defined as [49]

re = 0.28

(√
Ky/Kx∆x

2 +
√
Kx/Ky∆y

2
)1/2

(
Ky/Kx

)1/4
+
(
Kx/Ky

)1/4 , (5.30)

5.3 Auxiliary conditions and equations 119

and the permeability is replaced by an effective permeability

Ke =
√
KxKy. (5.31)

If we include gravity forces in the well and assume hydrostatic equilibrium,
the well model thus reads

qi =
2πhcKe

ln(re/rw) + S

1

µiBi

(
pR − pbh − ρi(z − zbh)g

)
, (5.32)

where Ke is given by (5.31) and re is given by (5.30). For deviated wells, h
denotes the length of the grid block in the major direction of the wellbore and
not the length of the wellbore.

5.3.3 Field lines and time-of-flight

Equation (5.10) together with a set of suitable and compatible boundary con-
ditions is all that one needs to describe the flow of an incompressible fluid
inside an incompressible rock. In the remains of this section, we will discuss
a few simple concepts and auxiliary equations that have proven useful to vi-
sualize, analyze, and understand flow fields.

A simple way to visualize a flow field is to use field lines resulting from the
vector field: streamlines, streaklines, and pathlines. In steady flow, the three
are identical. However, if the flow is not steady, i.e., when ~v changes with
time, they differ. Streamlines are associated with an instant snapshot of the
flow field and consists of a family of curves that are everywhere tangential to
~v and show the direction a fluid element will travel at this specific point in
time. That is, if ~x(r) is a parametric representation of a single streamline at
this instance t̂ in time, then

d~x

dr
× ~v(~x, t̂) = 0, or equivalently,

d~x

dr
=

~v(t̂)

|~v(t̂)|
. (5.33)

In other words, streamlines are calculated instantaneously throughout the
fluid from an instantaneous snapshot of the flow field. Because two streamlines
from the same instance in time cannot cross, there cannot be flow across it,
and if we align a coordinate along a bundle of streamlines, the flow through
them will be one-dimensional.

Pathlines are the trajectories that individual fluid elements will follow over
a certain period. In each moment of time, the path a fluid particle takes will be
determined by the streamlines associated with the streamlines at this instance
in time. If ~y(t) represents a single path line starting at ~y0 at time t0, then

d~y

dt
= ~v(~y, t), ~y(t0) = ~y0. (5.34)

A streakline is the line traced out by all fluid particles that have passed
through a prescribed point throughout a certain period of time. (Think of dye

120 5 Mathematical Models and Basic Discretizations

injected into the fluid at a specific point). If we ~z(t, s) denote a parametrization
of a streakline and ~z0 the specific point through which all fluid particles have
passed, then

d~z

dt
= ~v(~z, t), ~z(s) = ~z0. (5.35)

Like streamlines, two streaklines cannot intersect each other.
In summary: streamline patterns change over time, but are easy to generate

mathematically. Pathlines and streaklines are recordings of the passage of time
and are obtained through experiments.

Within reservoir simulation streamlines are far more used that pathlines
and streaklines. Moreover, rather than using the arc length r to parametrize
streamlines, it is common to introduce an alternative parametrization called
time-of-flight, which takes into account the reduced volume available for flow,
i.e., the porosity φ. Time-of-flight is defined by the following integral

τ(r) =

∫ r

0

φ(~x(s))

|~v(~x(s))|
ds, (5.36)

where τ expresses the time it takes a fluid particle to travel a distance r
along a streamline (in the interstitial velocity field ~v/φ). Alternatively, by the
fundamental theorem of calculus and the directional derivative,

dτ

dr
=

φ

|~v|
=

~v

|~v|
· ∇τ,

from which it follows that τ can be expressed by the following differential
equation [22, 23]

~v · ∇τ = φ. (5.37)

In lack of a better name, we will refer to this as the time-of-flight equation.

5.3.4 Tracers and volume partitions

Somewhat simplified, tracers can be considered as neutral particles that pas-
sively flow with the fluid without altering its flow properties. The concentra-
tion of a tracer is given by a continuity equation on the same form as (5.5),

∂(φC)

∂t
+∇ ·

(
~vC
)

= qC . (5.38)

Communication patterns within a reservoir can be determined by simulating
the evolution of artificial, neutral tracers. A simple flow diagnostics is to set
the tracer concentration equal to one in a particular fluid source or at a certain
part of the inflow boundary, and compute the concentration approached at
steady-state conditions,

∇ ·
(
~vC
)

= qC , C|inflow = 1. (5.39)

5.4 Basic finite-volume discretizations 121

The resulting tracer distribution gives the portion of the total fluid volume
coming from a certain fluid source, or parts of the inflow boundary, that
eventually will reach each point in the reservoir. Likewise, by reversing the
sign of the flow field and assigning unit tracers to a particular fluid sink or
parts of the outflow, one can compute the portion of the fluid arriving at a
source or outflow boundary that can be attributed to a certain point in the
reservoir. By repeating this process for all parts of the inflow, one can easily
obtain a partition of the instantaneous flow field.

A more dynamic view can be obtained by utilizing the fact that streamlines
and time-of-flight can be used to define an alternative curvilinear and flow-
based coordinate system in three dimensions. To this end, we introduce the
bi-streamfunctions ψ and χ [10], for which ~v = ∇ψ × ∇χ. In the streamline
coordinates (τ, ψ, χ), the gradient operator is expressed as

∇(τ,ψ,χ) = (∇τ)
∂

∂τ
+ (∇ψ)

∂

∂ψ
+ (∇χ)

∂

∂χ
. (5.40)

Moreover, a streamline Ψ is defined by the intersection of a constant value
for ψ and a constant value for χ. Because ~v is orthogonal to ∇ψ and ∇χ, it
follows from (5.37) that

~v · ∇(τ,ψ,χ) = (~v · ∇τ)
∂

∂τ
= φ

∂

∂τ
. (5.41)

Therefore, the coordinate transformation (x, y, z) → (τ, ψ, χ) will reduce the
three-dimensional transport equation (5.38) to a family of one-dimensional
transport equations along each streamline [22, 35], which for incompressible
flow reads

∂C

∂t
+
∂C

∂τ
= 0. (5.42)

In other words, there is no exchange of the quantity C between streamlines
and each streamline can be viewed as an isolated flow system. Assuming a
prescribed concentration history C0(t) at the inflow, gives a time-dependent
boundary-value problem for the concentration at the outflow (5.42). Here, the
response is given as [22],

C(t) = C0(t− τ), (5.43)

which is easily verified by inserting the expression into (5.42) and the fact that
the solution is unique [33]. For the special case of continuous and constant
injection, the solution is particularly simple

C(t) =

{
0, t < τ,

C0, t > τ.

5.4 Basic finite-volume discretizations

Research on numerical solution of the Laplace/Poisson equation has a long
tradition, and there exist a large number of different finite-difference and

122 5 Mathematical Models and Basic Discretizations

finite-volume methods, as well as finite-element methods based on standard
Galerkin, mixed, or discontinuous Galerkin formulations, which all have their
merits. In Chapter 8, we will discuss consistent discretizations of Poisson-type
equations in more detail. We introduce a general framework for formulating
such method on general polyhedral grids and present several recent methods
that are specially suited for irregular grids with strongly discontinuous coef-
ficients, which are typically seen in realistic reservoir simulation models. In
particular, we will discuss multipoint flux-approximation (MPFA) methods
and mimetic finite-difference (MFD) methods, which are both available in
add-on modules that are part of the standard MRST releases. As a starting
point, however, we will in rest of this section present the simplest example
of a finite-volume discretization, the two-point flux-approximation (TPFA)
scheme, which is used extensively throughout industry and also is the default
discretization method in MRST. We will give a detailed derivation of the
method and point out its advantages and shortcomings. For completeness,
we also briefly outline how to discretize the time-of-flight and the stationary
tracer equations.

5.4.1 A two-point flux-approximation (TPFA) method

To keep technical details at a minimum, we will in the following without loss
of generality consider the simplified single-phase flow equation

∇ · ~v = q, ~v = −K∇p, in Ω ⊂ Rd. (5.44)

In classical finite-difference methods, partial differential equations are approx-
imated by replacing the derivatives with appropriate divided differences be-
tween point-values on a discrete set of points in the domain. Finite-volume
methods, on the other hand, have a more physical motivation and are de-
rived from conservation of (physical) quantities over cell volumes. Thus, in
a finite-volume method the unknown functions are represented in terms of
average values over a set of finite-volumes, over which the integrated PDE
model is required to hold in an averaged sense. Although finite-difference and
finite-volume methods have fundamentally different interpretation and deriva-
tion, the names are used interchangeably in the scientific literature. The main
reason for this is probably that for certain low-order methods, the discrete
equations derived for the cell-centered values in a mass-conservative finite-
difference method are identical to the discrete equations for the cell averages
in the corresponding finite-volume method. Herein, we will stick to this con-
vention and not make a strict distinction between the two types of methods

To develop a finite-volume discretization for (5.44), we start by rewriting
the equation in integral form (see (5.3)) using a single cell Ωi in the discrete
grid as control volume ∫

∂Ωi

~v · ~n ds =

∫
Ωi

q d~x (5.45)

5.4 Basic finite-volume discretizations 123

pi

Ωi

Γi,k

pk

Ωk
~ni,k

~ci,k

πi,k

Fig. 5.4. Two cells used to define the two-point finite-volume discretization of the
Laplace operator.

This equation will ensure that mass is conserved for each grid cell. The next
step is to use Darcy’s law to compute the flux across each face of the cell,

vi,k =

∫
Γik

~v · ~n ds, Γi,k = ∂Ωi ∩ ∂Ωk. (5.46)

We will refer to the faces Γi,k as half-faces since they are associated with
a particular grid cell Ωi and a certain normal vector ~ni,k. However, since
the grid is assumed to be matching, each interior half face will have a twin
half-face Γk,i that has identical area Ak,i = Ai,k but opposite normal vector
~nk,i = −~ni,k. If we further assume that the integral over the cell face in (5.46)
is approximated by the midpoint rule, we use Darcy’s law to write the flux as

vi,k ≈ Ai,k~v(~xi,k) · ~ni,k = −Ai,k
(
K∇p)(~xi,k) · ~ni,k, (5.47)

where ~xi,k denotes the centroid on Γi,k. The idea is now to use a one-sided
finite difference to express the pressure gradient as the difference between the
pressure πi,k at the face centroid and at some point inside the cell. However, in
a finite-volume method, we only know the cell averaged value of the pressure
inside the cell. We therefore must make some additional assumption that will
enable us to reconstruct point values that are needed to estimate the pressure
gradient in Darcy’s law. If we assume that the pressure is linear (or constant)
inside each cell, the reconstructed value pressure value πi at the cell center is
identical to the average pressure pi inside the cell, and hence it follows that
(see Figure 5.4)

vi,k = Ai,kKi
(pi − πi,k)~ci,k
|~ci,k|2

· ~ni,k = Ti,k(pi − πi,k). (5.48)

Here, we have introduced one-sided transmissibilities Ti,k that are associated
with a single cell and gives a two-point relation between the flux across a cell
face and the difference between the pressure at the cell and face centroids. We
will refer to these one-sided transmissibilities as half-transmissibilities since
they are associated with a half face.

124 5 Mathematical Models and Basic Discretizations

To derive the final discretization, we impose continuity of fluxes across all
faces, vi,k = −vk,i = vik and continuity of face pressures πi,k = πk,i = πik.
This gives us two equations,

T−1
i,k vik = pi − πik, −T−1

k,i vik = pk − πik.

By eliminating the interface pressure πik, we end up with the following two-
point flux-approximation (TPFA) scheme,

vik =
[
T−1
i,k + T−1

k,i

]−1
(pi − pk) = Tik(pi − pk). (5.49)

where is the Tik the transmissibility associated with the connection between
the two cells. As the name suggests, the TPFA scheme uses two ’points’,
the cell averages pi and pk, to approximate the flux across the interface Γik
between the cells Ωi and Ωk. In the derivation above, the cell fluxes were
parametrized in terms of the index of the neighboring cell. Extending the
derivation to also include fluxes on exterior faces is trivial since we either
know the flux explicitly for Neumann boundary conditions (5.22) or (5.24),
or know the interface pressure for Dirichlet boundary conditions (5.23).

By inserting the expression for vik into (5.45), we see that the TPFA
scheme for (5.44), in compact form, seeks a set of cell averages that satisfy
the following system of equations∑

k

Tik(pi − pk) = qi, ∀Ωi ⊂ Ω (5.50)

This system is clearly symmetric, and a solution is, as for the continuous
problem, defined up to an arbitrary constant. The system is made positive
definite, and symmetry is preserved by specifying the pressure in a single
point. In MRST, we have chosen to set p1 = 0 by adding a positive constant
to the first diagonal of the matrix A = [aij], where:

aij =

{∑
k Tik if j = i,

−Tij if j 6= i,

The matrix A is sparse and will have a banded structure for structured grids
(tridiagonal for 1D grids and penta- and heptadiagonal for logically Cartesian
grids in 2D and 3D, respectively). The TPFA scheme is monotone, robust,
and relatively simple to implement, and is currently the industry standard
with reservoir simulation.

Example 5.1. To tie the links with standard finite-difference methods on
Cartesian grids, we will derive the two-point discretization for a 2D Cartesian
grid with isotropic permeability. Consider the flux in the x-direction between
two cells i and k as illustrated in Figure 5.5. As above, we impose mass con-
servation inside each cell. For cell i this reads:

5.4 Basic finite-volume discretizations 125

vi,k

∆xi ∆xk

∆ypi pkπi,k

Fig. 5.5. Two cells used to derive the TPFA discretization for a 2D Cartesian grid

vi,k = ∆y
(pi − πi,k)(

1
2∆xi

)2 (1
2∆xi, 0

)
Ki

(
1, 0
)T

= ∆y
2Ki

∆xi

(
pi − πi,k

)
and likewise for cell k:

vk,i = ∆y
(pk − πk,i)(

1
2∆xk

)2 (− 1
2∆xk, 0

)
Kk

(
−1, 0

)T
= ∆y

2Kk

∆xk

(
pk − πk,i

)
Next, we impose continuity of fluxes and face pressures,

vi,k = −vk,i = vik, πi,k = πk,i = πik

which gives us two equations

∆xi
2Ki∆y

vik = pi − πik, − ∆xk
2Kk∆y

vik = pk − πik.

Finally, we eliminate πik to obtain

vik = 2∆y
(∆xi
Ki

+
∆xk
Kk

)−1(
pi − pk

)
,

which shows that the transmissibility is given by the harmonic average of the
permeability values in the two adjacent cells, as one would expect.

In [2], we showed how one could develop an efficient and self-contained
MATLAB program that in approximately thirty compact lines solved the in-
compressible flow equation (5.44) using the two-point method outlined above.
The program was designed for Cartesian grids with no-flow boundary condi-
tions only and relied strongly on a logical ijk numbering of grid cells. For this
reason, the program has limited applicability beyond highly idealized cases
like the SPE10 model. However, in its simplicity, it presents an interesting
contrast to the general-purpose implementation in MRST that handles un-
structured grids, wells, and more general boundary conditions. The interested
reader is encouraged to read the paper and try the accompanying program
and example scripts that can be downloaded from

http://folk.uio.no/kalie/matlab-ressim/

http://folk.uio.no/kalie/matlab-ressim/

126 5 Mathematical Models and Basic Discretizations

5.4.2 Abstract formulation: discrete div and grad operators

While the double-index notation vi,k and vik used in the previous section is
simple and easy to comprehend when working with a single interface between
two neighboring cells, it becomes more involved when we want to introduce
the same type of discretizations for more complex equations than the Poisson
equation for incompressible flow. To prepare for discussions that will follow
later in the book, we will in the following introduce a more abstract way of
writing the two-point finite-volume discretization introduced in the previous
section. The idea is to introduce discrete operators for the divergence and
gradient operators that mimic their continuous counterparts, which will en-
able us to write the discretized version of the Poisson equation (5.44) in the
same form as its continuous counterpart. To this end, we start by a quick
recap of the definition of unstructured grids. As discussed in detail in Sec-
tion 3.4, the grid structure in MRST, consists of three objects: The cells,
the faces, and the nodes. Each cell corresponds to a set of faces, and each
face to a set of edges, which again are determined by the nodes. Each ob-
ject has given geometrical properties (volume, areas, centroids). As before,
let us denote by nc and nf , the number of cells and faces, respectively. To
define the topology of the grid, we will mainly use two different mappings.
The first mapping is given by N : {1, . . . , nc} → {0, 1}nf and maps a cell
to the set of faces that constitute this cell. In a grid structure G, this is rep-
resented as the G.cells.faces array, where the first column that gives the
cell numbers is not stored since it is redundant and instead must be com-
puted by a call f2cn = gridCellNo(G);. The second mapping consists in fact
of two mappings that, for a given face, give the corresponding neighboring
cells, N1, N2 : {1, . . . , nf} → {1, . . . , nc}. In a grid structure G, N1 is given by
G.faces.neighbors(:,1) and N2 by G.faces.neighbors(:,2).

Let us now construct the discrete versions of the divergence and gradient
operators, which we denote div and grad. The mapping div is a linear map-
ping from faces to cells. We consider a discrete flux v ∈ Rnf . For a face f , the
orientation of the flux v[f] is from N1(f) to N2(f). Hence, the total amount
of matter leaving the cell c is given by

div(v)[c] =
∑

f∈N(c)

v[f] 1{c=N1(f)} −
∑

f∈N(c)

v[f] 1{c=N2(f)}. (5.51)

The grad mapping maps Rnc to Rnf and it is defined as

grad(p)[f] = p[N2(f)]− p[N1(f)], (5.52)

for any p ∈ Rnc . In the continuous case, the gradient operator is the adjoint
of the divergence operator (up to a sign), as we have∫

Ω

p∇ · ~v d~x+

∫
Ω

~v · ∇p d~x = 0, (5.53)

5.4 Basic finite-volume discretizations 127

for vanishing boundary conditions. Let us prove that this property holds also
in the discrete case. To simplify the notations, we set Sc = {1, . . . , nc} and
Sf = {1, . . . , nf}. For any v ∈ Rnf and p ∈ Rnc , we have

∑
c∈Sc

div(v)[c]p[c] =
∑
c∈Sc

p[c]

(∑
f∈N(c)

v[f] 1{c=N1(f)} −
∑

f∈N(c)

v[f] 1{c=N2(f)}

)

=
∑
c∈Sc

∑
f∈Sf

v[f]p[c] 1{c=N1(f)} 1{f∈N(c)}

−
∑
c∈Sc

∑
f∈Sf

v[f]p[c] 1{c=N2(f)} 1{f∈N(c)} (5.54)

We can switch the order in the sums above and obtain∑
c∈Sc

∑
f∈Sf

v[f]p[c] 1{c=N1(f)} 1{f∈N(c)} =∑
f∈Sf

∑
c∈Sc

v[f]p[c] 1{c=N1(f)} 1{f∈N(c)}.

For a given face f , we have that 1{c=N1(f)}1{f∈N(c)} is nonzero if and only if
c = N1(f) and therefore∑

f∈Sf

∑
c∈Sc

1{c=N1(f)}1{f∈N(c)}v[f]p[c] =
∑
f∈Sf

v[f]p[N1(f)].

In the same way, we have∑
c∈Sc

∑
f∈Sf

v[f]p[c] 1{c=N2(f)} 1{f∈N(c)} =
∑
f∈Sf

v[f]p[N2(f)]

so that (5.54) yields∑
c∈Sc

div(v)[c]p[c] +
∑
f∈Sf

grad(p)[f]v[f] = 0. (5.55)

Until now, the boundary conditions have been ignored. They are included by
introducing one more cell number c = 0 to denote the exterior. Then we can
consider external faces and extend the mappings N1 and N2 to Sc ∪ {0} so
that, if a given face f satisfies N1(f) = 0 or N2(f) = 0 then it is external.
Note that the grad operator only defines values on internal faces. Now taking
external faces into account, we obtain∑

c∈Sc

div(v)[c]p[c] +
∑
f∈Sf

grad(p)[f]v[f]

=
∑

f∈S̄f\Sf

(
p[N1(f)] 1{N2(f)=0} − p[N2(f)] 1{N1(f)=0}

)
v[f], (5.56)

128 5 Mathematical Models and Basic Discretizations

where S̄f denotes the set of internal and external faces. The identity (5.56) is
the discrete counterpart to∫

Ω

p∇ · ~v d~x+

∫
Ω

~v · ∇p d~x =

∫
∂Ω

p~v · ~n ds. (5.57)

Going back to (5.44), we see that the vector v ∈ Rnf is a discrete approxima-
tion of the flux on faces. Given f ∈ Sf , we have

v[f] ≈
∫
Γf

~v(x) · ~nf ds,

where ~nf is the normal to the face f , where the orientation is given by the
grid. The relation between the discrete pressure p ∈ Rnc and the discrete flux
is given by the two-point flux approximation discussed in the previous section,

v[f] = −T [f] grad(p)[f] ≈ −
∫
Γf

K(x)∇p · ~nf ds, (5.58)

where T [f] denotes the transmissibility of the face f , as defined in (5.49).
Hence, the discretization of (5.44) is

div(v) = q (5.59a)

v = −T grad(p). (5.59b)

where the multiplication in (5.59b) holds element-wise.

5.4.3 Discretizing the time-of-flight and tracer equations

The transport equations (5.37) and (5.39) can be written on the common form

∇ ·
(
u~v
)

= h(~x, u), (5.60)

where u = τ and h = φ + τ∇ · ~v for time-of-flight, and u = C and h = 0 for
the stationary tracer distribution. To discretize the steady transport equation
(5.60), we integrate it over a single grid cell Ωi and use Gauss’ divergence
theorem to obtain ∫

∂Ωi

u~v · ~n ds =

∫
Ωi

h
(
~x, u(~x)

)
d~x.

In Section 5.4.1 we discussed how to discretize the flux over an interface Γik
between two cells Ωi and Ωk for the case that u ≡ 1. To be consistent with the
notation used above, we will call this flux vik. If we can define an appropriate
value uik at the interface Γik, we can write the flux across the interface as∫

Γik

u~v · ~n ds = uikvik. (5.61)

5.4 Basic finite-volume discretizations 129

The obvious idea of setting uik = 1
2 (ui + uk) gives a centered scheme that is

unfortunately notoriously unstable. By inspecting the direction information
is propagating in the transport equation, we can instead use the so-called
upwind value

uik =

{
ui, if vij ≥ 0,

uk, otherwise.
(5.62)

This can be thought of as adding extra numerical dispersion which will sta-
bilize the resulting scheme so that it does not introduce spurious oscillations.

For completeness, let us also write this discretization using the abstract
notation defined in the previous section. If we discretize u by a vector u ∈ Rnc

and h by a vector function h(u) ∈ Rnc , the transport equation (5.60) can be
written in the discrete form

div(uv) = h(u). (5.63)

We also substitute the expression for v from (5.59b) and use (5.62) to define
u at each face f . Then, we define, for each face f ∈ Sf ,

(uv)[f] = uf [f]T [f] grad(p)[f], (5.64)

where

uf [f] =

{
u[N1(f)]), if grad(p)[f] > 0,

u[N2(f)]), otherwise.
(5.65)

Time-of-flight and tracer distributions can of course also be computed
based on tracing streamlines by solving the ordinary differential equations
(5.33). The most commonly used method for tracing streamlines on hexahe-
dral grids is a semi-analytical tracing algorithm introduced by Pollock [52],
which uses analytical expressions of the streamline paths inside each cell based
on the assumption that the velocity field is piecewise linear locally. Although
Pollock’s method is only correct for regular grids, it is often used also for highly
skewed and irregular grids. Other approaches for tracing on unstructured grids
and the associated accuracy are discussed in [20, 54, 34, 42, 32, 41, 37]. On un-
structured polygonal grids, tracing of streamlines becomes significantly more
involved. Because the general philosophy of MRST is that solvers should work
independent of grid type, so that the user can seamlessly switch from struc-
tured to fully unstructured, polygonal grids, we prefer to use finite-volume
methods rather than streamline tracing to compute time-of-flight and tracer
distributions.

6

Incompressible Solvers in MRST

To form a full simulation model based upon the equations and discretiza-
tions introduced in the previous chapter, one generally needs the following
components:

� A grid object, usually called G, describing the geometry of the reservoir.
� An object, usually called rock, that describes the petrophysical parameters

of the reservoir.
� A fluid object describing fluid and rock-fluid properties.
� Objects to represent boundary conditions, source terms, and wells that

may drive the flow in the reservoir.
� A state object holding the reservoir states (primary unknowns and derived

quantities) like pressure, fluxes, face pressures, etc.

The implementation of grids and petrophysical properties in MRST was de-
scribed in Chapters 3 and 2. In this chapter, we will present data structures
and basic constructors used to represent fluid properties, reservoir states, and
driving forces. Once these are in place, we move on to outline and discuss
how the discretizations introduced in Section 5.4 have been implemented in
mrst-core to provide a set of basic flow solvers for (single-phase) incomprssi-
ble flow. Then at the end, we will go through a few examples and give all
code lines that are necessary for full simulation setups with various driving
mechanisms.

6.1 Basic data structures

In this section we will outline the basic data structures that are needed to set
up a single-phase simulation model.

6.1.1 Fluid properties

The only fluid properties we need in the basic single-phase flow equation are
the viscosity and the fluid density for incompressible models and the fluid

132 6 Incompressible Solvers in MRST

compressibility for compressible models. For more complex single-phase and
multiphase models, there are other fluid and rock-fluid properties that will
be needed by flow and transport solvers. To simplify the communication of
fluid properties, MRST uses so-called fluid object that contain basic fluid
properties as well as a few function handles that can be used to evaluate rock-
fluid properties that are relevant for multiphase flow. This basic structure can
be expanded further to represent more advanced fluid models.

The following shows how to initialize a simple fluid object that only re-
quires viscosity and density as input

fluid = initSingleFluid('mu' , 1*centi*poise, ...
'rho' , 1014*kilogram/meterˆ3);

After initialization, the fluid object will contain pointers to functions that can
be used to evaluate petrophysical properties of the fluid:

fluid =

properties: @(varargin)properties(opt,varargin{:})

saturation: @(x,varargin)x.s

relperm: @(s,varargin)relperm(s,opt,varargin{:})

Only the first function is relevant for single-phase flow, and returns the vis-
cosity when called with a single output argument and the viscosity and the
density when called with two output arguments. The other two functions can
be considered as dummy functions that can be used to ensure that the single-
phase fluid object is compatible with solvers written for more advanced fluid
models. The saturation function accepts a reservoir state as argument (see
Section 6.1.2) and returns the corresponding saturation (volume fraction of
the fluid phase) which will either be empty or set to unity, depending upon
how the reservoir state has been initialized. The relperm function accepts a
fluid saturation as argument and returns the relative permeability, i.e., the
reduction in permeability due to the presence of other fluid phases, which is
always identical to one for a single-phase model.

6.1.2 Reservoir states

To hold the dynamic state of the reservoir, MRST uses a special date structure.
We will in the following refer to realizations of this structure as state objects.
In its basic form, the structure contains three elements: a vector pressure

with one pressure per cell in the model, a vector flux with one flux per grid
face in the model, and a vector s with one saturation value for each cell, which
should either be empty or be an identity vector since we only have a single
fluid. The state object is typically initialized by a call to the following function

state = initResSol(G, p0, s0);

where p0 is the initial pressure and s0 is an optional parameter that gives the
initial saturation (which should be identical to one for single-phase models).

6.1 Basic data structures 133

Notice that this initialization does not initialize the fluid pressure to be at
hydrostatic equilibrium. If such a condition is needed, it must be enforced
explicitly by the user. In the case that the reservoir has wells, one should use
the alternative function:

state = initState(G, W, p0, s0);

This will give a state object with an additional field wellSol, which is a
vector with length equal the number of wells. Each element in the vector is
a structure that has two fields wellSol.pressure and wellSol.flux. These
two fields are vectors of length equal the number of completions in the well
and contain the bottom-hole pressure and flux for each completion.

6.1.3 Fluid sources

The simplest way to describe flow into or flow out from interior points of the
reservoir is to use volumetric source terms. These source terms can be added
using the following function:

src = addSource(src, cells, rates);
src = addSource(src, cells, rates, 'sat', sat);

Here, the input values are:

– src: structure from a prior call to addSource which will be updated on out-
put or an empty array (src==[]) in which case a new structure is created.
The structure contains the following fields:

– cell: cells for which explicit sources are provided
– rate: rates for these explicit sources
– value: pressure or flux value for the given condition
– sat: fluid composition of injected fluids in cells with rate>0

– cells: indices to the cells in the grid model in which this source term should
be applied.

– rates: vector of volumetric flow rates, one scalar value for each cell in
cells. Note that these values are interpreted as flux rates (typically in
units of [m3/day] rather than as flux density rates (which must be inte-
grated over the cell volumes to obtain flux rates).

– sat: optional parameter that specifies the composition of the fluid injected
from this source. An n × m array of fluid compositions with n being
the number of elements in cells and m is the number of fluid phases.
For m = 3, the columns are interpreted as: 1=’aqua’, 2=’liquid’, and
3=’vapor’. This field is for the benfit of multiphase transport solvers, and
is ignored for all sinks (at which fluids flow out of the reservoir). The
default value is sat = [], which corresponds to single-phase flow. As a
special case, if size(sat,1)==1, then the saturation value will be repeated
for all cells specified by cells.

134 6 Incompressible Solvers in MRST

For convenience, values and sat may contain a single value; this value is then
used for all faces specified in the call.

There can only be a single net source term per cell in the grid. Moreover, for
incompressible flow with no-flow boundary conditions, the source terms must
sum to zero if the model is to be well posed, or alternatively sum to the flux
across the boundary. If not, we would either inject more fluids than we extract,
or vice versa, and hence implicitly violate the assumption of incompressbilitity.

6.1.4 Boundary conditions

As discussed in Section 5.3.1, all outer faces in a grid model are assumed to
be no-flow boundaries in MRST unless other conditions are specified explic-
itly. The basic mechanism for specifying Dirichlet and Neumann boundary
conditions is to use the function:

bc = addBC(bc, faces, type, values);
bc = addBC(bc, faces, type, values, 'sat' , sat);

Here, the input values are:

– bc: structure from a prior call to addBC which will be updated on output
or an empty array (bc==[]) in which case a new structure is created. The
structure contains the following fields:

– face: external faces for which explicit conditions are set
– type: cell array of strings denoting type of condition
– value: pressure or flux value for the given condition
– sat: fluid composition of fluids passing through inflow faces, not

used for single-phase models

– faces: array of external faces at which this boundary condition is applied.
– type: type of boundary condition. Supported values are ’pressure’ and

’flux’, or cell array of such strings.
– values: vector of boundary conditions, one scalar value for each face in

faces. Interpreted as a pressure value in units of [Pa] when type equals
’pressure’ and as a flux value in units of [m3/s] when type is ’flux’. If the
latter case, the positive values in values are interpreted as injection fluxes
into the reservoir, while negative values signify extraction fluxs, i.e., fluxes
out of the reservoir.

– sat: optional parameter that specifies the composition of the fluid injected
across inflow faces. Similar setup as for explained for source terms in
Section 6.1.3.

There can only be a single boundary condition per face in the grid. Solvers
assume boundary conditions are given on the boundary; conditions in the in-
terior of the domain yield unpredictable results. Moreover, for incompressible
flow and only Neumann conditions, the boundary fluxes must sum to zero
if the model is to be well posed. If not, we would either inject more fluids

6.1 Basic data structures 135

than we extract, or vice versa, and hence implicitly violate the assumption of
incompressbilitity.

For convenience, MRST also offers two additional routines that can be
used to set Dirichlet and Neumann conditions at all outer faces in a certain
direction for grids having a logical IJK numbering:

bc = pside(bc, G, side, p);
bc = fluxside(bc, G, side, flux)

The side argument is a string that much match one out of the following six
alias groups:

1: ’West’, ’XMin’, ’Left’
2: ’East’, ’XMax’, ’Right’
3: ’South’, ’YMin’, ’Back’
4: ’North’, ’YMax’, ’Front’
5: ’Upper’, ’ZMin’, ’Top’
6: ’Lower’, ’ZMax’, ’Bottom’

These groups correspond to the cardinal directions mentioned as the first
alternative in each group. The user should also be aware of an important dif-
ference in how fluxes are specified in addBC and fluxside. Specifying a scalar
value in addBC means that this value will be copied to all faces the boundary
condition is applied to, whereas a scalar value in fluxside sets the cummula-
tive flux for all faces that make up the global side to be equal the specified
value.

6.1.5 Wells

Wells are similar to source terms in the sense that they describe injection or
extraction of fluids from the reservoir, but differ in the sense that they not
only provide a volumetric flux rate, but also contain a model that couples this
flux rate to the difference between the average reservoir in the grid cell and
the pressure inside the wellbore. As discussed in Section 5.3.2, this relation
can be written for each perforation as

vp =
WI

µ
(pi − pf) (6.1)

where WI is the well index, pi is the pressure in the perforated grid cell, and
pf is the flowing pressure in the wellbore. The latter can be found from the
pressure at the top of hte well and the density of the fluid in each perforation.
For single-phase, incompressible this pf = pwh + ρ∆zf , where pwh is the
pressure at the well head and ∆zf is the vertical distance from this point and
to the perforation.

In MRST, the structure used to represent wells, which by convention is
typically called W, consists of the following fields:

136 6 Incompressible Solvers in MRST

– cells: an array index to cells perforated by this well
– type: string describing which variable is controlled (i.e., assumed to be

fixed), either ’bhp or ’rate’
– val: the target value of the well control (pressure value for type=’bhp’ or

the rate for type=’rate’.
– r: the wellbore radius (double).
– dir: a char describing the direction of the perforation, one of the cardinal

directions ’x’, ’y’ or ’z’
– WI: the well index: either the productivity index or the well injectivity index

depending on whether the well is producing or injecting.
– dZ: the height differences from the well head, which is defined as the ’high-

est’ contact (i.e., the contact with the minimum z-value counted amongst
all cells perforated by this well)

– name: string giving the name of the well
– compi: fluid composition, only used for injectors
– refDepth: reference depth of control mode
– sign: define if the well is intended to be producer or injector

Well structures are created by a call to the function

W = addWell(W, G, rock, cellInx);
W = addWell(W, G, rock, cellInx, 'pn', pv, ...);

Here, cellInx is a vector of indices to the cells perforated by the well, and
’pn’/pv denote one or more ’key’/value pairs that can be used to specify
optional parameters that influence the well model:

– type: string specifying well control, ’bhp’ (default) means that the well is
controlled by bottom-hole pressure, whereas ’rate’ means that the well is
rate controlled.

– val: target for well control. Interpretation of this values depends upon type.
For ’bhp’ the value is assumed to be in unit Pascal, and for ’rate’ the value
is given in unit [m3/sec]. Default value is 0.

– radius: wellbore radius in meters. Either a single, scalar value that applies
to all perforations, or a vector of radii, with one value for each perforation.
The default radius is 0.1 m.

– dir: well direction. A single CHAR applies to all perforations, while a
CHAR array defines the direction of the corresponding perforation.

– innerProduct: used for consistent discretizations discussed in Chapter 8
– WI: well index. Vector of length equal the number of perforations in the

well. The default value is -1 in all perforations, whence the well index will
be computed from available data (cell geometry, petrophysical data, etc)
in grid cells containing well completions

– Kh: permeability times thickness. Vector of length equal the number of per-
forations in the well. The default value is -1 in all perforations, whence
the thickness will be computed from the geometry of each perforated cell.

6.2 Incompressible two-point pressure solver 137

– skin: skin factor for computing effective well bore radius. Scalar value or
vector with one value per perforation. Default value: 0.0 (no skin effect).

– Comp i: fluid composition for injection wells. Vector of saturations. Default
value: Comp_i = [1, 0, 0] (water injection)

– Sign: well type: production (sign=−1) or injection (sign=1). Default value:
[] (no type specified)

– name: string giving the name of the well. Default value is ’Wn’ where n is
the number of this well, i.e., n=numel(W)+1

For convenience, MRST also provides the function

W = verticalWell(W, G, rock, I, J, K)
W = verticalWell(W, G, rock, I, K)

that can be used to specify vertical wells in models described by Cartesian
grids or grids that have some kind of extruded structure. Here,

– I,J: gives the horizontal location of the well heel. In the first mode, both
I and J are given and then signify logically Cartesian indices so that I is
the index along the first logical direction while J is the index along the
second logical direction. This mode is only supported in grids which have
an underlying Cartesian (logical) structure such as purely Cartesian grids
or corner-point grids.
In the second mode, only I is described and gives the cell index of the
topmost cell in the column through which the vertical well will be com-
pleted. This mode is supported for logically Cartesian grids containing a
three-component field G.cartDims or for otherwise layered grids which
contain the fields G.numLayers and G.layerSize.

– K: a vector of layers in which this well should be completed. If isemmpty(K)

is true, then the well is assumed to be completed in all layers in this grid
column and the vector is replaced by 1:num_layers.

6.2 Incompressible two-point pressure solver

In MRST, the two-point flux-approximation scheme introduced in Section 5.4.1
is implemented as two different routines:

hT = computeTrans(G,rock)

computes the half-face transmissibilities and does not depend on the fluid
model, the reservoir state, or the driving mechanisms, whereas

state = incompTPFA(state, G, hT, fluid, 'mech1', obj1, ...)

takes the complete model description as input and assembles and solves
the two-point system. Here, mech arguments the drive mechanism (’src’,

138 6 Incompressible Solvers in MRST

’bc’, and/or ’wells’) using correctly defined objects obj, as discussed in Sec-
tions 6.1.3–6.1.5. Notice that computeTrans may fail to compute sensible trans-
missibilities of the permeability field in rock is not given in SI units. Likewise,
incompTPFA may produce strange results if the inflow and outflow specified
by the boundary conditions, source terms, and wells does not sum to zero and
hence violates the assumption of incompressibility. However, if fixed pressure
is specified in wells or on parts of the outer boundary, there will be an outflow
or inflow that will balance the net rate that is specified elsewhere. In the re-
mains of this section, we will discuss more details of the incompressible solver
and demonstrate how simple it is to implement the TPFA method on general
polyhedral grid by going through the essential code lines needed to compute
half-transmissibilities and solve and assemble the global system. The impa-
tient reader can jump directly to Section 6.4, in which we go through several
examples that demonstrate the use of the incompressible solver for single-
phase flow.

To focus on the discretization and keep the discussion simple, we will not
look at the full implementation of the two-point solver in mrst-core. Instead,
we will discuss excerpts from two simplified functions, simpleComputeTrans and
simpleIncompTPFA, that are located in the 1phase directory of the mrst-book

module and together form a simplified single-phase solver that has been
created for pedagogical purposes. The standard computeTrans function can
be used for different representations of petrophysical parameters and in-
cludes functionality to modify the discretization by overriding the definition
of cell and face centers and/or including multipliers that modify the values
of the half-transmissibilities, see e.g., Sections 2.3.3 and 2.4.5. Likewise, the
incompTPFA solver is implemented for a general, incompressible flow model with
multiple fluid phases with flow driven by a general combination of boundary
conditions, fluid sources, and well models.

Assuming that we have a standard grid G that contains cell and face cen-
troids, e.g., as computed by computeGeometry as discussed in Section 3.4, the
essential code lines of simpleComputeTrans are as follows: First, we define the
vectors ~ci,k from cell centroids to face centroids. To this end, we first need to
determine the map from faces to cell number so that the correct cell centroid
is subtracted from each face centroid.

hf2cn = gridCellNo(G);
C = G.faces.centroids(G.cells.faces(:,1),:) − G.cells.centroids(hf2cn,:);

The face normals in MRST are assumed to have length equal to the corre-
sponding face areas, and hence correspond to Ai,k~ni,k in (5.48). To get the
correct sign, we look at the neighboring information that describes which cells
share the face: if the current cell number is in the first column, the face normal
has a positive sign. If not, it gets a negative sign:

sgn = 2*(hf2cn == G.faces.neighbors(G.cells.faces(:,1), 1)) − 1;
N = bsxfun(@times, sgn, G.faces.normals(G.cells.faces(:,1),:));

6.2 Incompressible two-point pressure solver 139

The permeability tensor may be stored in different formats, as discussed in
Section 2.4, and we therefore use an utility function to extract it:

[K, i, j] = permTensor(rock, G.griddim);

Finally, we compute the half transmissibilities, CTKN/CTC. To limit mem-
ory use, this is done in a for-loop (which are rarely used in MRST):

hT = zeros(size(hf2cn));
for k=1:size(i,2),

hT = hT + C(:,i(k)) .* K(hf2cn, k) .* N (:, j(k));
end
hT = hT./ sum(C.*C,2);

The actual code has a few additional lines the perform various safeguards and
consistency checks.

Once the half transmissibilities have been computed, they can be passed
to the simpleIncompTPFA solver. The first thing this solver needs to do is adjust
the half transmissibilities to account for fluid viscosity, since they were derived
for a fluid with unit viscosity:

mob = 1./fluid.properties(state);
hT = hT .* mob(hf2cn);

Then we loop through all faces and compute the face transmissibility as the
harmonic average of the half-transmissibilities

T = 1 ./ accumarray(G.cells.faces(:,1), 1 ./ hT, [G.faces.num, 1]);

Here, we have used the MATLAB function accumarray which constructs an ar-
ray by accumulation. A call to a = accumarray(subs,val) will use the subscripts
in subs to create an array a based on the values val. Each element in val has a
corresponding row in subs. The function collects all elements that correspond
to identical subscripts in subs and stores the sum of those values in the ele-
ment of a corresponding to the subscript. In our case, G.cells.faces(:,1) gives
the global face number for each half face, and hence the call to accumarray

will sum the transmissibilities of the half-faces that correspond to a given
global face and store the result in the correct place in a vector of G.faces.num
elements. The function accumarray is a very powerful function that is used a
lot in MRST in place of nested for-loops. In fact, we will use this function to
loop over all the cells in the grid and collect and sum the transmissibilities of
the faces of each cell to define the diagonal of the TPFA matrix:

nc = G.cells.num;
i = all(G.faces.neighbors ˜= 0, 2);
d = accumarray(reshape(G.faces.neighbors(i,:), [], 1), ...

repmat(T(i), [2,1]), [nc, 1]);

140 6 Incompressible Solvers in MRST

Now that we have computed both the diagonal and the off-diagonal element
of A, the discretization matrix itself can be constructed by a straightforward
call to MATLAB’s sparse function:

I = [G.faces.neighbors(i,1); G.faces.neighbors(i,2); (1:nc)'];
J = [G.faces.neighbors(i,2); G.faces.neighbors(i,1); (1:nc)'];
V = [−T(i); −T(i); d]; clear d;
A = sparse(double(I), double(J), V, nc, nc);

Finally, we check if Dirichlet boundary conditions are imposed on the system,
and if not we modify the first element of the system matrix to (somewhat
arbitrarily) fix the pressure in the first cell to zero, before we solve the system
to compute the pressure:

A(1) = 2*A(1);
p = mldivide(A, rhs);

As linear solver we have used MATLAB’s default solver mldivide, which for
a sparse system boils down to calling a direct solver from UMFPACK that is
based on a unsymmetric, sparse, multifrontal LU factorization add citation.
While this solver is efficient for small to medium-sized systems, larger systems
are more efficiently solved using more problem-specific solvers. To provide
flexibility, the linear solver can be passed as a function-pointer argument to
both incompTPFA and simpleIncompTPFA.

Once the pressures have been computed, we can compute pressure values
at the face centroids using the half-face transmissibilities

fp = accumarray(G.cells.faces(:,1), p(hf2cn).*hT, [G.faces.num,1])./ ...
accumarray(G.cells.faces(:,1), hT, [G.faces.num,1]);

and likewise construct the fluxes across the interior faces

ni = G.faces.neighbors(i,:);
flux = −accumarray(find(i), T(i).*(p(ni(:,2))−p(ni(:,1))), [nf, 1]);

In the code excerpts given above, we did not account for gravity forces and
boundary conditions, which both will complicate the code beyond the scope
of the current presentation. The interested reader should consult the actual
code to work out these details.

6.3 Upwind solver for time-of-flight and tracer

In mrst-core the upwind, finite-volume discretization introduced in Sec-
tion 5.4.3 is implemented in the function

tof = computeTimeOfFlight(state, G, rock, mech1, obj1, ...)

6.3 Upwind solver for time-of-flight and tracer 141

whose main purpose is to solve the time-of-flight equation. The mech argu-
ments specify the drive mechanism (’src’, ’bc’, and/or ’wells’) specified in
terms of specific objects obj, as discussed in Sections 6.1.3 to 6.1.5. Tracer
partitions can also be computed if the user specifies extra input parameters.
In the following, we will go through the main parts of how this discretization
is implemented.

We start by identifying all volumetric sources of inflow and outflow, and
collect the results in a vector q of source terms having one value per cell

q = sparse(src.cell, 1, src.rate, G.cells.num, 1);

We also need to compute the accumulated inflow and outflow from boundary
fluxes for each cell. This will be done in three steps. First, we create an empty
vector ff with one entry per global face, find all faces that have Neumann
conditions, and insert the corresponding value in the correct row

ff = zeros(G.faces.num, 1);
isNeu = strcmp('flux', bc.type);
ff(bc.face(isNeu)) = bc.value(isNeu);

For faces having Dirichlet boundary conditions, the flux is not specified and
must be extracted from the solution computed by the pressure solver, i.e.,
from the state object that holds the reservoir state. We also need to set the
correct sign so that fluxes into a cell are positive and fluxes out of a cell are
negative. To this end, we use the fact that the normal vector of face i points
from cell G.faces.neighbors(i,1) to G.faces.neighbors(i,2). In other words,
the sign of the flux across an outer face is correct if neighbors(i,1)==0, but if
neighbors(i,2)==0 we need to reverse the sign

isDir = strcmp('pressure', bc.type);
i = bc.face(isDir);
if ˜isempty(i)

ff(i) = state.flux(i) .* (2*(G.faces.neighbors(i,1)==0) − 1);
end

The last step is to sum all the fluxes across outer faces and collect the result
in a vector qb that has one value per cell

is_outer = ˜all(double(G.faces.neighbors) > 0, 2);
qb = sparse(sum(G.faces.neighbors(is_outer,:), 2), 1, ...

ff(is_outer), G.cells.num, 1);

Here, G.faces.neighbors(is_outer,:), 2) gives the index of the cell that is at-
tached to each outer face (since the entry in one of the columns must be zero
for an outer face).

Once the contributions to inflow and outflow are collected, we build
an upwind flux matrix A defined such that Aji = max(vij , 0) and Aij =
−min(vij , 0), where vij is the flux computed by the TPFA scheme discussed
in the previous section.

142 6 Incompressible Solvers in MRST

i = ˜any(G.faces.neighbors==0, 2);
n = double(G.faces.neighbors(i,:));
nc = G.cells.num;
A = sparse(n(:,2), n (:,1), max(state.flux(i), 0), nc, nc) ...

+ sparse(n(:,1), n (:,2), −min(state.flux(i), 0), nc, nc);

Then the diagonal of the discretization matrix is obtained by summing rows
in the upwind flux matrix. This will give the correct diagonal in all cell except
for those with a positive fluid source. In these cells, we can as a reasonable
approximation set the average time-of-flight to be equal half the time it takes
to fill the cell, which means that the diagonal entry should be equal twice the
fluid rate inside the cell:

A = −A + spdiags(sum(A,2)+2*max(q+qb,0), 0, nc, nc);

Finally, we subtract the divergence of the velocity minus any source terms
from the diagonal of A to account for compressibility effects.

div = accumarray(gridCellNo(G), faceFlux2cellFlux(G, state.flux));
A = A − spdiags(div−q, 0, nc, nc);

We have now established the complete discretization matrix, and time-of-flight
can be computed by a simple matrix inversion

tof = A \ poreVolume(G,rock);

If there are no gravity forces and the flux has been computed by a monotone
scheme, one can show that the discretization matrix A can be permuted to
a lower-triangular form [45, 44]. In the general case, the permuted matrix
will be block triangular with irreducible diagonal blocks. Such systems can be
inverted very efficiently using a permuted backsubstitution algorithm as long
as the irreducible diagonal blocks are small. In our experience, MATLAB is
quite good at detecting such structures and using the simple backslash (\)
operator is therefore efficient, even for quite large models.

In addition to time-of-flight, we can compute stationary tracers as dis-
cussed in Section 5.3.4. This is done by passing an optional parameter,

tof = computeTimeOfFlight(state, G, rock, ..., 'tracer ', tr)

where tr is a cell-array of vectors that each give the indexes of the cells that
will be assigned a unique color. For incompressible flow, the discretization
matrix of the tracer equation is the same as that for time-of-flight, and all we
need to do is to assemble the right-hand side

numTrRHS = numel(tr);
TrRHS = zeros(nc,numTrRHS);
for i=1:numTrRHS,

TrRHS(tr{i},i) = 2*qp(tr{i});
end

6.4 Simulation examples 143

Since we have doubled the rate in any cells with a positive source when con-
structing the matrix A, we need to also double the rate on the right-hand
side.

Now we can solve the combined time-of-flight, tracer problem as a linear
system with multiple right-hand side,

T = A \ [poreVolume(G,rock) TrRHS];

which means that we essentially get the tracer for free as long as the number
of tracers does not exceed MATLAB’s limit for the number of right-hand
columns that can be handled in one solve.

6.4 Simulation examples

You have now been introduced to all the functionality from mrst-core that
is necessary to solve a single-phase flow problem. In following, we will discuss
several examples, in which we demonstrate step-by-step, how to set up flow
model, solve them, and visualize and analyze the resulting flow fields. Com-
plete codes can be found in the 1phase directory of the mrst-book module.

6.4.1 Quarter-five spot

As our first example, we show how to solve (5.44) with no-flow boundary con-
ditions and two source terms at diagonally opposite corners of a 2D Cartesian
grid covering a 500 × 500 m2 area. This setup mimics a quarter five-spot
well pattern, which is a standard test in reservoir simulation. The full code is
available in the script quarterFiveSpot.m.

We use a nx×ny grid with homogeneous petrophysical data, permeability
of 100 mD and porosity of 0.2:

[nx,ny] = deal(32);
G = cartGrid([nx,ny],[500,500]);
G = computeGeometry(G);
rock.perm = ones(G.cells.num, 1)*100*milli*darcy;
rock.poro = ones(G.cells.num, 1)*.2;

As we saw above, all we need to know to develop the spatial discretization is
the reservoir geometry and the petrophysical properties. This means that we
can compute the half transmissibilities without knowing any details about the
fluid properties and the boundary conditions and/or sources/sinks that will
drive the global flow:

hT = simpleComputeTrans(G, rock);

The result of this computation is a vector with one value per local face of each
cell in the grid, i.e., a vector with G.cells.faces entries.

144 6 Incompressible Solvers in MRST

The reservoir is horizontal and gravity forces are therefore not active. We
create a fluid with properties that are typical for water:

gravity reset off

fluid = initSingleFluid('mu' , 1*centi*poise, ...
'rho' , 1014*kilogram/meterˆ3);

To drive the flow, we will use a fluid source at the south-west corner and a
fluid sink at the north-east corner of the model. The time scale of the problem
is defined by the strength of the source term. In our case, we set the source
terms such that a unit time corresponds to the injection of one pore volume of
fluids. All flow solvers in MRST automatically assume no-flow conditions on
all outer (and inner) boundaries if no other conditions are specified explicitly.

pv = sum(poreVolume(G,rock));
src = addSource([], 1, pv);
src = addSource(src, G.cells.num, −pv);
display(src)

The data structure used to represent the fluid sources contains three elements:
a vector src.cell of cell numbers, a vector src.rate with the fluid rate (pos-
itive for inflow into the reservoir and negative for outflow from the reservoir),
and a vector src.sat with the fluid saturation (which has no meaning here
and is hence set to be empty)

src =

cell: [2x1 double]

rate: [2x1 double]

sat: []

To simplify communication among different flow and transport solvers, all
unknowns (reservoir states) are collected in a structure. Strictly speaking,
this structure need not be initialized for an incompressible model in which
none of the fluid properties depend on the reservoir states. However, to avoid
treatment of special cases, MRST requires that the structure is initialized and
passed as argument to the pressure solver. We therefore initialize it with a
dummy pressure value of zero and a unit fluid saturation since we only have
a single fluid

state = initResSol(G, 0.0, 1.0);
display(state)

state =

pressure: [1024x1 double]

flux: [2112x1 double]

s: [1024x1 double]

This completes the setup of the model. To solve for the pressure, we simply
pass the reservoir state, grid model, half transmissibilities, fluid model, and

6.4 Simulation examples 145

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

plotCellData (G , state.pressure);
plotGrid (G , src.cell , 'FaceColor', 'w');
axis equal tight ; colormap (jet (128));

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

hf= streamline (Sf);
hb= streamline (Sb);
set ([hf ; hb], 'Color', 'k');

Fig. 6.1. Solution of the quarter five-spot problem on a 32× 32 uniform grid. The
left plot shows the pressure distribution and in the right plot we have imposed
streamlines passing through centers of the cells on the NW–SE diagonal.

driving forces to the flow solver that assembles and solves the incompressible
flow equation.

state = simpleIncompTPFA(state, G, hT, fluid, 'src', src);
display(state)

As explained above, simpleIncompTPFA solves for pressure as the primary vari-
able and then uses transmissibilities to reconstruct the face pressure and inter-
cell fluxes. After a call to the pressure solver, the state object is therefore
expanded by a new field facePressure that contains pressures reconstructed
at the face centroids

state =

pressure: [1024x1 double]

flux: [2112x1 double]

s: [1024x1 double]

facePressure: [2112x1 double]

Figure 6.1 shows the resulting pressure distribution. To improve the visual-
ization of the flow field, we show streamlines. In MRST, Pollock’s method
[52] for semi-analytical tracing of streamlines has been implemented in the
streamlines add-on module. Here, we will use the method to trace stream-
lines forward and backward, starting from the midpoint of all cells along the
NW–SE diagonal in the grid

mrstModule add streamlines;
seed = (nx:nx−1:nx*ny).';
Sf = pollock(G, state, seed, 'substeps', 1);
Sb = pollock(G, state, seed, 'substeps', 1, ' reverse ' , true);

146 6 Incompressible Solvers in MRST

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

plotCellData (G , toff);
plotGrid (G , src.cell , 'FaceColor','w');
axis equal tight ;
colormap (jet (16)); caxis ([0,1]);

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

plotCellData (G , toff+tofb);
plotGrid (G , src.cell , 'FaceColor','w');
axis equal tight ;
colormap (jet (128));

Fig. 6.2. Solution of the quarter five-spot problem on a 32×32 uniform grid. The left
plot shows time-of-flight plotted with a few color levels to create a crude contouring
effect. The right plot shows a plot of the total travel time to distinguish high-flow
and stagnant regions.

The pollock routine produces a cell array of individual streamlines that can
be passed onto MATLAB’s built-in streamline routine for plotting, as shown
to the right in Figure 6.1.

To get a better picture of how fast the fluids will flow through our domain,
we solve the time-of-flight equation (5.37) subject to the condition that τ = 0
at the inflow, i.e., at all points where q > 0. For this purpose, we use the
computeTimeOfFlight solver discussed in Section 6.3, which can compute both
the forward time-of-flight from inflow points and into the reservoir,

toff = computeTimeOfFlight(state, G, rock, 'src', src);

and the backward time-of-flight from outflow points and backwards into the
reservoir

tofb = computeTimeOfFlight(state, G, rock, 'src', src, 'reverse ' , true);

Isocontours of time-of-flight define natural time lines in the reservoir, and to
emphasize this fact, the left plot in Figure 6.2 shows the time-of-flight plotted
using only a few colors to make a rough contouring effect. The sum of the
forward and backward time-of-flights give the total time it takes for a fluid
particle to travel through the reservoir, from an inflow point to an outflow
point. The total travel time can be used to visualize high-flow and stagnant
regions as demonstrated in the right plot of Figure 6.2.

6.4 Simulation examples 147

Computer exercises:

Rerun the quarter five-spot example with the following modifications:

� Replace the Cartesian grid by a curvilinear grid, e.g., using twister or a
random perturbation of internal nodes as shown in Figure 3.3.

� Replace the homogeneous permeability by a heterogeneous permeability
derived from the Carman–Kozeny relation (2.5)

� Set the domain to be a single layer of the SPE10 model. Hint: use
SPE10_rock() to sample the petrophysical parameters and remember to
convert to SI units.

6.4.2 Boundary conditions

To demonstrate how to specify boundary conditions, we will go through essen-
tial code lines of three different examples; the complete scripts can be found
in boundaryConditions.m. In all three examples, the reservoir is 50 meter
thick, is located at a depth of approximately 500 meters, and is restricted to a
1× 1 km2 area. The permeability is uniform and anisotropic, with a diagonal
(1000, 300, 10) mD tensor, and the porosity is uniform and equal 0.2 In the
first two examples, the reservoir is represented as a 20 × 20 × 5 rectangular
grid, and in the third example the reservoir is given as a corner-point grid of
the same Cartesian dimension, but with an uneven uplift and four intersecting
faults (as shown in the left plot of Figure 3.31):

[nx,ny,nz] = deal(20, 20, 5);
[Lx,Ly,Lz] = deal(1000, 1000, 50);
switch setup

case 1,
G = cartGrid([nx ny nz], [Lx Ly Lz]);

case 2,
G = cartGrid([nx ny nz], [Lx Ly Lz]);

case 3,
G = processGRDECL(makeModel3([nx ny nz], [Lx Ly Lz/5]));
G.nodes.coords(:,3) = 5*(G.nodes.coords(:,3) ...

− min(G.nodes.coords(:,3)));
end
G.nodes.coords(:,3) = G.nodes.coords(:,3) + 500;

Setting rock and fluid parameters, computing transmissibilities, and initializ-
ing the reservoir state can be done as explained in the previous section, and
details are not included for brevity.

Linear pressure drop

In the first example (setup=1), we specify a Neumann condition with total
inflow of 5000 m3/day on the east boundary and a Dirichlet condition with
fixed pressure of 50 bar on the west boundary:

148 6 Incompressible Solvers in MRST

0

200

400

600

800

1000

0

200

400

600

800

1000

500

510

520

530

540

550

0

200

400

600

800

1000

0

200

400

600

800

1000

500

510

520

530

540

550

x
y

D
e

p
th

[bar]

51

52

53

54

55

56

57

58

59

60

61

Fig. 6.3. First example of a flow driven by boundary conditions. In the left plot,
faces with Neumann conditions are marked in blue and faces with Dirichlet condi-
tions are marked in red. The right plot shows the resulting pressure distribution.

bc = fluxside(bc, G, 'EAST', 5e3*meterˆ3/day);
bc = pside (bc, G, 'WEST', 50*barsa);

This completes the definition of the model, and we can pass the resulting
objects to the simpleIncompTFPA solver to compute the pressure distribution
shown to the right in Figure 6.3. In the absence of gravity, these boundary
conditions will result in a linear pressure drop from east to west inside the
reservoir.

Hydrostatic boundary conditions

In the next example, we will use the same model, except that we now include
the effects of gravity and assume hydrostatic equilibrium at the outer vertical
boundaries of the model. First, we initialize the reservoir state according to
hydrostatic equilibrium, which is straightforward to compute if we for sim-
plicity assume that the overburden pressure is caused by a column of fluids
with the exact same density as in the reservoir:

state = initResSol(G, G.cells.centroids(:,3)*rho*norm(gravity), 1.0);

There are at least two different ways to specify hydrostatic boundary condi-
tions. The simplest approach is to use the function psideh, i.e.,

bc = psideh([], G, 'EAST', fluid);
bc = psideh(bc, G, 'WEST', fluid);
bc = psideh(bc, G, 'SOUTH', fluid);
bc = psideh(bc, G, 'NORTH', fluid);

Alternatively, we can do it manually ourselves. To this end, we need to extract
the reservoir perimeter defined as all exterior faces are vertical, i.e., whose
normal vector have no z-component,

6.4 Simulation examples 149

0

200

400

600

800

1000

0

200

400

600

800

1000

500

510

520

530

540

550

[bar]

50.5

51

51.5

52

52.5

53

53.5

54

0

200

400

600

800

1000

0

200

400

600

800

1000

500

510

520

530

540

550

x
y

D
e

p
th

[bar]
40

42

44

46

48

50

52

54

Fig. 6.4. A reservoir with hydrostatic boundary condition and fluid extracted from
a sink penetrating two cells in the upper two layers of the model. The left plot shows
the boundary and the fluid sink, while the right plot shows the resulting pressure
distribution.

f = boundaryFaces(G);
f = f(abs(G.faces.normals(f,3))<eps);

To get the hydrostatic pressure at each face, we can either compute it directly
by using the face centroids,

fp = G.faces.centroids(f,3)*rho*norm(gravity);

or we use the initial equilibrium that has already been established in the
reservoir by can sample from the cells adjacent to the boundary

cif = sum(G.faces.neighbors(f,:),2);
fp = state.pressure(cif);

The latter may be useful if the initial pressure distribution has been computed
by a more elaborate procedure than what is currently implemented in psideh.
In either case, the boundary conditions can now be set by the call

bc = addBC(bc, f, 'pressure ' , fp);

To make the problem a bit more interesting, we also include a fluid sink at
the midpoint of the upper two layers in the model,

ci = round(.5*(nx*ny−nx));
ci = [ci; ci+nx*ny];
src = addSource(src, ci, repmat(−1e3*meterˆ3/day,numel(ci),1));

The boundary conditions and source terms are shown to the left in Figure 6.4
and the resulting pressure distribution to the right. The fluid sink will cause
a pressure draw-down, which will have an ellipsoidal shape because of the
anisotropy in the permeability field.

150 6 Incompressible Solvers in MRST

0

200

400

600

800

1000 0

200

400

600

800

1000

500

520

540

560

580

600

620

640

0

200

400

600

800

1000 0

200

400

600

800

1000

500

520

540

560

580

600

620

640

0

200

400

600

800

1000 0

200

400

600

800

1000

500

520

540

560

580

600

620

640
0

200
400

600
800

1000
200

400

600

800

500

520

540

560

580

600

620

y

x

D
e
p
th

[bar]
50

55

60

65

70

75

Fig. 6.5. Specifying boundary conditions along the outer perimeter of a corner-
point model. The upper-left plot shows the use of fluxside (blue color) and pside

(red color) to set boundary conditions on the east and west global boundaries. In
the upper-right point, the same functions have been used along with a specification
of subranges in the global sides. In the lower-left plot, we have utilized user-supplied
information to correctly set the conditions only along the perimeter. The lower-right
plot shows the resulting pressure solution.

Conditions on non-rectangular domain

In the last example, we consider a case where the outer boundary of the
reservoir is not a simple hexahedron. In such cases, it may not be as simple
as above to determine the exterior faces that lie on the perimeter of the
reservoir. In particular, faults having a displacement may give exterior faces
at the top an bottom of the model that are not part of what one would call
the reservoir perimeter when setting boundary conditions other than no-flow.
Likewise, other geological processes like erosion may cause gaps in the model
that lead to exterior faces that are not part of the natural perimeter. This
is illustrated in the left plot of Figure 6.5, where we have tried to specify
boundary conditions using the same procedure as in the linear pressure-drop
example (Figure 6.3).

If the reservoir neither had faults with displacement nor holes inside its
perimeter, we could use the subrange feature of fluxside and pside to restrict
the boundary conditions to a subset of the global side, i.e., for our particular
choice of grid parameters, set

6.4 Simulation examples 151

bc = fluxside([], G, 'EAST', 5e3*meterˆ3/day, 4:15, 1:5);
bc = pside (bc, G, 'WEST', 50*barsa, 7:17, []);

Unfortunately, this will not work properly in the current case, as shown in
the middle plot of Figure 6.5. The problem is that fluxside and pside define
their ’east’ sides to consist of all faces that only belong to one cell and are
categorized to be on the east side of this cell.

To find the faces that are on the perimeter, we need to use expert knowl-
edge. In our case, this amounts to utilizing the fact that the perimeter is
defined as those faces that lie on the bounding box of the model. For the
Neumann condition we therefore get

x = G.faces.centroids(f,1);
[xm,xM] = deal(min(x), max(x));
ff = f(x>xM−1e−5);
bc = addBC(bc, ff, 'flux ' , (5e3*meterˆ3/day) ...

* G.faces.areas(ff)/ sum(G.faces.areas(ff)));

Notice how the total flux has been distributed to individual faces according
to the face area. The Dirichlet condition can be specified in a similar manner.

Computer exercises:

1. Consider a 2D box with a sink at the midpoint and inflow across the perime-
ter specified either in terms of a constant pressure or a constant flux. Are
there differences in the two solutions, and if so, can you explain why? Hint:
use time-of-flight, total travel time, and/or streamlines to investigate the
flow pattern.

2. Apply the production setup from Figure 6.4, with hydrostatic boundary
conditions and fluids extracted from two cells at the midpoint of the model,
to the model depicted in Figure 6.5.

6.4.3 Structured versus unstructured stencils

We have so far only discussed grids that have an underlying structured cell
numbering. The two-point schemes can also be applied to fully unstructured
and polyhedral grids. To demonstrate this, we use the triangular grid gener-
ated from the seamount data set that is supplied with MATLAB, see Fig-
ure 3.8, scaled to cover a 1 × 1 km2 area. Based on this grid, we define a
non-rectangular reservoir. The reservoir is assumed to be homogeneous with
an isotropic permeability of 100 mD and the resident fluid has the same prop-
erties as in the previous examples. A constant pressure of 50 bar is set at
the outer perimeter and fluid is drained from a well located at (450, 500) at
a constant rate of one pore volume over fifty years. (All details are found in
the script stencilComparison.m).

152 6 Incompressible Solvers in MRST

We start by generating the triangular grid, which will subsequently be
used to define the extent of the reservoir:

load seamount

T = triangleGrid([x(:) y(:)], delaunay(x,y));
[Tmin,Tmax] = deal(min(T.nodes.coords), max(T.nodes.coords));
T.nodes.coords = bsxfun(@times, ...

bsxfun(@minus, T.nodes.coords, Tmin), 1000./(Tmax − Tmin));
T = computeGeometry(T);

Next, we generate two Cartesian grids that cover the same domain, one with
approximately the same number of cells as the triangular grid and a 10× 10
refinement of this grid that will give us a reference solution,

G = computeGeometry(cartGrid([25 25], [1000 1000]));
inside = isPointInsideGrid(T, G.cells.centroids);
G = removeCells(G, ˜inside);

The function isPointInsideGrid implements a simple algorithm for finding
whether one or more points lie inside the circumference of a grid. First, all
boundary faces are extracted and then the corresponding nodes are sorted so
that they form a closed polygon. Then, MATLAB’s built-in function inpolygon

can be used to check whether the points are inside this polygon or no.
To construct a radial grid centered around the point at which we will

extract fluids, we start by using the same code as on page 68 to generate a
set of points inside [−1, 1]× [−1, 1] that are graded radially towards the origin
(see e.g., Figure 3.22),

P = [];
for r = exp([−3.5:.2:0, 0, .1]),

[x,y] = cylinder(r,25); P = [P [x (1,:); y (1,:)]];
end
P = unique([P'; 0 0], 'rows');

The points are scaled and translated so that their origin is moved to the point
(450,500), from which fluid will be extracted:

[Pmin,Pmax] = deal(min(P), max(P));
P = bsxfun(@minus, bsxfun(@times, ...

bsxfun(@minus, P, Pmin), 1200./(Pmax−Pmin)), [150 100]);

Then, we remove all points outside of the triangular grid, before the point set
is passed to two grid-factory routines to first generate a triangular and then
a Voronoi grid:

inside = isPointInsideGrid(T, P);
V = computeGeometry(pebi(triangleGrid(P(inside,:))));

Once the grids have been constructed, the setup of the remaining part of
the model will be the same in all cases. To avoid unnecessary replication of

6.4 Simulation examples 153

code, we collect the grids in a cell array and use a simple for-loop to set up
and simulate each model realization:

g = {G, T, V, Gr};
for i=1:4

rock.poro = repmat(0.2, g{i}.cells.num, 1);
rock.perm = repmat(100*milli*darcy, g{i}.cells.num, 1);
hT = simpleComputeTrans(g{i}, rock);
pv = sum(poreVolume(g{i}, rock));

tmp = (g{i}.cells.centroids − repmat([450, 500],g{i}.cells.num,[])).ˆ2;
[˜,ind] = min(sum(tmp,2));
src{i} = addSource(src{i}, ind, −.02*pv/year);

f = boundaryFaces(g{i});
bc{i} = addBC([], f, 'pressure ' , 50*barsa);

state{i} = incompTPFA(initResSol(g{i},0,1), ...
g{i}, hT, fluid, ' src ' , src{i}, 'bc' , bc{i}, 'MatrixOutput', true);

[tof{i},A{i}] = computeTimeOfFlight(state{i}, g{i}, rock,...
' src ' , src{i},'bc' ,bc{i}, ' reverse ' , true);

end

The pressure solutions computed on the four different grids are shown in
Figure 6.6 compares, while Figure 6.7 compares the sparsity patterns of the
corresponding linear systems for the three coarse grids.

As expected, the Cartesian grid gives a banded matrix consisting of five
diagonals that correspond to the each cell and its four neighbors in the cardinal
directions. Even though this discretization is not able to predict the complete
draw-down at the center (the reference solution predicts a pressure slightly
below 40 bar), it captures the shape of the draw-down region quite accurately;
the region appears ellipsoidal because of the non-unit aspect ratio in the plot.
In particular, we see that the points in the radial plot follow those of the
fine-scale reference closely. The spread in the points as r → 300 is not a grid-
orientation effect, but the result of variations in the radial distance to the
fixed pressure at the outer boundary on all four grids.

The unstructured triangular grid is more refined near the well and is hence
able to predict the pressure draw-down in the near-well region more accurately.
However, the overall structure of this grid is quite irregular, as can be seen
from the sparsity pattern of the linear system shown in Figure 6.7, and the
irregularity gives significant grid-orientation effects. This can be seen from the
irregular shape of the color contours in the upper part of Figure 6.6 as well as
from the spread in the scatter plot. In summary, this grid is not well suited
for resolving the radial symmetry of the pressure draw-down in the near-well
region. But to be fair, the grid was not generated for this purpose either.

154 6 Incompressible Solvers in MRST

0 50 100 150 200 250 300
40

41

42

43

44

45

46

47

48

49

50

Reference

Cartesian

Triangular

Radial

Fig. 6.6. Comparison of the pressure solution for three different grid types: uniform
Cartesian, triangular, and a graded radial grid. The scattered points used to generate
the triangular domain and limit the reservoir are sampled from the seamount data
set and scaled to cover a 1× 1 km2 area. Fluids are drained from the center of the
domain, assuming a constant pressure of 50 bar at the perimeter.

0 100 200 300 400

0

100

200

300

400

nz = 2330

Cartesian

0 200 400

0

100

200

300

400

500

nz = 2244

Triangular

0 100 200 300 400

0

100

200

300

400

nz = 3045

Radial

Fig. 6.7. Sparsity patterns for the TPFA stencils on the three different grid types
shown in Figure 6.6.

6.4 Simulation examples 155

Except for close to the well and close to the exterior boundary, the topology
of the radial grid is structured in the sense that each cell has four neighbors,
two in the radial direction and two in the angular direction, and the cells are
regular trapezoids. This should, in principle, give a banded sparsity pattern
provided that the cells are ordered starting at the natural center point and
moving outward, one ring at the time. To verify this claim, you can execute
the following code:

[˜,q]=sort(state{3}.pressure);
spy(state{3}.A(q,q));

However, as a result of how the grid was generated, by first triangulating and
then forming the dual, the cells are numbered from west to east, which explains
why the sparsity pattern is so far from being a simple banded structure. While
this may potentially affect the efficiency of a linear solver, it has no impact
on the accuracy of the numerical approximation, which is good because of
the grading towards the well and the symmetry inherent in the grid. Slight
differences in the radial profile compared with the Cartesian grid(s) can mainly
be attributed to the fact that the source term and the fixed pressure conditions
are not located at the exact same positions in the simulations.

In Figure 6.8, we also show the sparsity pattern of the linear system used
to compute the reverse time-of-flight from the well and back into the reservoir.
Using the default cell ordering, the sparsity pattern of each upwind matrix
will appear as a less dense version of the pattern for the corresponding TPFA
matrix. However, whereas the TPFA matrices represent an elliptic equation
in which information propagates in both directions across cell interfaces, the
upwind matrices are based on one-way connections arising from fluxes between
pairs of cells that are connected in the TPFA discretization. To reveal the
true nature of the system, we can permute the system by either sorting the
cell pressures in ascending order (potential ordering) or using the function
dmperm to compute a Dulmage–Mendelsohn decomposition. As pointed out in
Section 6.3, the result is a lower triangular matrix, from which it is simple to
see that the unidirectional propagation of information one would expect for a
hyperbolic equations having only positive characteristics.

Computer exercises:

1. Compare the sparsity patterns resulting from the potential ordering and
use of dmperm for both the upwind and the TPFA matrices.

2. Investigate the flow patterns in more details using forward time-of-flight,
travel time, and/or streamlines.

3. Replace the boundary conditions by a constant influx, or set pressure values
sampled from a radially symmetric pressure solution in an infinite domain.

156 6 Incompressible Solvers in MRST

0 100 200 300 400

0

100

200

300

400

nz = 1408

Cartesian

0 100 200 300 400

0

100

200

300

400

nz = 1408

0 200 400

0

100

200

300

400

500

nz = 1405

Triangular

0 200 400

0

100

200

300

400

500

nz = 1405

0 100 200 300 400

0

100

200

300

400

nz = 1745

Radial

0 100 200 300 400

0

100

200

300

400

nz = 1745

Fig. 6.8. Sparsity patterns for the upwind stencils used to compute time-of-flight on
the three different grid types shown in Figure 6.6. In the lower row, the matrices have
been permuted to lower-triangular form by sorting the cell pressures in ascending
order.

6.4.4 Using Peaceman well models

Whereas it may be sufficient to consider flow driven by sources, sinks, and
boundary conditions in many subsurface applications, the key aspect in reser-
voir simulation is in most cases to predict the amount of fluids that are pro-
duced and/or injected from one or more wells. As we saw in Section 5.3.2,
flow in and out of a wellbore takes place on a scale that is much smaller than
those of a single grid cell in typical sector and field models and is therefore
commonly modeled using a semi-analytical model of the form (5.32). In this
section, we will go through two examples to demonstrate how such models can
be included in the simulation setup using data objects and utility functions in-
troduced in Section 6.1.5. The first example is a highly idealized box model. In
the second example we consider a realistic model of a shallow-marine reservoir
taken from the SAIGUP study, see Section 2.4.5.

Box reservoir

We consider a reservoir consisting of a homogeneous 500×500×25 m3 sand box
with a isotropic permeability of 100 mD, represented on a regular 20× 20× 5
Cartesian grid. The fluid is the same as in the examples above. All code lines
necessary to set up the model, solve the flow equations, and visualize the
results are found in the script firstWellExample.m.

6.4 Simulation examples 157

Setting up the model is quickly done, once you have gotten familiar with
MRST:

[nx,ny,nz] = deal(20,20,5);
G = computeGeometry(cartGrid([nx,ny,nz], [500 500 25]));
rock.perm = repmat(100 .* milli*darcy, [G.cells.num, 1]);
fluid = initSingleFluid('mu', 1*centi*poise,'rho', 1014*kilogram/meterˆ3);
hT = computeTrans(G, rock);

The reservoir will be produced by a well pattern consisting of a vertical injector
and a horizontal producer. The injector is located in the south-west corner of
the model and operates at a constant rate of 3000 m3 per day. The producer
is completed in all cells along the upper east rim and operates at a constant
bottom-hole pressure of 1 bar (i.e., 105 Pascal in SI units):

W = verticalWell([], G, rock, 1, 1, 1:nz, 'Type', ' rate ' , 'Comp i', 1, ...
'Val' , 3e3/day(), 'Radius', .12*meter, 'name', 'I ');

W = addWell(W, G, rock, nx : ny : nx*ny, 'Type', 'bhp', 'Comp i', 1, ...
'Val' , 1.0e5, 'Radius', .12*meter, 'Dir' , 'y' , 'name', 'P');

In addition to specifying the type of control on the well (’bhp’ or ’rate’), we
also need to specify the radius and the fluid composition, which is ’1’ here
since we have a single fluid. After initialization, the array W contains two data
objects, one for each well:

Well #1: | Well #2:
cells: [5x1 double] | cells: [20x1 double]
type: ’rate’ | type: ’bhp’
val: 0.0347 | val: 100000

r: 0.1000 | r: 0.1000
dir: [5x1 char] | dir: [20x1 char]
WI: [5x1 double] | WI: [20x1 double]
dZ: [5x1 double] | dZ: [20x1 double]

name: ’I’ | name: ’P’
compi: 1 | compi: 1

refDepth: 0 | refDepth: 0
sign: 1 | sign: []

This concludes the specification of the model. We can now assemble and solve
the system

gravity reset on;
resSol = initState(G, W, 0);
state = incompTPFA(state, G, hT, fluid, 'wells' , W);

The result is shown in Figure 6.9. As expected, the inflow rate decays with
the distance to the injector. The flux intensity depicted in the lower-right plot
is computed using the following command, which first maps the vector of face
fluxes to a vector with one flux per half face and then sums the absolute value
of these fluxes to get a flux intensity per cell:

cf = accumarray(getCellNoFaces(G), ...
abs(faceFlux2cellFlux(G, state.flux)));

158 6 Incompressible Solvers in MRST

P

I

0 5 10 15 20
120

130

140

150

160

170

180
Producer inflow profile [m

3
/d]

Pressure [bar] Flux intensity [m
3
/day]

Fig. 6.9. Solution of a single-phase, incompressible flow problem inside a box reser-
voir with a vertical injector and a horizontal producer.

Shallow-marine reservoir

In the final example, we will return to the SAIGUP model discussed in Sec-
tion 3.4. This model does not represent a real reservoir, but is one out of a large
number of models that were built to be plausible realizations that contain the
types of structural and stratigraphic features one could encounter in models
of real clastic reservoirs. Continuing from Section 3.4, we simply assume that
the grid and the petrophysical model has been loaded and processed. All de-
tails are given in the script saigupWithWells.m. (The script also explains how
to speed up the grid processing by using two C-accelerated routines for con-
structing a grid from Eclipse input and computing areas, centroids, normals,
volumes, etc).

The permeability input is an anisotropic tensor with zero vertical perme-
ability in a number of cells. As a result, some parts of the reservoir may be
completely sealed off from the wells. This will cause problems for the time-of-
flight solver, which requires that all cells in the model must be flooded after
some finite time that can be arbitrarily large. To avoid this potential problem,
we assign a small constant times the minimum positive vertical permeability
to the grid blocks that have zero cross-layer permeability.

is_pos = rock.perm(:, 3) > 0;
rock.perm(˜is_pos, 3) = 1e−6*min(rock.perm(is_pos, 3));

6.4 Simulation examples 159

Fig. 6.10. Incompressible, single-phase simulation of the SAIGUP model. The upper
plot shows pressure distribution, and the lower plot shows cells with total travel time
less than fifty years.

Similar safeguards are implemented in most commercial simulators.
The reservoir is produced from six producers spread throughout the middle

of the reservoir; each producer operates at a fixed bottom-hole pressure of
200 bar. Pressure support is provided by eight injectors located around the
perimeter, each operating at a prescribed and fixed rate. As in the previous
example, the wells are described using a Peaceman model. For simplicity,
all wells chosen to be vertical and are assigned using the logical ij sub-index
available in the corner-point format. The following code specifies the injectors:

nz = G.cartDims(3);
I = [3, 20, 3, 25, 3, 30, 5, 29];
J = [4, 3, 35, 35, 70, 70,113,113];
R = [1, 3, 3, 3, 2, 4, 2, 3]*500*meterˆ3/day;
W = [];
for i = 1 : numel(I),
W = verticalWell(W, G, rock, I(i), J(i), 1:nz, 'Type', ' rate ' , ...

'Val' , R(i), 'Radius', .1*meter, 'Comp i', 1, ...
'name', [' I$ {' , int2str(i), '}$']);

end

The producers are specified in the same way. Figure 6.10 shows the well posi-
tions and the pressure distribution. We see a clear pressure buildup along the

160 6 Incompressible Solvers in MRST

east, south, and west rim of the model. Similarly, there is a pressure draw-
down in the middle of the model around producers P2, P3, and P4. The total
injection rate is set so that one pore volume will be injected in a little less
than forty years.

Although this is a single-phase simulation, let us for a while think of our
setup in terms of injection and production of different fluids (since the fluids
have identical properties, we can think of a ’blue’ fluid being injected into a
’black’ fluid). In an ideal situation, one would wish that the ’blue’ fluid would
sweep the whole reservoir before it breaks through to the production wells, as
this would maximize the displacement of the ’black’ fluid. Even in the simple
quarter five-spot examples in Section 6.4.1 (see Figure 6.2), we saw that this
was not the case, and one cannot expect that this will happen here, either. The
lower plot in Figure 6.10 shows all cells in which the total travel time (sum
of forward and backward time-of-flight) is less than fifty years. By looking
at such a plot, on can get a quite a good idea of regions in which there is
very limited communication between the injectors and producers (i.e., areas
without colors). If this was a multiphase flow problem, these areas would
typically contain bypassed oil and be candidates for infill drilling or other
mechanisms that would improve the volumetric sweep.

Computer exercises:

1. Change the parameter 'Dir' from 'y' to 'z ' in the box example and rerun
the case. Can you explain why you get a different result?

2. Switch the injector in the box example to be controlled by a bottom-hole
pressure of 200 bar. Where would you place the injector to maximize pro-
duction rate if you can only complete it in five cells?

3. Consider the SAIGUP model: can you improve the well placement and/or
the distribution of fluid rates. Hint: is it possible to utilize time-of-flight
information?

7

Single-Phase Solvers Based on Automatic
Differentiation

In the previous chapter, we outlined and explained details of the functionality
MRST offers for simulation of incompressible, single-phase problems. Later in
the book we will come back to how these methods and tools can be extended
to time-dependent multiphase problems based on various operator-splitting
formulations in which flow and transport are computed in different substeps.
Operator splitting is one of the main approaches used for simulating flow
in porous media. The other approach, which is the predominantly used in
industry, is based on so-called fully-implicit discretizations in which flow and
transport are solved as a coupled system. This approach is very robust and
particularly useful for compressible problems with small time constants or
strong coupling between different types of flow mechanisms.

In this chapter, we will discuss fully-implicit discretizations of compress-
ible, single-phase problems. In doing so, we will also introduce you to auto-
matic differentiation (AD), which will enable you to numerically evaluate
the derivative of a function specified by a computer program directly without
first having to derive a set of underlying analytical expressions. The com-
bination of this concept with the highly vectorized and interactive scripting
language of Matlab and MRST’s flexible grid structure is in our opinion the
main reason why MRST has proved to be a particularly efficient tool for rapid
prototyping of new models and computational methods. To substantiate this
claim, we will in the following demonstrate how the discrete differential opera-
tors introduced in Section 5.4.2, and similar discrete averaging operators, can
be used as powerful abstractions that will enable you to keep the physics at the
forefront in your code and rapidly explore alternative methods for discretizing
and linearizing nonlinear flow equations.

7.1 Implicit discretization

As our basic model, we will in the following mainly be concerned with the
single-phase continuity equation

162 7 Single-Phase Solvers Based on Automatic Differentiation

∂

∂t
(φρ) +∇ · (ρ~v) = q, ~v = −K

µ
(∇p− gρ∇z) . (7.1)

The primary unknown is usually the fluid pressure p and additional equations
are supplied to provide relations between p and the other quantities in the
equation, e.g., by specifying φ = φ(p), an equation-of-state ρ = ρ(p) for the
fluid, and so on; see the discussion in Section 5.2.

Using the discrete operators introduced in Section 5.4.2, the basic implicit
discretization of (7.1) reads

(φρ)n+1 − (φρ)n

∆tn
+ div(ρv)n+1 = qn+1, (7.2a)

vn+1 = − K

µn+1

[
grad(pn+1)− gρn+1grad(z)

]
. (7.2b)

Here, φ ∈ Rnc denotes the vector porosity values per cell, v the vector of
fluxes per face, and so on, and the superscript refers to discrete times at
which one wishes to compute the unknown reservoir states and ∆t denotes
the time between two consecutive points in time.

In many cases of practical interest it is possible to simplify (7.2). For
instance, if the fluid is only slightly compressible, several terms can be ne-
glected so that the nonlinear equation reduces to an equation that is linear in
the unknown pn+1,

pn+1 − pn

∆tn
− 1

ctφµ
div
(
K grad(pn+1)

)
= qn. (7.3)

However, this is not always possible and for generality, we will in the following
assume that φ and ρ depend nonlinearly on p so that (7.2) gives rise to a
(highly) nonlinear system of equations that needs to be solved in each time
step. For non-Newtonian fluids, the viscosity will also depend on the velocity,
which will add further nonlinearity to the system and generally make it harder
to solve. A simple example is a power law of the form µ(|~v|) = µ0|~v|α−1, where
α is a parameter that is determined experimentally.

In the following, we will mainly work with discretized equations written
in residual form. As an example, the residual form of (7.3) reads

pn+1 − ∆tn

ctφµ
div
(
K grad(pn+1)

)
− pn −∆tnqn = 0.

After spatial discretization, we can write the resulting system of nonlinear
equations in the short vector-form as

F (xn+1;xn) = 0, (7.4)

where xn+1 is the vector of unknown state variables at the next time step and
the vector of current states xn can be seen as a parameter.

7.2 Automatic differentiation 163

7.2 Automatic differentiation

Nonlinear systems of discrete equations arising from the discretization of (par-
tial) differential equations are typically solved by Newton’s method. In most
cases, this means that the main computational cost of solving a nonlinear
PDE lies in solving the linear systems involved in each Newton iteration. For
a discretized equation on vector form, F (x) = 0, the (i + 1)-th iteration
approximation xi+1 is obtained from

∂F (xi)

∂xi
δxi+1 = −F (xi), xi+1 ← xi + δxi+1. (7.5)

Here, J(xi) = ∂F (xi)/∂xi is the Jacobian matrix, while we refer to δxi+1 as
the Newton update at iteration step number i + 1. The Newton process will
under certain smoothness and differentiability requirements exhibit quadratic
convergence. This is, however, crucially dependent on a sufficiently accurate
Jacobian matrix. Typically, obtaining the Jacobian matrix can be broken down
to differentiation of elementary operations and functions. Nevertheless, if F
represents a set of complex equations, analytical derivation and subsequent
coding of the Jacobian can be very time-consuming and prone to errors and
debugging. On the other hand, computing Jacobians is a good candidate for
automation since it follows a set of fixed rules and should therefore in principle
be straightforward in principle.

Automatic differentiation is a technique that exploits the fact that any
computer code, regardless of complexity, can be broken down to a limited set
of arithmetic operations (+, −, ∗, /, etc), and, in our case, more or less elemen-
tary MATLAB functions (exp, sin, power, interp, etc). In automatic differen-
tiation (AD) the key idea is to keep track of quantities and their derivatives
simultaneously; every time an operation is applied to a quantity, the corre-
sponding differential operation is applied to its derivative. Consider a scalar
primary variable x and a function f = f(x). Their AD-representations would
then be the pairs 〈x, 1〉 and 〈f, fx〉, where fx is the derivative of f w.r.t. x (and
1 is the derivative of x w.r.t. x). Accordingly, the action of the elementary
operations and functions must be defined for such pairs, e.g.,

〈f, fx〉+ 〈g, gx〉 = 〈f + g, fx + gx〉 ,
〈f, fx〉 ∗ 〈g, gx〉 = 〈fg, fgx + fxg〉 ,

〈f, fx〉 / 〈g, gx〉 =

〈
f

g
,
fxg − fgx

g2

〉
exp(〈f, fx〉) = 〈exp(f), exp(f)fx〉 ,
sin(〈f, fx〉) = 〈sin(f), cos(f)fx〉 .

In addition to this, one needs to use the chain rule to accumulate derivatives;
that is, if f(x) = g(h(x)), then fx(x) = dg

dhhx(x). This more or less summarizes
the key idea behind automatic differentiation, the remaining (and difficult

164 7 Single-Phase Solvers Based on Automatic Differentiation

part) is how to implement the idea as efficient computer code that has a low
user-threshold and minimal computational overhead.

As the above example illustrates, it is straightforward to write down all
elementary rules needed to differentiate a program or piece of code. To be
useful, however, it is important that these rules are not implemented as
standard functions, in which case you would need to write something like
myPlus(a, myTimes(b,c)) when you want to evaluate a+ bc. An elegant solution
to this is the use of classes and operator overloading. When MATLAB en-
counters an expression a+b, the meaning of ”+” is dependent on the nature
of a and b. In other words, there may be multiple functions plus defined, and
the one to choose is determined from which classes a and b belongs to. A
nice introduction to how this is can be implemented in MATLAB is given by
Neidinger [46].

7.3 Automatic differentiation in MRST

There are many automatic differentiation libraries for MATLAB, e.g., ADi-
Mat [57, 12], ADMAT [17, 59], MAD [58, 56, 31], or from MATLAB Central
[30, 43]. The AD class in MRST uses operator overloading as suggested in
[46] and uses a relatively simple forward accumulation, but differs from other
libraries in a subtle, but important way. Instead of working with a single
Jacobian of the full discrete system as one matrix, MRST uses a list of ma-
trices that represent the derivatives with respect to different variables, which
will constitute sub-blocks in the Jacobian of the full system. The reason for
this choice is two-fold: computational performance and user utility. In typical
simulation, and particularly for complex model, the mathematical model will
consist of several equations (continuum equations, Darcy’s law, equations of
state, other constitutive relationships, control equations for wells, etc) that
have different characteristics and play different roles in the overall equation
system. Although we are using fully implicit discretizations in which one seeks
to solve for all state variables simultaneously, we may still want to manipulate
parts of the full equation system that e.g., represents specific sub-equations.
This is not practical if the Jacobian of the system is represented as a single
matrix; manipulating subsets of large sparse matrices is of currently not very
efficient in MATLAB, and keeping track of the necessary index sets may also
be quite cumbersome from a user’s point-of-view. Accordingly, our current
choice is to let the MRST AD-class represent the derivatives of different pri-
mary variable (e.g., pressure, saturations, bottom-hole-pressures, . . .) as a list
of matrices.

In the rest of the section, we will instead go through two simple examples
that demonstrate how the AD class works, before we move on to demon-
strate how automatic differentiation can be used to set up simulations in a
(surprisingly) few number of code lines.

7.3 Automatic differentiation in MRST 165

Example 7.1. As a first example, let us say we want to compute the expression
z = 3e−xy and its partial derivatives ∂z/∂x and ∂z/∂y for the values x = 1
and y = 2. This is done with the following two lines:

[x,y] = initVariablesADI(1,2);
z = 3*exp(−x*y)

The first line tells MRST that x and y are independent variables and initialize
their values. The second line is what you normally would write in MATLAB
to evaluate the given expression. After the second line has been executed, you
have three AD variables (pairs of values and derivatives):

x = ADI Properties:
val: 1
jac: {[1] [0]}

y = ADI Properties:
val: 2
jac: {[0] [1]}

z = ADI Properties:
val: 0.4060
jac: {[-0.8120] [-0.4060]}

∂x

∂x

∂x

∂y

∂y

∂x

∂y

∂y

∂z

∂x

∣∣∣
x=1,y=2

∂z

∂y

∣∣∣
x=1,y=2

If we now go on computing with these variables, each new computation will
lead to a result that contains the value of the computation as well as the
derivatives with respect to x and y.

Let us look a bit in detail on what is happening behind the curtain. We
start by observing that the operation 3*exp(−x*y) in reality consists of a se-
quence of elementary operations: −, ∗, exp, and ∗, executed in that order. In
MATLAB, this corresponds to the following sequence of call to elementary
functions

u = uminus(x);
v = mtimes(u,y);
w = exp(u);
z = mtimes(3,w);

To see this, you can enter the command into a file, set a breakpoint in front of
the assignment to z, and use the ’Step in’ button to step through all details.
The AD class overloads these three functions by new functions that have the
same names, but operate on an AD pair for uminus and exp, and on two AD
pairs or a combination of a double and an AD pair for mtimes. Figure 7.1
gives an overview of the sequence of calls that is invoked within the AD
implementation to evaluate 3*exp(−x*y) when x and y are AD variables. The
observant reader may have noticed that some computational saving could be
obtained here if we had been careful to replace the call to matrix multiply
(*=mtimes) by a call to vector multiply (.*=times), which are mathematically
equivalent for scalar quantities.

As you can see from the above example, use of automatic differentiation
will give rise to a whole new set of function calls that are not executed if one

166 7 Single-Phase Solvers Based on Automatic Differentiation

u = uminus(x);

v = mtimes(u,y);

w = exp(u);

z = mtimes(3,w);

Calling sequence

function h = uminus(u)

h = ADI(-u.val, uminusJac(u.jac));

function J = uminusJac(J1)

J = cellfun(@uminus, J1, ’UniformOutput’, false);

function h = mtimes(u,v)% ’*’

if ~isa(u,’ADI’)

h = ADI(u*v.val, mtimesJac(u, v.jac));

elseif ~isa(v,’ADI’)

h = mtimes(v,u);

else

if numel(u.val) == 1

h = times(repmat(u, [numel(v.val), 1]), v);

elseif numel(v.val) == 1

h = times(u, repmat(v, [numel(u.val), 1]));

else

error(’Operation not supported’);

end

end

function h = repmat(u, varargin)

h = ADI(repmat(u.val, varargin{:}), ...

repmatJac(u.jac, varargin{:}));

function J = repmatJac(J1, varargin)

J = cell(1, numel(J1));

for k = 1:numel(J)

J{k} = repmat(J1{k}, varargin{:});

end

function h = times(u,v)% ’.*’

if ~isa(u,’ADI’) %u is a scalar/vector

if numel(u)==numel(v.val)

h = ADI(u.*v.val, lMultDiag(u, v.jac));

else

h = mtimes(u,v);

end

elseif ~isa(v,’ADI’) %v is a scalar/vector

h = times(v,u);

else

if numel(u.val)==numel(v.val)

h = ADI(u.val.*v.val, ...

timesJac(u.val, v.val, u.jac, v.jac));

elseif numel(v.val)==1||numel(u.val)==1

h = mtimes(u,v);

else

error(’Operation not supported’);

end

end

function J = timesJac(v1, v2, J1, J2)

n = numel(v1);

D1 = sparse((1:n)’, (1:n)’, v1, n, n);

D2 = sparse((1:n)’, (1:n)’, v2, n, n);

J = cell(1, numel(J1));

for k = 1:numel(J)

J{k} = D1*J2{k} + D2*J1{k};

end

function h = exp(u)

eu = exp(u.val);

h = ADI(eu, lMultDiag(eu, u.jac));

function J = lMultDiag(d, J1)

n = numel(d);

D = sparse((1:n)’, (1:n)’, d, n, n);

J = cell(1, numel(J1));

for k = 1:numel(J)

J{k} = D*J1{k};

end

function h = mtimes(u,v)% ’*’

if ~isa(u,’ADI’)

h = ADI(u*v.val, mtimesJac(u, v.jac));

elseif ~isa(v,’ADI’)

:

function J = mtimesJac(M, J1)

J = cell(1, numel(J1));

for k = 1:numel(J)

J{k} = M*J1{k};

end

Fig. 7.1. Complete set of functions invoked to evaluate 3*exp(−x*y) when x and
y are AD variables. For brevity, we have not included details of the constructor
function ADI(val,Jac), which constructs an AD pair with the value val and list of
Jacobi matrices Jac.

only wants to evaluate a mathematical expression and not find its derivatives.
Apart from the cost of the extra code lines one has to execute, user-defined
classes are fairly new in MATLAB and there is still some overhead in using
class objects and accessing their properties (e.g., val and jac) compared to the
built-in struct-class. The reason why AD still pays off in most examples, is
that the cost of generating derivatives is typically much smaller than the cost
of the solution algorithms they will be used in, in particular when working
with equations systems consisting of large sparse matrices with more than one
row per cell in the computational grid. However, one should still seek to limit
the number of calls involving AD-class functions (including the constructor).
We let the following example be a reminder that vectorization is of particular
importance when using AD classes in MRST:

Example 7.2. To investigate the efficiency of vectorization versus serial exe-
cution of the AD objects in MRST, we consider the inner product of two
vectors

z = x.*y;

that have been initialized with random numbers. We will compare the cost of
using the overloaded version of vector multiply (.*) to that of a standard for-
loop with either matrix multiply (mtimes) or vector multiply (times) for the
scalar multiplications. For comparison, we also include the cost of computing

7.3 Automatic differentiation in MRST 167

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

analytical

vectorized

for+mtimes

for+times

Fig. 7.2. Comparison of cost of computing z=x*v and derivatives as function of
the number of elements in the vectors.

z and its derivatives zx = y and zy = x directly using standard MATLAB
vectors of doubles:

[n,t1,t2,t3,t4] = deal(zeros(m,1));
for i = 1:m

n(i) = 2ˆ(i−1);
xv = rand(n(i),1); yv=rand(n(i),1);
[x,y] = initVariablesADI(xv,yv);
tic, z = xv.*yv; zx=yv; zy = xv; t1(i)=toc;
tic, z = x.*y; t2(i)=toc;
tic, for k =1:n(i), z(k)=x(k)*y(k); end; t3(i)=toc;
tic, for k =1:n(i), z(k)=x(k).*y(k); end; t4(i)=toc;

end

Figure 7.2 shows a plot of the corresponding runtimes as function of the num-
ber elements in the vector. For this simple function, using AD is a factor
20-40 times more expensive than using direct evaluation of z and the analyti-
cal expressions for zx and zy. Using vector multiply instead of matrix multiply
inside the for-loop reduces the cost by 30% on average, but the factor dimin-
ishes as the number of elements increases in the vector. In either case, using
a loop will on average be more than three orders more expensive than using
vectorization.

While for-loops in many cases will be quite effectively in MATLAB (con-
trary to what is common belief), one should of course always try to avoid loops
that call functions with non-negligible overhead. The AD class in MRST has
been designed to work on long vectors and lists of (sparse) Jacobian matrices
and has not been optimized for scalar variables. As a result, there is consid-
erable overhead when working with small AD objects.

Beyond the examples and the discussion above, we will not go more into
details about the technical considerations that lie behind the implementation
of AD in MRST. If you want a deeper understanding of how the AD class

168 7 Single-Phase Solvers Based on Automatic Differentiation

works, the source code is fully open, so you are free to dissect the details to
the level of your own choice.

7.4 An implicit single-phase solver

In this section we present step-by-step how one can use the AD class outlined
above to implement an implicit solver for the compressible, single-phase (7.1).
In particular, we will introduce discrete averaging and spatial differentiation
operators that will enable us to write the discretized equations in an abstract
residual form that resembles the semi-continuous form of the implicit dis-
cretization in (7.2) and is devoid of details about the grid. Starting from this
residual form, it is relatively simple to obtain a linearization using automatic
differentiation and set up a Newton iteration.

7.4.1 Model setup and initial state

For simplicity, we consider a homogeneous box-model:

[nx,ny,nz] = deal(10, 10, 10);
[Lx,Ly,Lz] = deal(200, 200, 50);
G = cartGrid([nx, ny, nz], [Lx, Ly, Lz]);
G = computeGeometry(G);

rock.perm = repmat(30*milli*darcy, [G.cells.num, 1]);
rock.poro = repmat(0.3 , [G.cells.num, 1]);

0

50

100

150

200

0

50

100

150

200

0

10

20

30

40

50

As you will see later, we will hardly see any details about the grid in the
following. The main reason for using an idealized model like this, and not
a more realistic corner-point model like the SAIGUP or the Norne models
discussed in Sections 3.4 and 3.3.1, is that by using a highly idealized reservoir
geometry we avoid the complexity of picking representative and reasonable
well locations.

We assume a constant rock compressibility cr. Accordingly, the pore vol-
ume pv of a grid cell obeys the differential equation crpv = dpv/dp or

pv(p) = pvre
cr(p−pr), (7.6)

where pvr is the pore volume at reference pressure pr. To define the relation
between pore volume and pressure, we use an anonymous function:

cr = 1e−6/barsa;
p_r = 200*barsa;
pv_r = poreVolume(G, rock);

pv = @(p) pv_r .* exp(cr * (p − p_r));
100 150 200 250 300

599.9

599.95

600

600.05

600.1

7.4 An implicit single-phase solver 169

show = true(G.cells.num ,1);
cellInx = sub2ind (G.cartDims , ...

[I−1; I−1; I; I ; I(1:2)−1], ...
[J ; J ; J ; J ; nperf +[2;2]], ...
[K−1; K; K ; K−1; K(1:2)−[0; 1]]);

show (cellInx) = false ;
plotCellData (G , p_init / barsa , show , 'EdgeColor','k');
plotWell (G ,W , 'height' ,10);
view(−125,20), camproj perspective

0

50

100

150

200

0

50

100

150

200

−10

0

10

20

30

40

50

P1

200.5

201

201.5

202

202.5

203

203.5

Fig. 7.3. Model with initial pressure and single horizontal well.

The fluid is assumed to have a constant viscosity, µ = 5 cP. As for the
rock, we assume a constant fluid compressibility c resulting in the differential
equation cρ = dρ/dp for the fluid density. Accordingly,

ρ(p) = ρre
c(p−pr), (7.7)

where ρr =850 kg/m3 is the density at reference pressure pr. With this set,
we can define the equation of state for the fluid

mu = 5*centi*poise;
c = 1e−3/barsa;
rho_r = 850*kilogram/meterˆ3;
rhoS = 750*kilogram/meterˆ3;
rho = @(p) rho_r .* exp(c * (p − p_r));

100 150 200 250 300
760

780

800

820

840

860

880

900

920

940

The assumption of constant compressibility will only hold for a limited range
of temperatures. Surface conditions are not inside the validity range of the
constant compressibility assumption. We therefore set the fluid density ρS at
surface conditions separately since we will need it later to evaluate surface
volume rate in our model of the well, which here is a horizontal wellbore
perforated in eight cells::

nperf = 8;
I = repmat(2, [nperf, 1]);
J = (1:nperf).'+1;
K = repmat(5, [nperf, 1]);
cellInx = sub2ind(G.cartDims, I, J, K);
W = addWell([], G, rock, cellInx, 'Name', 'producer', 'Dir' , 'x');

Assuming the reservoir is initially at equilibrium implies that we must have
dp/dz = gρ(p). In this simple setting, this differential equation can be solved
analytically, but for demonstration purposes, we will use one of MATLAB’s
built-in ODE-solvers to compute the hydrostatic distribution numerically, rel-
ative to a fixed datum point p(z0) = pr, where we without lack of generality
have set z0 = 0 since the reservoir geometry is defined relative to this height:

170 7 Single-Phase Solvers Based on Automatic Differentiation

gravity reset on, g = norm(gravity);
[z_0, z_max] = deal(0, max(G.cells.centroids(:,3)));
equil = ode23(@(z,p) g .* rho(p), [z_0, z_max], p_r);
p_init = reshape(deval(equil, G.cells.centroids(:,3)), [], 1);

This finishes the model setup, and at this stage we plot the reservoir with well
and initial pressure (see Figure 7.3)

7.4.2 Discrete operators and equations

We are now ready to discretize the model. Assuming no-flow boundary con-
ditions (except at the well), we restrict the equations to the interior faces of
the grid. To derive the spatial discretization, we will use the MRST-function
computeTrans, which we have seen in Section 6.2 computes the half transmissi-
bilities associated with the two-point flux approximation (TPFA). This means
that we need to take the harmonic average to obtain the face-transmissibilities,
i.e., for neighboring cells i and j, Tij = (T−1

i,j + T−1
j,i)−1 as in (5.49).

N = double(G.faces.neighbors);
intInx = all(N ˜= 0, 2);
N = N(intInx, :); % Interior neighbors
hT = computeTrans(G, rock); % Half−transmissibilities
cf = G.cells.faces(:,1);
nf = G.faces.num;
T = 1 ./ accumarray(cf, 1 ./ hT, [nf, 1]); % Harmonic average
T = T(intInx); % Restricted to interior

The final ingredients for the discretization are discrete functions for the diver-
gence and gradient differential operators. As seen in Section 5.4.2, the discrete
version of the divergence operator is a linear mapping from the set of faces to
the set of cells, and for a flux field, it sums the outward fluxes for each cell.
The discrete gradient operator maps from the set of cells to the set of faces,
and for a pressure-field, it computes the pressure increase between neighbor-
ing cells of each face.In MATLAB notation with N defined as above, it follows
that grad(x) = x(N(:, 2))− x(N(:, 1)) = Cx, where the matrix C is defined
in the code below. As a linear mapping, the discrete div-function is simply
the negative transpose of grad; this follows from the discrete version of the
Gauss-Green theorem, (5.55). Bellow, we will in addition define an average-
mapping which for each face takes the average value of the neighboring cells

n = size(N,1);
C = sparse([(1:n)'; (1:n)'], N, ...

ones(n,1)*[−1 1], n, G.cells.num);
grad = @(x) C*x;
div = @(x) −C'*x;
avg = @(x) 0.5 * (x(N (:,1)) + x(N (:,2)));

∂
∂x

∂
∂y

∂
∂z

7.4 An implicit single-phase solver 171

Having defined the necessary discrete operators, we are in a position to use
the basic implicit discretization from (7.2). We start with Darcy’s law (7.2b),
which for each face f can be written

~v[f] = −T [f]

µ

(
grad(p)− g ρa[f] grad(z)

)
, (7.8)

where the density at the interface is evaluated using arithmetic average:

ρa[f] = 1
2

(
ρ[N1(f)] + ρ[N2(f)]

)
(7.9)

Similarly, we can write the continuity equation for each cell c as

1

∆t

((
φ(p)[c]ρ(p)[c]

)n+1 −
(
φ(p)[c]ρ(p)[c]

)n)
+ div(ρav)[c] = 0. (7.10)

In MRST, the two residual equations (7.8) and (7.10) are implemented as
anonymous functions of pressure:

gradz = grad(G.cells.centroids(:,3));
v = @(p) −(T/mu).*(grad(p) − g*avg(rho(p)).*gradz);

presEq = @(p,p0,dt) (1/dt)*(pv(p).*rho(p) − pv(p0).*rho(p0)) ...
+ div(avg(rho(p)).*v(p));

In the code above, p0 is the pressure field at the previous time step (i.e.,
pn−1), while p is the pressure at the current time step (pn). Having defined
the discrete expression for Darcy-fluxes, we can check that this is in agreement
with our initial pressure field, i.e., we compute norm(v(p_init))*day. The result
is 1.5 × 10−6 m3/day, which should convince us that the initial state of the
reservoir is sufficiently close to equilibrium.

7.4.3 Well model

To include source-terms in the pressure equation arising from the produc-
tion well, we need to define an expression for flow rate in each cell that the
well is connected to the reservoir (which we will refer to as well connections).
Assuming instantaneous flow in the well, we only need to consider hydro-
static pressure drop, which we include for completeness even though the well
is horizontal in this particular case. Approximating the fluid density in the
well as constant (computed at bottom-hole pressure), the pressure pc[w] in
connection w of well Nw(w) is given by

pc[w] = pbh[Nw(w)] + g∆z[w] ρ(pbh[Nw(w)]), (7.11)

where ∆z[w] is the vertical distance from bottom-hole to the connection. To
relate the pressure at the well connection to the average pressure inside the
grid cell, we will use the standard Peaceman model introduced in Section 5.3.2.
Using the well-indices provided in W, the mass flow-rate at connection c is given

172 7 Single-Phase Solvers Based on Automatic Differentiation

qc[w] =
ρ(p[Nc(w)])

µ
WI[w]

(
pc[w]− p[Nc(w)]

)
, (7.12)

where p[Nc(w)] is the pressure in the cell Nc(w) surrounding connection w.
In MRST, this model reads:

wc = W(1).cells; % connection grid cells
WI = W(1).WI; % well−indices
dz = W(1).dZ; % depth relative to bottom−hole

p_conn = @(bhp) bhp + g*dz.*rho(bhp); %connection pressures
q_conn = @(p, bhp) WI .* (rho(p(wc)) / mu) .* (p_conn(bhp) − p(wc));

pbh

qc

We
will also include the total volumetric well-rate at surface conditions as a free
variable. This is simply given by summing all mass well-rates and dividing by
the surface density:

rateEq = @(p, bhp, qS) qS−sum(q_conn(p, bhp))/rhoS;

With free variables p, bhp, and qS, we are now lacking exactly one equation
to close the system. This equation should account for boundary conditions in
the form of a well-control. Here, we choose to control the well with specified
bottom-hole pressure set to 100 bar

ctrlEq = @(bhp) bhp−100*barsa;

7.4.4 The simulation loop

We are now in position to start coding our simulation loop. We start by
initializing our AD variables (we use _ad-subscript to distinguish them from
doubles). The initial bottom-hole pressure is set to the corresponding grid cell
pressure.

[p_ad, bhp_ad, qS_ad] = initVariablesADI(p_init, p_init(wc(1)), 0);

This gives the following AD pairs that make up the unknowns in our system:

p_ad = ADI Properties:
val: [1000x1 double]
jac: {[1000x1000 double]

[1000x1 double]
[1000x1 double]}

∂p

∂p
≡ I

∂p

∂qs
≡ 0

∂p

∂pbh
≡ 0

bhp_ad = ADI Properties:
val: 2.0188e+07
jac: {[1x1000 double]

[1]
[0]}

∂pbh

∂p
≡ 0

∂pbh

∂qs

∂pbh

∂pbh

qS_ad = ADI Properties:
val: 0
jac: {[1x1000 double]

[0]
[1]}

∂qs

∂p
≡ 0

∂qs

∂
qs

∂qs

∂pbh

To solve the global flow problem, we will have to stack all the equations into
one big system for which we can compute the Jacobian and perform a Newton
update. We therefore set indices for easy access to individual variables in the
stack:

7.4 An implicit single-phase solver 173

[p_ad, bhp_ad, qS_ad] = initVariablesADI(p_init, p_init(wc(1)), 0);
nc = G.cells.num;
[pIx, bhpIx, qSIx] = deal(1:nc, nc+1, nc+2);

Next, we set parameters that will control the time steps in the simulation and
the iterations in the Newton solver:

numSteps = 52; % number of time−steps
totTime = 365*day; % total simulation time
dt = totTime / numSteps; % constant time step
tol = 1e−5; % Newton tolerance
maxits = 10; % max number of Newton its

We will store simulation results from all time steps in a structure sol, which
we allocate before the main loop for efficiency and initialize so that the first
entry is the initial state of the reservoir:

sol = repmat(struct('time', [], 'pressure ' , [], 'bhp', [], ...
'qS', []), [numSteps + 1, 1]);

sol(1) = struct('time', 0, 'pressure ' , double(p_ad), ...
'bhp', double(bhp_ad), 'qS', double(qS_ad));

We now have all we need to set up the time-stepping algorithm, which will
consist of an outer and an inner loop. The outer loop updates the time step,
advances the solution forward one step in time, and stores the result in the
sol structure. This procedure is repeated until we reach the desired final time:

t = 0; step = 0;
while t < totTime,

t = t + dt; step = step + 1;
fprintf('\nTime step %d: Time %.2f −> %.2f days\n', ...

step, convertTo(t − dt, day), convertTo(t, day));
% Newton loop
resNorm = 1e99;
p0 = double(p_ad); % Previous step pressure
nit = 0;
while (resNorm > tol) && (nit <= maxits)

: % Newton update
:
resNorm = norm(res);
nit = nit + 1;
fprintf(' Iteration %3d: Res = %.4e\n', nit, resNorm);

end
if nit > maxits, error('Newton solves did not converge')
else % store solution

sol(step+1) = struct('time', t, 'pressure ' , double(p_ad), ...
'bhp', double(bhp_ad), 'qS', double(qS_ad));

end
end

174 7 Single-Phase Solvers Based on Automatic Differentiation

The inner loop performs the Newton iteration by computing and assembling
the Jacobian of the global system and solving the linearized residual equation
to compute an iterative update. The first step to this end is to evaluate the
residual for the flow pressure equation and add source terms from wells:

eq1 = presEq(p_ad, p0, dt);
eq1(wc) = eq1(wc) − q_conn(p_ad, bhp_ad);

Most of the lines we have implemented so far are fairly standard, except per-
haps for the definition of the residual equations as anonymous functions, and
equivalent statements can be found in almost any computer program solving
this type of time-dependent equation by an implicit method. Now, however,
comes what is normally the tricky part: linearization of each equation that
make up the whole model and assembly of the resulting Jacobian matrices
to generate the Jacobian for the full system. And here you have the magic
of automatic differentiation implemented in MRST – you do not have to do
this at all! The computer code necessary to evaluate all the Jacobians has
been defined implicitly by the functions in the AD class that overload the
elementary operators used to define the residual equations. The calling se-
quence is obviously more complex than the one depicted in Figure 7.1, but
the operators used are in fact only the three elementary operators +, −, and
∗ applied to scalars, vectors, and matrices, as well as element-wise division by
a scalar (/). When the residuals are evaluated using the anonymous functions
defined above, the AD library will also evaluate the derivatives of each equa-
tion with respect to each independent variable and collect the corresponding
sub-Jacobians in a list. To form the full system, we simply evaluate the resid-
uals of the remaining equations (the rate equation and the equation for well
control) and concatenate the three equations into a cell array:

eqs = {eq1, rateEq(p_ad, bhp_ad, qS_ad), ctrlEq(bhp_ad)};
eq = cat(eqs{:});

In doing this, the AD library will correctly combine the various sub-Jacobians
and set up the Jacobian for the full system. Then, we can extract this Jacobian,
compute the Newton increment, and update the three primary unknowns:

J = eq.jac{1}; % Jacobian
res = eq.val; % residual
upd = −(J \ res); % Newton update

% Update variables
p_ad.val = p_ad.val + upd(pIx);
bhp_ad.val = bhp_ad.val + upd(bhpIx);
qS_ad.val = qS_ad.val + upd(qSIx);

The sparsity pattern of the Jacobian is shown in the plot to the left of the code
for the Newton update. The use of a two-point scheme on a 3D Cartesian grid
will give a Jacobi matrix that has a heptadiagonal structure, except for the

7.5 Rapid prototyping 175

0 100 200 300 400
0

500

1000

time [days]

ra
te

 [
m

3
/d

a
y
]

0 100 200 300 400
100

150

200

a
v
g
 p

re
s
s
u
re

 [
b
a
r]

P1

14 days
P1

35 days

P1

70 days

P1

140 days

120 130 140 150 160 170 180 190 200

Fig. 7.4. Time evolution of the pressure solution for the compressible single-phase
problem. The plot to the left shows the well rate (blue line) and average reservoir
pressure (green circles) as function of time, and the plots to the right shows the
pressure after two, five, ten, and twenty pressure steps.

off-diagonal entries in the two red rectangles that arise from the well equation
and correspond to derivatives of this equation with respect to cell pressures.

Figure 7.4 shows a plot of the dynamics of the solution. Initially, the
pressure is in hydrostatic equilibrium as shown in Figure 7.3. As the well
starts to drain the reservoir, there will be a draw-down in the pressure near
the well which will gradually drop from the well and outward. As a result, the
average pressure inside the reservoir will be reduced, which again will cause a
decay in the production rate.

7.5 Rapid prototyping

One particular advantage of using automatic differentiation in combination
with the discrete differential and averaging operators is that it simplifies the
testing of new models and alternative computational approaches. In this sec-
tion, we will discuss two examples that hopefully demonstrates this aspect.

7.5.1 Pressure-dependent viscosity

In the model discussed in the previous section, the viscosity was assumed to
be constant. However, in the general case the viscosity will increase with in-
creasing pressures, and this effect may be significant for the high pressures
seen inside a reservoir. To model this effect, we will introduce a linear de-
pendence, rather than the exponential pressure-dependence used for the pore
volume (7.6) and the fluid density (7.7). That is, we assume that the viscosity
is given by

176 7 Single-Phase Solvers Based on Automatic Differentiation

µ(p) = µ0

[
1 + cµ(p− pr)

]
(7.13)

Having a pressure dependence means that we will have to change two parts of
our discretization: the approximation of the Darcy flux across a cell face (7.8)
and the flow rate through a well connection (7.12). Starting with the latter,
we evaluate the viscosity using the same pressure as was used to evaluate the
density, i.e.,

qc[w] =
ρ(p[Nc(w)])

µ(p[Nc(w)])
WI[w]

(
pc[w]− p[Nc(w)]

)
. (7.14)

For the Darcy flux (7.8), we have two choices: either use a simple arithmetic
average as in (7.9) to approximate the viscosity at each cell face, or .

v[f] = − T [f]

µa[f]

(
grad(p)− g ρa[f] grad(z)

)
, (7.15)

or replace the quotient of the transmissibility and the face viscosity by the
harmonic average of the mobility λ = K/µ in the adjacent cells. Both choices
will lead to changes in the structure of the discrete nonlinear system, but
because we are using automatic differentiation, all we have to do is code the
formulas (7.13) to (7.17). Let us look at the details of the implementation in
MRST, starting with the arithmetic approach.

Arithmetic average

First, we introduce a new anonymous function to evaluate the relation between
viscosity and pressure:

[mu0,c_mu] = deal(5*centi*poise, 2e−3/barsa);
mu = @(p) mu0*(1+c_mu*(p−p_r));

Then we can replace the definition of the Darcy flux

v = @(p) −(T./mu(avg(p))).*(grad(p) − g*avg(rho(p)).*gradz);

and similarly for flow rate through each well connection

q_conn = @(p,bhp) WI.*(rho(p(wc))./ mu(p(wc))) .* (p_conn(bhp) − p(wc));

In Figure 7.5 we illustrate the effect of increasing the pressure dependence of
the viscosity. Since the reference value is given at p = 200 bar, which is close
to the initial pressure inside the reservoir, the more we increase cµ, the lower
µ will be in the pressure draw-down zone near the well. Therefore, we see a
significantly higher initial production rate for cµ = 0.005 than for cµ = 0.
On the other hand, the higher value of cµ, the faster the draw-down effect
of the well will propagate into the reservoir, inducing a reduction in reservoir
pressure that will cause production to cease. In terms of overall production,
a higher pressure dependence may be more advantageous as it will lead both
to higher cumulative production early in the production period.

7.5 Rapid prototyping 177

100 120 140 160 180 200
2.5

3

3.5

4

4.5

5

5.5

pressure [bar]

v
is

c
o
s
it
y
 [
c
P

]

c
µ
=0

c
µ
=0.002

c
µ
=0.005

0 50 100 150 200 250 300 350 400
100

120

140

160

180

200

220

time [days]

a
v
g
 p

re
s
s
u
re

 [
b
a
r]

c
µ
=0

c
µ
=0.002

c
µ
=0.005

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200

time [days]

ra
te

 [
m

3
/d

a
y
]

c
µ
=0

c
µ
=0.002

c
µ
=0.005

0 50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

time [days]

c
u

m
m

u
la

ti
v
e

 p
ro

d
u

c
ti
o

n
 [

m
3
]

c
µ
=0

c
µ
=0.002

c
µ
=0.005

Fig. 7.5. The effect of increasing the degree of pressure-dependence for the viscosity.

Face mobility: harmonic average

A more correct approximation is to write Darcy’s law based on mobility in-
stead of using the quotient of the transmissibility and an averaged viscosity:

v[f] = −Λ[f]
(
grad(p)− g ρa[f] grad(z)

)
. (7.16)

The face mobility Λ[f] can be defined in the same way as the transmissibility
is defined in terms of the half transmissibilities using harmonic averages. That
is, if T [f, c] denotes the half transmissibility associated with face f and cell
c, the face mobility Λ[f] for face f can be written as

Λ[f] =
(µ[N1(f)]

T [f,N1(f)]
+

µ[N2(f)]

T [f,N2(f)]

)−1

. (7.17)

In MRST, the corresponding code reads:

hf2cn = getCellNoFaces(G);
nhf = numel(hf2cn);
hf2f = sparse(double(G.cells.faces(:,1)),(1:nhf)',1);
hf2if = hf2f(intInx,:);
hlam = @(mu,p) 1./(hf2if*(mu(p(hf2cn))./hT));

v = @(p) −hlam(mu,p).*(grad(p) − g*avg(rho(p)).*gradz);

178 7 Single-Phase Solvers Based on Automatic Differentiation

Here, hf2cn represents the maps N1 and N2 that enables us to sample the
viscosity value in the correct cell for each half-face transmissibility, whereas
hf2if represents a map from half faces (i.e., faces seen from a single cell) to
global faces (which are shared by two cells). The map has a unit value in row
i and column j if half face j belongs to global face i. Hence, premultiplying a
vector of half-face quantities by hf2if amounts to summing the contributions
from cells N1(f) and N2(f) for each global face f .

For a homogeneous model, using the harmonic average should produce sim-
ulation results that are identical (to machine precision) to those produced by
using arithmetic average. With heterogeneous permeability, there will be small
differences in the well rates and averaged pressures for the specific parame-
ters considered herein. For sub-samples of the SPE 10 data set, we typically
observe maximum relative differences in well rates of the order 10−3.

7.5.2 Non-Newtonian fluid

Viscosity is the material property that measures a fluid’s resistance to flow,
i.e., the resistance to a change in shape, or to the movement of neighboring
portions of the fluid relative to each other. The more viscous a fluid is, the less
easily it will flow. In Newtonian fluids, the shear stress (the force applied per
area tangential to the force), at any point is proportional to the strain rate (the
symmetric part of the velocity gradient) at that point and the viscosity is the
constant of proportionality. For non-Newtonian fluids, the relationship is no
longer linear. The most common nonlinear behavior is shear thinning, in which
the viscosity of the system decreases as the shear rate is increased. An example
is paint, which should flow easily when leaving the brush, but stay on the
surface and not drip once it has been applied. The second type of nonlinearity
is shear thickening, in which the viscosity increases with increasing shear rate.
A common example is the mixture of cornstarch and water. If you search
YouTube for “cornstarch pool” you can view several spectacular videos of
pools filled with this mixture. When stress is applied to the liquid, it exhibits
properties like a solid and you may be able to run across its surface. However,
if you go too slow, it will behave more like a liquid and you will fall in.

Solutions of large polymeric molecules are another example of shear-
thinning liquids. In enhanced oil recovery, polymer solutions may be injected
into reservoirs to improve unfavorable mobility ratios between oil and water
and improve the sweep efficiency of the injected fluid. At low flow rates, the
polymer molecule chains will tumble around randomly and present large re-
sistance to flow. When the flow velocity increases, the viscosity will decrease
as the molecules will gradually align themselves in the direction of increasing
shear rate. A model of the rheology is given by

µ = µ∞ + (µ0 − µ∞)

(
1 +

(
Kc

µ0

) 2
n−1

γ̇2

)n−1
2

, (7.18)

7.5 Rapid prototyping 179

where µ0 represents the Newtonian viscosity at zero shear rate, µ∞ represents
the Newtonian viscosity at infinite shear rate, Kc represents the consistency
index, and n represents the power-law exponent (n < 1). The shear rate γ̇ in
a porous medium can be approximated by

γ̇app = 6

(
3n+ 1

4n

) n
n−1 |~v|√

Kφ
. (7.19)

Combining (7.18) and (7.19), we can write our model for the viscosity as

µ = µ0

(
1 + K̄c

|~v|2

Kφ

)n−1
2

, K̄c = 36

(
Kc

µ0

) 2
n−1

(
3n+ 1

4n

) 2n
n−1

, (7.20)

where we for simplicity have assumed that µ∞ = 0. In the following, we will
show how easy it is to extend the simulator developed in the previous sections
to model this non-Newtonian fluid behavior (see nonNewtonianCell.m). To
simulate injection, we increase the bottom-hole pressure to 300 bar. Our rhe-
ology model has parameters:

mu0 = 100*centi*poise;
nmu = 0.3;
Kc = .1;
Kbc = (Kc/mu0)ˆ(2/(nmu−1))*36*((3*nmu+1)/(4*nmu))ˆ(2*nmu/(nmu−1));

In principle, we could continue to solve the system using the same primary
unknowns as before. However, it has proved convenient to write (7.20) in the
form µ = η µ0 and introduce η as an additional unknown. In each Newton
step, we start by solving the equation for the shear factor η exactly for the
given pressure distribution. This is done by initializing an AD variable for η,
but not for p in etaEq so that this residual now only has one unknown, η.
This will take out the implicit nature of Darcy’s law and hence reduce the
nonlinearity and simplify the solution of the global system.

while (resNorm > tol) && (nit < maxits)

% Newton loop for eta (shear multiplier)
[resNorm2,nit2] = deal(1e99, 0);
eta_ad2 = initVariablesADI(eta_ad.val);
while (resNorm2 > tol) && (nit2 <= maxits)
eeq = etaEq(p_ad.val, eta_ad2);
res = eeq.val;
eta_ad2.val = eta_ad2.val − (eeq.jac{1} \ res);
resNorm2 = norm(res);
nit2 = nit2+1;

end
eta_ad.val = eta_ad2.val;

180 7 Single-Phase Solvers Based on Automatic Differentiation

Once the shear factor has been computed for the values in the previous iterate,
we can use the same approach as earlier to compute a Newton update for the
full system. (Here, etaEq is treated as a system with two unknowns, p and η.)

eq1 = presEq(p_ad, p0, eta_ad, dt);
eq1(wc) = eq1(wc) − q_conn(p_ad, eta_ad, bhp_ad);
eqs = {eq1, etaEq(p_ad, eta_ad), ...
rateEq(p_ad, eta_ad, bhp_ad, qS_ad), ctrlEq(bhp_ad)};

eq = cat(eqs{:});
upd = −(eq.jac{1} \ eq.val); % Newton update

To finish the solver, we will of course need to define the flow equations and
the extra equation for the shear multiplier. The main question to this end is:
how should we compute |~v|? One solution could be to define |~v| on each face
as the flux divided by the face area. In other words, use a code like

phiK = avg(rock.perm.*rock.poro)./G.faces.areas(intInx).ˆ2;
v = @(p, eta) −(T./(mu0*eta)).*(grad(p) − g*avg(rho(p)).*gradz);
etaEq = @(p, eta) eta − (1 + Kbc*v(p,eta).ˆ2./phiK).ˆ((nmu−1)/2);

Although simple, this approach has three potential issues: First, it does not
tell us how to compute the shear factor for the well perforations. Second, it
disregards contributions from any tangential components of the velocity field.
Third, the number of unknowns in the linear system will increase by almost
a factor six since we now will have one extra unknown per internal face. The
first issue is easy to fix: to get a representative value in the well cells, we
simply average the η values from the cells’ faces. If we now recall how the dis-
crete divergence operator was defined, we realize that this operation is almost
implemeted for us already: if div(x)=-C’*x computes the discrete divergence
in each cell of the field x defined at the faces, then cavg(x)=1/6*abs(C)’*x

will compute the average of x for each cell. In other words, our well equation
becomes:

wavg = @(eta) 1/6*abs(C(:,W.cells))'*eta;
q_conn = @(p, eta, bhp) ...
WI .* (rho(p(wc)) ./ (mu0*wavg(eta))) .* (p_conn(bhp) − p(wc));

The second issue would have to be investigated in more detail and this is not
within the scope of this book. The third issue is simply a disadvantage.

To get a method that consumes less memory, we can compute one η value
per cell. Using the following formula, we can compute an approximate velocity
~vi at the center of cell i

~vi =
∑

j∈N(i)

vij
Vi

(
~cij − ~ci

)
, (7.21)

where N(i) is the map from cell i to its neighboring cells, vij is the flux
between cell i and cell j, ~cij is the centroid of the corresponding face, and ~ci

7.5 Rapid prototyping 181

is the centroid of cell i. For a Cartesian grid, this formula simplifies so that an
approximate velocity can be obtained as the sum of the absolute value of the
flux divided by the face area over all faces that make up a cell. Using a similar
trick as we used to compute η in well cells above, our implementation follows
trivially. We first define the averaging operator to compute cell velocity

aC = bsxfun(@rdivide, 0.5*abs(C), G.faces.areas(intInx))';
cavg = @(x) aC*x;

In doing so, we also rename our old averaging operator avg as favg to avoid
confusion and make it more clear that this operator maps from cell values to
face values. Then we can define the needed equations:

phiK = rock.perm.*rock.poro;
gradz = grad(G.cells.centroids(:,3));
v = @(p, eta)
−(T./(mu0*favg(eta))).*(grad(p) − g*favg(rho(p)).*gradz);

etaEq = @(p, eta)
eta − (1 + Kbc* cavg(v(p,eta)).ˆ2 ./phiK).ˆ((nmu−1)/2);

presEq= @(p, p0, eta, dt) ...
(1/dt)*(pv(p).*rho(p) − pv(p0).*rho(p0)) + div(favg(rho(p)).*v(p, eta));

With this approach the well equation becomes particularly simple since all we
need to do is to sample the η value from the correct cell:

q_conn = @(p, eta, bhp) ...
WI .* (rho(p(wc)) ./ (mu0*eta(wc))) .* (p_conn(bhp) − p(wc));

A potential drawback of this second approach is that it may introduce nu-
merical smearing, but this will, on the other hand, most likely increase the
robustness of the resulting scheme.

In Figure 7.6 we compare the predicted flow rates and average reservoir
pressure for two different fluid models: one that assumes that the fluid is a
standard Newtonian fluid (i.e., η ≡ 1) and one that models shear thinning,
which has been computed by both methods discussed above. With shear thin-
ning, the higher pressure in the injection well will cause a decrease in the
viscosity which will lead to significantly higher injection rates than for the
Newtonian fluid and hence a higher average reservoir pressure. Perhaps more
interesting is the large discrepancy in the rates and pressures predicted by the
face-based and the cell-based simulation algorithms. If we in the face-based
method disregard the shear multiplier q_conn, the predicted rate and pressure
build-up is smaller than what is predicted by the cell-based method and closer
to the Newtonian fluid case. We take this as evidence that the differences be-
tween the cell and the face-base methods to a large extent can be explained
by differences in the discretized well models and their ability to capture the
formation and propagation of the strong initial transient. To further back this
up, we have included results from a simulation with ten times as many time
steps in Figure 7.7, which also includes plots of the evolution of min(η) as a

182 7 Single-Phase Solvers Based on Automatic Differentiation

0 100 200 300 400
20

30

40

50

60

70

80

90

100

110

120

time [days]

ra
te

 [
m

3
/d

a
y
]

Newtonian

Cell−based

Face−based

Face−based (not well)

0 100 200 300 400
200

205

210

215

220

225

230

235

time [days]

a
v
g

 p
re

s
s
u

re
 [

b
a

r]

Newtonian

Cell−based

Face−based

Face−based (not well)

Fig. 7.6. Single-phase injection of a highly viscous, shear-thinning fluid computed
by four different simulation methods: (i) fluid assumed to be Newtonian, (ii) shear
multiplier η computed in cells, (iii) shear multiplier computed at faces, and (iv)
shear multiplier computed at faces, but η ≡ 1 used in well model.

function of time. Whereas the face-based method predicts a large, immediate
drop in viscosity in the near-well region, the viscosity drop predicted by the
cell-based method is much smaller during the first 20–30 days. This will re-
sult in a delay in the peak in the injection rate and a much smaller injected
volume.

We will leave the discussion here. The parameters used in the example
were chosen quite haphazardly to demonstrate a pronounced shear-thinning
effect. Which method is the most correct for real computations, is a question
that goes beyond the current scope, and could probably best be answered by
verifying against observed data for a real case. Our point here, was mainly
to demonstrate the capability of rapid prototyping that comes with the use
of MRST. However, as the example shows, this lunch is not completely free:
you will still have to understand features and limitations of the models and
discretizations you choose to prototype.

Computer exercises:

1. Apply the compressible pressure solver from Section 7.4 to the quarter
five-spot problem discussed in Section 6.4.1.

2. Apply the compressible pressure solver from Section 7.4 to the three dif-
ferent grid models studied in Section 6.4.3 that were derived from the
seamount data set. Replace the fixed boundary conditions by a no-flow
condition.

3. Investigate the claim on page 178 that the difference between using a arith-
metic average of the viscosity and a harmonic average of the fluid mobility

7.5 Rapid prototyping 183

100 200 300
30

40

50

60

70

80

90

100

110

120

time [days]

ra
te

 [
m

3
/d

a
y
]

Newtonian

Cell−based

Face−based

Face−based (not well)

100 200 300

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [days]

s
h

e
a

r
m

u
lt
ip

lic
a

to
r

[1
]

Fig. 7.7. Single-phase injection of a highly viscous, shear-thinning fluid; simulation
with ∆t = 1/520 year. The right plot shows the evolution of η as a function of time:
solid lines show min(η) over all cells, dashed lines min(η) over the perforated cells,
and dash-dotted lines average η value.

is typically small. To this end, you can for instance use the following sub-
sample from the SPE10 data set:

rock = SPE10_rock(41:50,101:110,1:10);
rock.perm = rock.perm*milli*darcy;

4. Extend the compressible solver in Section 7.4 to incorporate other boundary
conditions than no flow.

5. Use the implementation introduced in Section 7.4 as a template to develop a
solver for slightly compressible flow as discussed on page 114 in Section 5.2.
How large can cf be before the assumptions in the slightly compressible
model become inaccurate? Use different heterogeneities, well placements,
and/or model geometries to investigate this question in more detail.

6. Try to compute time-of-flight for the compressible example from Section 7.4
by extending the equation set to also include the time-of-flight equation
(5.37). Hint: the time-of-flight and the pressure equations need not be solved
as a coupled system.

7. Same as above, except that you should try to reuse the solver introduced
in Section 6.3. Hint: you must first reconstruct fluxes from the computed
pressure and then construct a state object to communicate with the TOF
solver.

8. The non-Newtonian fluid example in Section 7.5.2 will have a strong tran-
sient during the first 30–100 days. Try to implement adaptive time steps
that utilizes this fact. Can you come up with a strategy that automatically
chooses good time steps?

8

Consistent Discretizations on Polyhedral Grids

In the previous chapters, we have used the two-point flux-approximation
(TPFA) scheme introduced in Section 5.4.1 to discretize the elliptic Laplace
operator L = ∇ · K∇ in space. That is, if pi and pk denote the average pres-
sures in two neighboring cells Ωi and Ωk, then the flux across the interface
Γik between them is given as

vik = Tik(pi − pk), (8.1)

where the transmissibility Tik depends on the geometry of the two cells and
the associated permeability tensors Ki and Kk. The TPFA scheme is very
robust and widely used both in academia and industry. However, the method
is only consistent for certain combinations of grids and permeability tensors
K and hence will not generally be convergent. To see this, we assume that K
is a homogeneous symmetric tensor

K =

[
Kxx Kxy
Kxy Kyy

]
.

Consider now the flux across an interface Γik between two cells Ωi and Ωk
in a 2D Cartesian grid, whose normal vector ~ni,k points in the x-direction
so that ~ni,k = ~ci,k = (1, 0); see Figure 8.1. Using Darcy’s law gives that
~v · ~n = −(Kxx∂xp + Kxy∂yp), from which it follows that the flux across the
interface will have two components, one orthogonal and one transverse,

pi

Ωi
Γi,k

pk

Ωk~ni,k~ci,k

πi,k

K

Fig. 8.1. Two cells in a Cartesian grid and a full permeability tensor whose principal
axes are not aligned with the coordinate system.

186 8 Consistent Discretizations on Polyhedral Grids

vik = −
∫
Γik

K∇p · ~n ds = −
∫
Γik

(
Kxx ∂xp+ Kxy ∂yp

)
ds

that correspond to the x-derivative and the y-derivative of the pressure, re-
spectively. In the two-point approximation (8.1), the only points we can use
to approximate these flux contributions are the pressures pi and pk, but since
these two pressures are associated with the same y-value, their difference can
only be used to estimate ∂xp and not ∂yp. This means that the TPFA method
cannot account for the transverse flux contribution Kxy∂yp and will hence
generally not be consistent. The only exception is if Kxy ≡ 0 in all cells in
the grid, in which case there are no fluxes in the transverse direction. To link
the above derivation to the geometry of the cells, we can use the one-sided
definition of fluxes (5.48) of the two-point scheme, two write

vi,k ≈ Ti,k(pi − πi,k) =
Ai,k
|~ci,k|2

K~ci,k · ~ni,k(pi − πi,k).

More generally, we have that the TPFA scheme is only convergent for K-
orthogonal grids. An example of a K-orthogonal grid is a grid in which all cells
are parallelepipeds in 3D or parallelograms in 2D and satisfy the condition

~ni,j · K~ni,k = 0, ∀j 6= k, (8.2)

where ~ni,j and ~ni,k denote normal vectors to faces of cell number i.
What about grids that are not parallelepipeds or parallelograms? For sim-

plicity, we only consider the 2D case. Let ~c = (c1, c2) denote the vector from
the center of cell Ωi to the centroid of face Γik, see Figure 5.4. If we let
~c⊥ = (c2,−c1) denote a vector that is orthogonal to ~c, then any constant
pressure gradient inside Ωi can be written as ∇p = p1~c+ p2~c⊥, where p1 can
be determined from pi and πi,k and p2 is some unknown constant. Inserted
into the definition of the face flux, this gives

vi,k = −
∫
Γik

(
p1K~c · ~n+ p2K~c⊥ · ~n

)
ds.

For the two-point scheme to be correct, the second term in the integrand must
be zero. Setting ~n = (n1, n2), we have that

0 = K~c⊥ · ~n = (K1c2,−K2c1) · (n1, n2) = (K1n1c2 −K2n2c1) = (K~n)× ~c.

In other words, a sufficient condition for a polygonal grid to be K-orthogonal
is that (K~ni,k) ‖ ~ci,k for all cells in the grid, in which case the transverse flux
contributions are all zero and hence need not be estimated. Consequently, the
TPFA method will be consistent.

The lack of consistency in the TPFA scheme for grids that are not K-
orthogonal may lead to significant grid-orientation effects, i.e., artifacts or
errors in the solution that will appear in varying degree depending upon the

8 Consistent Discretizations on Polyhedral Grids 187

Fig. 8.2. Solution of a symmetric flow problem in a homogeneous domain using the
TPFA method on a skew grid that is not K-orthogonal. The upper-left plot shows
the pressure distribution, whereas the lower-left plot shows streamlines and time-
of-flight values less than 0.25 PVI. The plot to the right shows time-of-flight in left
(L) and right (R) sink for a series of refined grids of dimension (20n+ 1)× 10n for
n = 1, . . . , 30. The solutions do not converge toward the analytical solution shown
as the dashed red line.

angles the cell faces make with the principal directions of the permeability
tensor. We have already seen an example of grid effects in Figure 6.6 in Sec-
tion 6.4.3, where the use of a triangular grids caused large deviations from
what should have been an almost symmetric pressure draw-down. To demon-
strate grid-orientation effects and lack of convergence more clearly, we look at
a simple example that has been widely used to teach reservoir engineers the
importance of aligning the grid with the principal permeability directions.

Consider a homogeneous reservoir in the form of a 2D rectangle [0, 4] ×
[0, 1]. Flow is driven inside the reservoir by a fluid source with unit rate located
at (1, 0.975), and two fluid sinks located at (0.5, 0.025) and (3.5, 0.025), each
having a rate equal one half. The domain is discretized by a grid that is
uniform along the north side and graded along the south side:

G = cartGrid ([41,20],[2,1]);
makeSkew = @(c) c(:,1) + .4*(1−(c(:,1)−1).ˆ2).*(1−c(:,2));
G.nodes.coords(:,1) = 2*makeSkew(G.nodes.coords);

The grid is not K-orthogonal, and we therefore cannot expect that the TPFA
method will converge. Complete setup of the problem can be found in the
script 1phase/showInconsistentTPFA.m.

Figure 8.2 reports the result of a convergence study. All the computed
solutions exhibit the same lack of symmetry that is seen in the solution on the
41 × 20 grid. Moreover, the large difference in travel times from the injector
to the two producers does not decay with increasing grid resolution, which
confirms the expected lack of convergence for an inconsistent scheme.

188 8 Consistent Discretizations on Polyhedral Grids

8.1 The Mixed Finite-Element Method

There are several ways to formulate consistent discretization methods. In this
section, we will introduce a method, the mixed finite-element method [15],
which is based on a formulation that is quite different from the one we have
seen so far for the inconsistent two-point method. The first new idea is that
instead of forming a second-order elliptic pressure equation, we will form a sys-
tem of equations consisting of two first-order equations: the mass-conservation
equation and Darcy’s law. This means that unlike for the TPFA method, in
which discrete fluxes are computed by post-processing the pressure solution,
the mixed method solves for pressure and fluxes simultaneously. The second
new idea is to look for solutions that satisfy the flow equations in a weak
sense; that is, look for solutions that fulfill the equation when multiplied with
a suitable test function and integrated in space. The third new idea is to ex-
press the unknown solution as a linear combination of a set of basis functions
that take the form of piecewise polynomials with localized support.

The mixed finite-element method is not implemented directly in MRST,
but the key ideas of this method will be instrumental in the development of a
general class of finite-volume discretizations that will be outlined in Section 8.2
and discussed in more details in the remaining sections of the chapter. As a
precursor to this discussion, we will in the following present the mixed finite-
element method in some detail.

8.1.1 Continuous Formulation

We start by restating the continuous flow equation in full detail:

∇ · ~v = q, ~v = −K∇p, ~x ∈ Ω ⊂ Rd (8.3)

with boundary conditions ~v × ~n for ~x ∈ ∂Ω. For compatibility, we require
that

∫
Ω
q d~x = 0. Since this is a pure Neumann boundary-value problem,

the pressure p is only defined up to an arbitrary constant, and as an extra
constraint, we require that

∫
Ω
p d~x = 0.

In the mixed method, we will look for solutions that lie in an abstract
function space. To this end, we need two spaces: L2(Ω) is the space of square
integrable functions, and Hdiv

0 is a so-called Sobolev space defined as

Hdiv
0 (Ω) = {~v ∈ L2(Ω)d : ∇ · ~v ∈ L2(Ω) and ~v · ~n on ∂Ω}, (8.4)

i.e., the set of square-integrable, vector-valued functions that have compact
support in Ω and whose divergence is also square integrable. The mixed for-
mulation of (8.3) now reads: find a pair (p,~v) that lies in L2(Ω) × Hdiv

0 (Ω)
and satisfies∫

Ω

~u · K−1~v d~x−
∫
Ω

p∇ · ~u d~x = 0, ∀~u ∈ Hdiv
0 (Ω),∫

Ω

w∇ · ~v d~x =

∫
Ω

qw d~x, ∀w ∈ L2(Ω).

(8.5)

8.1 The Mixed Finite-Element Method 189

The first equation follows by multiplying Darcy’s law by K−1 applying the
divergence theorem to the term involving the pressure gradient. (Recall that
~u is zero on ∂Ω by definition so that the term

∫
∂Ω

p~u · ~n ds = 0).
Equation (8.5) can be written on a more compact form if we introduce the

following three inner products

b(·, ·) : Hdiv
0 ×Hdiv

0 → R, b(~u,~v) =

∫
Ω

~u · K−1~v d~x

c(·, ·) : Hdiv
0 × L2 → R, c(~u, p) =

∫
Ω

p∇ · ~u d~x

(·, ·) : L2 × L2 → R, (q, w) =

∫
Ω

qw d~x,

(8.6)

and write

b(~u,~v)− c(~u, p) = 0

c(~v, w) = (q, w)
(8.7)

The mixed formulation (8.7) can alternatively be derived by minimizing the
energy functional

I(~v) =
1

2

∫
Ω

~v · K−1~v d~x,

over all functions ~v ∈ Hdiv
0 (Ω) that are mass conservative, i.e., subject to the

constraint
∇ · ~v = q.

The common strategy for solving such mimization problems is to introduce a
Lagrangian functional, which in our case reads

L(~v, p) =

∫
Ω

(
1
2~v · K

−1~v − p
(
∇ · ~v − q

))
d~x =

1

2
b(~v,~v)− c(~v, p) + (p, q),

where p is the so-called the Lagrangian multiplier. At a minimum of L, we
must have that ∂L/∂~v = 0. Looking at an increment ~u of ~v, we have the
requirement that

0 =
∂L

∂~v
~u = lim

ε→0

1

ε

[
L(~v + ε~u, p)− L(~v, p)

]
= b(~u,~v)− c(~u, p)

must be zero for all u ∈ Hdiv
0 (Ω). Similarly, we can show that

0 =
∂L

∂p
w = lim

ε→0

1

ε

[
L(~v, p+ εw)− L(~v, p)

]
= −c(~v, w) + (q, w)

must be zero for all w ∈ L2(Ω). To show that the solution ~v is a minimal point,
we consider a perturbation ~v + ~u that satisfies the constraints, i.e., ~u ∈ Hdiv

0

and ∇ · ~u = 0. For the energy functional we have that

190 8 Consistent Discretizations on Polyhedral Grids

I(~v + ~u) =
1

2

∫
Ω

(~v + ~u) · K−1(~v + ~u) d~x = I(~v) + I(~u) + b(~u,~v)

= I(~v) + I(~u) + c(~u, p) = I(~v) + I(~u) > I(~v),

which proves that ~v is indeed a minimum of I. One can also prove that the
solution (p,~v) is a saddle-point of the Lagrange functional, i.e., that L(~v, w) ≤
L(~v, p) ≤ L(~u, p) for all ~u 6= ~v and w 6= p. The right inequality can be shown
as follows

L(~v + ~u, p) = 1
2b(~v + ~u,~v + ~u)− c(~v + ~u, p) + (q, p)

= L(~v, p) + I(~u) + b(~u,~v)− c(~u, p) = L(~v, p) + I(~u) > L(~v, p).

The left inequality follows in a similar manner.

8.1.2 Discrete Formulation

To discretize the mixed formulation, (8.5), we introduce a grid Ωh = ∪Ωi and
replace L2(Ω) and Hdiv

0 (Ω) by finite-dimensional subspaces U and V defined
over the grid. Likewise, we rewrite the inner products (8.6) as sums of integrals
localized to cells

b(·, ·)h : V × V → R, b(~u,~v)h =
∑
i

∫
Ωi

~u · K−1~v d~x

c(·, ·)h : V × U → R, c(~u, p)h =
∑
i

∫
Ωi

p∇ · ~u d~x

(·, ·)h : U × U → R, (q, w)h =
∑
i

∫
Ωi

qw d~x,

(8.8)

To obtain a practical numerical method, the spaces U and V are typically
defined as piecewise polynomial functions that are nonzero on a small col-
lection of grid cells. For instance, in the Raviart–Thomas method [55, 15] of
lowest order for triangular, tetrahedral or regular parallelepiped grids, L2(Ω)
is replaced by

U = {p ∈ L2(∪Ωi) : p|Ωi is constant ∀Ωi ⊂ Ω} = span{χi},

where χi is the characteristic function of grid cell Ωi,

χi =

{
1, ~x ∈ Ωi
0, otherwise.

Likewise, Hdiv
0 (Ω) is replaced by a space V consisting of functions ~v ∈

Hdiv
0 (∪Ωi) that have linear components on each grid cell Ωi ∈ Ω, has normal

components ~v · ~nik that are constant on each cell interface Γik and contin-
uous across these interfaces. These requirements are satisfied by functions

8.1 The Mixed Finite-Element Method 191

Fig. 8.3. Illustration of the velocity basis for the lowest-order Raviart–Thomas
(RT0) method for a 2D Cartesian grid. There are four basis functions that have
nonzero support in the interior of the center cell. The basis functions correspond to
degrees-of-freedom associated with the west, east, south, and north cell faces.

~v ∈ P1(Ωi)
d, i.e., first order polynomials that on each grid cell takes the form

~v(~x) = ~a + b~x, where ~a and b are vector-valued and scalar constants, respec-
tively. These functions can be parametrized in terms of the faces between two
neighboring cells. This means that we can write V = span{~ψik}, where each

function ~ψik is defined as

~ψik ∈ P1(Ωi)
d ∪ P1(Ωk)d and (~ψik · ~njl)|Γjl

=

{
1 if Γjl = Γik,

0 otherwise,

Figure 8.3 illustrates the four nonzero basis functions that result in the special
case of a Cartesian grid in 2D.

To derive a fully discrete method, we use χi and ~ψik as our trial functions
and express the unknown p(~x) and ~v(~x) as sums over these trial functions,

p =
∑
i piχi and ~v =

∑
ik vik

~ψik. The corresponding degrees-of-freedom, pi
associated with each cell and vik associated with each interface Γik, are col-
lected in two vectors p = {pi} and v = {vik}. Using the same functions as
test functions, we derive a linear system of the form[

B −CT

C 0

] [
v
p

]
=

[
0
q

]
. (8.9)

Here, B = [bik,jl], C = [ci,kl], and q = [qi], where:

bik,jl = b(~ψik, ~ψjl)h=
∑
`

∫
Ω`

~ψik · K−1 ~ψjl d~x,

ci,kl = c(~ψkl, χi)h =

∫
Ωi

∇ · ~ψkl d~x,

qi = (q, χi)h =

∫
Ωi

q d~x.

(8.10)

Note that for the first-order Raviart–Thomas finite elements, we have

ci,kl =

1, if i = k,

−1, if i = l,

0, otherwise.

192 8 Consistent Discretizations on Polyhedral Grids

A: B:

C:

Fig. 8.4. Sparsity patterns for the full mixed finite-element matrix A, and the
matrix blocks B and C for a 4× 3× 3 Cartesian grid.

The matrix entries bik,jl depend on the geometry of the grid cells and whether
K is isotropic or anisotropic. Unlike the two-point method, mixed methods
are consistent and will therefore be convergent also on grids that are not
K-orthogonal.

In [2], we presented a simple MATLAB code that in approximately seventy-
five code lines implements the lowest-order Raviart–Thomas mixed finite-
element method on regular hexahedral grids for flow problems with diagonal
tensor permeability in two or three spatial dimensions. The code is divided
into three parts: assembly of theB block, assembly of the C block, and a main
routine that loads data (permeability and grid), assembles the whole matrix,
and solves the system. Figure 8.4 illustrates the sparsity pattern of the mixed
system for a nx × ny × nz Cartesian grid. The system matrix clearly has the
block structure given in (8.9). The matrix blocks B and C each have three
nonzero blocks that correspond to velocity basis functions oriented along the
three axial directions. That is, the degrees-of-freedom at the interfaces (the
fluxes) have been numbered in the same way as the grid cells; i.e., first faces
orthogonal to the x-direction, then faces orthogonal to the y-direction, and
finally faces orthogonal to the z-direction. This gives B a heptadiagonal struc-
ture.

To implement the code presented in [2], we exploited the simple geometry
of the Cartesian grid to integrate the Raviart–Thomas basis functions analyt-
ically and perform a direct assembly of the matrix blocks to give a MATLAB
code that was both compact and efficient. For more general grids, one would
typically perform an elementwise assembly by looping over all cells in the
grid, mapping each of them back to a reference element, on which the inte-
gration of basis functions is performed using some numerical quadrature rule.

8.1 The Mixed Finite-Element Method 193

In our experience, this procedure becomes cumbersome to implement for gen-
eral stratigraphic grids and would typically require the use of several different
reference elements. Because MRST is designed to work on general polyhedral
grids in 3D, the software does not supply any direct implementation of mixed
finite-element methods. Instead, the closest we get to a mixed method is a
finite-volume method in which the half-transmissibilities are equivalent to the
discrete inner products for the lowest-order Raviart–Thomas (RT0) method
on rectangular cuboids. More details will be explained in Section 8.3.4. In the
rest of this section, we will introduce an alternative formulation of the mixed
method that gives a smaller linear system that is better conditioned.

8.1.3 Hybrid formulation

In the same way as we proved that the solution of the mixed problem is
a saddle point, one can show that the linear system in (8.9) is indefinite.
Indefinite systems are harder to solve and generally require special linear
solvers. In the following, we therefore introduce an alternative formulation of
the mixed method that, when discretized, will give a positive-definite discrete
system and thereby simplify the computation of a discrete solution. Later in
the chapter, this so-called hybrid formulation will form the basis for a general
family of finite-volume discretizations on polygonal and polyhedral grids.

In a hybrid formulation, the need to solve a saddle-point problem is avoided
by lifting the constraint that the normal velocity must be continuous across
cell faces and instead integrate (8.3) to get a weak form that contains jump
terms at the cell interfaces. Continuity of the normal velocity component is
then reintroduced by adding an extra set of equations, in which the pres-
sure π at the cell interfaces plays the role of Lagrange multipliers. (Recall
how Lagrange multipliers were used to impose mass conservation as a con-
straint in the minimization procedure used to derive the mixed formulation in
Section 8.1.1). Introducing Lagrange multipliers does not change ~v or p, but
enables the recovery of pressure values at cell faces, in addition to introduc-
ing a change in the structure of the weak equations. Mathematically, mixed
hybrid formulation reads: find (~v, p, π) ∈ Hdiv

0 (Ωh)× L2(Ωh)×H 1
2 (Γh) such

that ∑
i

∫
Ωi

(
~u · K−1~v − p∇ · ~u

)
d~x+

∑
ik

∫
Γik

π ~u · ~n ds = 0,

∑
i

∫
Ωi

w∇ · ~v d~x =

∫
Ωh

qw d~x,

∑
ik

∫
Γik

µ~v · ~n ds = 0

(8.11)

for all test functions ~u ∈ Hdiv
0 (Ωh), w ∈ L2(Ωh), and µ ∈ H

1
2 (Γh). Here,

Γh = ∪Γik = ∪∂Ωh \∂Ω denotes all the interior faces of the grid and H
1
2 (Γh)

194 8 Consistent Discretizations on Polyhedral Grids

is the space spanned by the traces1 of functions in H1(Ωh), i.e., the space of
square integrable functions whose derivatives are also square integrable. As
for the mixed formulation, we can introduce inner products to write the weak
equations (8.11) in a more compact form,

b(~u,~v)− c(~u, p) + d(~u, π) = 0

c(~v, w) = (q, w)

d(~v, µ) = 0,

(8.12)

where the inner products b(·, ·), c(·, ·), and (·, ·) are defined as in (8.6), and
d(·, ·) is a new inner product defined over the interior faces,

d(·, ·)h : Hdiv
0 (Ωh)×H 1

2 (Γh)→ R, d(~v, π) =
∑
ik

∫
Γik

π ~v · ~n ds. (8.13)

To derive a fully discrete problem, we proceed in the exact same way as for
the mixed problem by first replacing the function spaces L2, Hdiv

0 , and H
1
2 by

finite-dimensional subspaces V and U that are spanned by piecewise polyno-
mial basis functions with local support as discussed above. In the lowest-order
approximation, the finite-dimensional space Π consists of functions that are
constant on each face,

Π = span{µik}, µik(~x) =

{
1, if ~x ∈ Γik,
0, otherwise.

(8.14)

Using these basis functions as test and trial functions, one can derive a discrete
linear system of the form, B C D

CT 0 0

DT 0 0

 v
−p
π

 =

0
q
0

 , (8.15)

where the vectors v, p, and π collect the degrees-of-freedom associated with
fluxes across the cell interfaces, face pressures, and cell pressures, respectively,
the matrix blocks B and C are defined as in (8.10), and D has two non-zero
entries per column (one entry for each side of the cell interfaces).

The linear system (8.15) is an example of a sparse, symmetric, indefinite
system (i.e., a system A whose quadratic form xTAx takes both positive and
negative values). Several methods for solving such systems can be found in
the literature, but these are generally not as efficient as solving a symmetric,
positive-definite system. We will therefore use a so-called Schur-complement
method to reduce the mixed hybrid system to a positive-definite system. The
Schur-complement method basically consists of using a block-wise Gaussian

1 If you are not familiar with the notion of a trace operator, think of it as the values
of a function along the boundary of the domain this function is defined on.

8.2 Consistent Methods on Mixed Hybrid Form 195

elimination of (8.15) to form a positive-definite system (the Schur comple-
ment) for the face pressures,(

DTB−1D − F TL−1F
)
π = F TL−1q. (8.16)

Here, F = CTB−1D and L = CTB−1C. Given the face pressures, the cell
pressures and fluxes can be reconstructed by back-substitution, i.e., by solving

Lp = q + Fπ, Bu = Cp−Dπ. (8.17)

Unlike the mixed method, the hybrid method has a so-called explicit flux
representation, which means that the inter-cell fluxes can be expressed as
a linear combination of neighboring values for the pressure. This property is
particularly useful in fully implicit discretizations of time-dependent problems,
as discussed in Chapter 7.

This is all we will discuss about mixed and mixed-hybrid methods herein.
Readers interested in learning more about mixed finite-element methods, and
how to solve the corresponding linear systems are advised to consult some of
the excellent books on the subject, for instance [14, 13, 15]. In the rest of the
chapter, we will instead discuss how ideas from mixed-hybrid finite-element
methods can be used to formulate finite-volume methods that are consistent
and hence convergent on grids that are not K-orthogonal.

8.2 Consistent Methods on Mixed Hybrid Form

In this section, we will present a large class of consistent, finite-volume meth-
ods. Our formulation will borrow several ideas from the mixed methods, but
will be much simpler to formulate, and implement, for general polygonal and
polyhedral grids. For simplicity, we will assume that all methods can be writ-
ten on the following local form

vi = T i(epi − πi), (8.18)

where vi is a vector of all fluxes associated with a cell Ωi, ei = (1, . . . , 1)
T

has one unit value per face of the cell, πi is a vector of face pressures, and T i
is a matrix of one-sided transmissibilities. The local discretization (8.18) can
alternatively be written as

M ivi = epi − πi. (8.19)

Consistent with the discussion in Section 8.1, the matrix M is referred to
as the local inner product. From the local discretizations (8.18) or (8.18) on
each cell, we will derive a linear system of discrete global equations written
on mixed or hybridized mixed form. Both forms are supported in MRST,
but herein we will only discuss the hybrid form for brevity. In the two-point

196 8 Consistent Discretizations on Polyhedral Grids

method, the linear system was developed by combining mass conservation and
Darcy’s law into one second-order discrete equation for the pressure. In the
mixed formulation, the mass conservation and Darcy’s law are kept as separate
first-order equations that together form a coupled system for pressure and
face fluxes. In the hybrid formulation, the continuity of pressures across cell
faces is introduced as a third equation that together with mass conservation
and Darcy’s law constitute a coupled system for pressure, face pressure, and
fluxes. Not all consistent methods need to, or can be formulated on this form.
However, using the mixed hybrid formulation will enable us to give a uniform
presentation of a large class of schemes that also includes the coarse-scale
formulation of several multiscale methods, see e.g., [26].

Going back to the TPFA method formulated in Section 5.4.1, it follows
immediately from (5.49) that the method can be written as in (8.18) and that
the resulting T i matrix is diagonal with entries

(T i)kk = ~nik · K~cik/|~cik|2, (8.20)

where the length of the normal vector ~nik is assumed to be equal to the area of
the corresponding face. The equivalent form (8.19) follows trivially by setting
M i = T−1

i . Examples of consistent methods that can be written in the form
(8.18) or (8.19) include the lowest-order Raviart–Thomas methods seen in the
previous section, multipoint flux approximation (MPFA) schemes [6, 25, 4],
and recently developed mimetic finite-difference methods [16]. For all these
methods, the corresponding T i and M i will be full matrices. We will come
back to more details about specific schemes later in the chapter.

To derive the global linear system on mixed hybrid form, we augment
(8.19) with flux and pressure continuity across cell faces. By assembling the
contributions from all cells in the grid, we get the following linear system B C D

CT 0 0

DT 0 0

 v
−p
π

 =

0
q
0

 , (8.21)

where the first row in the block-matrix equation corresponds to (8.19) for all
grid cells. The vector v contains the outward fluxes associated with half faces
ordered cell-wise so that fluxes over interior interfaces in the grid appear twice,
once for each half face, with opposite signs. Likewise, the vector p contains
the cell pressures, and π the face pressures. The matrices B and C are block
diagonal with each block corresponding to a cell,

B =

M1 0 . . . 0

0 M2 . . . 0
...

... . . .
...

0 0 . . . Mn

 , C =

e1 0 . . . 0
0 e2 . . . 0
...

... . . .
...

0 0 . . . en

 , (8.22)

where M i = T−1
i . Similarly, each column of D corresponds to a unique

interface in the grid and has two unit entries for interfaces between cells in

8.2 Consistent Methods on Mixed Hybrid Form 197

the interior of the grid. The two nonzero entries appear at the indexes of the
corresponding half-faces in the cell-wise ordering. Similarly, D has a single
nonzero entry in each column that corresponds to an interface between a cell
and the exterior.

The hybrid system (8.21) is obviously much larger than the linear system
obtained for the standard TPFA method, but can be reduced to a positive-
definite system for the face pressures, as discussed in Section 8.1.3, and then
solved using either MATLAB’s standard linear solvers or a highly-efficient,
third-party solver such as the agglomeration multigrid solver, AGMG [47, 7].
From the expressions in (8.16) and (8.17), we see that in order to compute the
Schur complement to form the reduced linear system for the face pressures, as
well as to reconstruct cell pressures and face fluxes, we only need B−1 in the
solution procedure above. Moreover, the matrix L is by construction diagonal
and computing fluxes is therefore an inexpensive operation. Many schemes—
including the mimetic method, the MPFA-O method, and the standard TPFA
scheme—yield algebraic approximations for the B−1 matrix. Thus, (8.21) en-
compasses a family of discretization schemes whose properties are determined
by the choice of B, which we will discuss in more detail in Section 8.3.

However, before digging into details about specific, consistent methods, we
revisit the example discussed on page 187 to demonstrate how one easily can
replace the TPFA method by a consistent method and thereby significantly
reduce the grid-orientation effects seen in Figure 8.2. In MRST, the mimetic
methods are implemented in a separate module mimetic that is not part of
the core functionality. In a script that solves a flow problem, one first loads
the mimetic module by calling

mrstModule add mimetic;

and then continues to replace the two-point computation of half-face trans-
missibilities

hT = computeTrans(G, rock);

by a call that constructs the local mimetic half-transmissibility T i or its equiv-
alent inner product M i = T−1

i for each cell

S = computeMimeticIP(G, rock);

Likewise, each call to

state = incompTPFA(state, G, hT, fluid);

which assembles and solves the symmetric, positive-definite, two-point system
is replaced by a call to

state = solveIncompFlow(state, G, S, fluid);

which will assemble and solve the global mixed hybrid system. (The rou-
tine can also be set to assemble a mixed system, and in certain cases also

198 8 Consistent Discretizations on Polyhedral Grids

Fig. 8.5. Solution of a symmetric flow problem in a homogeneous domain using
the TPFA method (left) and the mimetic method (right) on a skew grid that is not
K-orthogonal.

a TPFA-type system.) In Figure 8.5 we have applied the mimetic solver to
the exact same setup as in Figure 8.2. The approximate solution computed
by the mimetic method is almost symmetric and represents a significant im-
provement compared with the TPFA method. In particular, the error in the
travel time between injector and producers is reduced from 17% for TPFA
to less than 2% for the mimetic method. Moreover, repeating a similar grid
refinement study as reported in Figure 8.2 verifies that the consistent mimetic
method converges towards the correct solution.

The few calls outlined above constitutes all one needs to obtain a consistent
discretization on general polygonal and polyhedral grids, and readers who
are not interested in getting to know the inner details of various consistent
methods can safely jump to the next chapter.

8.3 The Mimetic Method

Mimetic finite-difference methods are examples of so-called compatible spatial
discretizations that are constructed so that they not only provide accurate
approximation of the mathematical models but also inherit or mimic fun-
damental properties of the differential operators and mathematical solutions
they approximate. Examples of properties include conservation, symmetries,
vector calculus identities, etc. Such methods have become very popular in
recent years and are currently used in wide range of applications, see e.g.,
[11].

The mimetic methods to be discussed in the following can be seen as
a finite-volume generalization of finite-differences or (low-order) mixed-finite
element methods to general polyhedral grids. The methods are defined in a
way that introduces a certain freedom of construction that naturally leads

8.3 The Mimetic Method 199

to a family of methods. By carefully picking the parameters that are needed
to fully specify a method, one can construct mimetic methods that coincide
with other known methods, or reduce to these methods (e.g., the two-point
method, the RT0 mixed finite-element method, or the MPFA-O multipoint
method) on certain types of grids.

The mimetic methods discussed herein, can all be written on the equivalent
forms (8.18) or (8.19) and are constructed so that they are exact for linear
pressure fields and give a symmetric positive-definite matrix M . In addition,
the methods use discrete pressures and fluxes associated with cell and face
centroids, respectively, and consequently resemble finite-difference methods.

A linear pressure field can be written in the form p = ~x·~a+b for a constant
vector ~a and scalar b, giving a Darcy velocity equal ~v = −K~a. Let ~nik denote
the area-weighted normal vector to Γik and ~cik be the vector pointing from
the centroid of cell Ωi to the centroid of face Γik, as seen in Figure 5.4. Using
Darcy’s law and the notion of a one-sided transmissibility T ik (which will
generally not be the same as the two-point transmissibility), the flux and
pressure drop can be related as follows,

vik = −~nikK~a = Tik(pi − πik) = −Tik~cik · ~a. (8.23)

To get this relations in the one of the local forms (8.18) and (8.19) we collect
all vectors ~cik and ~nik defined for a specific cell Ωi as rows in two matrices Ci

and N i. Because the relation (8.23) is required to hold for all linear pressure
drops, i.e., for an arbitrary vector ~a, we see that the matrices M i and T i
must satisfy the following consistency conditions

MNK = C, NK = TC, (8.24)

where we for simplicity have dropped the subscript i that identifies the cell
number. These general equations give us (quite) large freedom in how to
specify a specific discretization method: any method in which the local inner
product M i, or equivalently the local transmissibility matrix T i, is positive
definite and satisfies (8.24) will be a consistent, first-order accurate discretiza-
tion. In the rest of the section, we will discuss various choices of valid inner
products M i or reverse inner products T i.

8.3.1 General Family of Inner Products

The original article [16] that first introduced the mimetic methods considered
herein, discussed inner products for discrete velocities. However, as we have
seen in previous chapters, it is more common in the simulation of flow in
porous media to consider inter-cell fluxes as the primary unknowns. We will
therefore henceforth consider inner products of fluxes rather than velocities.
The relation between the two is trivial: an inner product of velocities becomes
an inner product for fluxes by pre- and post-multiplying by the inverse of the
area of the corresponding cell faces. In other words, if A is a diagonal matrix

200 8 Consistent Discretizations on Polyhedral Grids

with element Ajj equal the are of the j-th face, then the flux inner product
Mflux is related to the velocity inner product Mvel through

Mflux = A−1MvelA
−1. (8.25)

To simplify the derivation of valid solutions, we start by stating the fol-
lowing geometrical property which relates C and N as follows (for a proof,
see [16]):

CTN = V = diag(|Ωi|). (8.26)

Next, we multiply the left matrix equation in (8.24) by K−1CTN

C (K−1CTN) = (MNK) (K−1CTN) = MNCTN = MNV ,

from which it follows that there is a family of valid solution that has the form

M =
1

|Ωi|
CK−1CT +M2, (8.27)

where M2 is a matrix defined such that M2N = 0, i.e., any matrix whose
rows lie in the left nullspace of NT. Moreover, to make a sensible method
we must require that M is symmetric positive definite. In other words, any
symmetric and positive definite inner product that fulfills these requirements
can be represented in two alternative compact forms,

M =
1

|Ωi|
CK−1CT +Q⊥NSMQ

⊥
N

T

=
1

|Ωi|
CK−1CT + P⊥NSMP

⊥
N ,

(8.28)

where SM denotes any symmetric, positive definite matrix,Q⊥N is an orthonor-
mal basis for the left null space of NT, and P⊥N is the null-space projection
I−QNQN

T in which QN is a basis for the spaces spanned by the columns of
N . Similarly, we can derive a closed expression for the inverse inner product
T by multiplying the right matrix equation in (8.24) by V −1 from the left
and by V from the right and using the identity (8.26),

TC = V −1 (NK)V = V −1 (NK) (CTN)
T

= V −1 (NKNT)C

By the same argument as for M , mutatis mutandis, we obtain the following
family of inverse inner products,

T =
1

|Ωi|
NKNT +Q⊥CSTQ

⊥
C

T

=
1

|Ωi|
NKNT + P⊥CSTP

⊥
C ,

(8.29)

where Q⊥C is an orthonormal basis for the left nullspace of CT and P⊥C =
I −QCQC

T is the corresponding nullspace projection.

8.3 The Mimetic Method 201

The matrices M and T in (8.28) and (8.29) are evidently symmetric, so
we only need to prove that they are positive definite. We start by writing the
inner product as M = M1 +M2, and observe that each of these matrices are
positive semi-definite and our result follows if we can prove that this implies
that M is positive definite. Let z be an arbitrary nonzero vector which we
split uniquely as z = Nx+ y, where x lies in the column space of N and y
lies in the left nullspace of NT. If y is zero, we have

zTMz = xTNTM1Nx

= |Ωi|−1xT (NTC)K−1 (CTN)x = |Ωi|xTK−1x > 0

because K−1 is a positive definite matrix. If y is nonzero, we have

zTMz = zTM1z + yTM2y > 0

because zTM1z ≥ 0 and yTM2y > 0. An analogous argument holds for the
matrix T , and hence we have proved that (8.28) and (8.29) give a well-defined
family of consistent discretizations.

So far, we have not put any restrictions on the matrices SM and ST that
will determine the specific methods, except for requiring that they should be
positive definite. In addition, they these matrices should mimic the scaling
properties of the continuous equation, which is invariant under affine trans-
formations of space and permeability,

~x 7→ σ~x and K 7→ σTKσ, (8.30)

To motivate how we should choose the matrices SM and ST to mimic these
scaling properties, we will look at a simple 1D example:

Example 8.1. Consider the a grid cell x ∈ [−1, 1], for which N = C = [1,−1]
T

and Q⊥N = Q⊥C = 1√
2
[1, 1]

T
. Hence

M =
1

2

[
1
−1

]
1

K
[1,−1] +

1

2

[
1
1

]
SM [1, 1],

T =
1

2

[
1
−1

]
K [1,−1] +

1

2

[
1
1

]
S [1, 1].

(8.31)

The structure of the inner product should be invariant under scaling of K and
thus we can write the inner product as a one-parameter family of the form

M =
1

2K

([
1 −1
−1 1

]
+

2

t

[
1 1
1 1

])
,

T =
K

2

([
1 −1
−1 1

]
+
t

2

[
1 1
1 1

])
.

(8.32)

Having established a plausible way of scaling the inner products, we are now
in a position to go through various specific choices that are implemented in the
mimetic module of MRST and look at correspondence between these methods
and the standard two-point method, the lowest-order RT0 mixed method, and
the MPFA-O method. Our discussion follows [38].

202 8 Consistent Discretizations on Polyhedral Grids

8.3.2 General Parametric Family

Motivated by the example above, we propose to choose the matrix ST as the
diagonal of the first matrix term in (8.29) so that these two terms scale simi-
larly under transformations of the type (8.30). Using this definition of ST and
that M should be equal to T−1 suggests the following general family of inner
products that only differ in the constant in front of the second (regularization)
matrix term:

M =
1

|Ωi|
CK−1CT +

|Ωi|
t
P⊥N diag(NKNT)−1P⊥N ,

T =
1

|Ωi|

[
NKNT + tP⊥C diag(NKNT)P⊥C

]
.

(8.33)

In MRST, this family of inner products is called ’ip qfamily’ and the parameter
t is supplied in a separate option:

S = computeMimeticIP(G, rock, 'InnerProduct', 'ip qfamily', 'qparam', t);

As we will see below, mimetic inner products that reduce to the standard
TPFA method or the RT0 mixed finite-element method on simple grids are
members of this family.

8.3.3 Two-Point Type Methods

A requirement of the two-point method is that the transmissibility matrix
T (and hence also the matrix M of the inner product) should be diagonal.

Looking at (8.24), we see that this is only possible if the vectors K ~Nik and
~cik are parallel, which is the exact same condition for K-orthogonality that
we argued was sufficient to guarantee consistency of the method on page 8.
An explicit expression for the diagonal entries of the two-point method on
K-orthogonal grids has already been given in (8.20). Strictly speaking, this
relation does not always yield a positive value for the two-point transmissi-
bility on any grid. For instance, for corner-point grids it is normal to define
the face centroids as the arithmetic mean of the associated corner-point nodes
and the cell centroids as the arithmetic mean of the centroids top and bottom
cell faces, which for most grids will guarantee a positive transmissibility.

The extension of the two-point to non-orthogonal grids is not unique. Here,
we will present a mimetic method that coincides with the two-point methods
in this method’s region of validity, while at the same time giving a valid
mimetic inner product and hence a consistent discretization for all types of
grids and permeability tensors. One advantage of this method, compared with
multipoint flux-approximation methods, is that the implementation is simpler
for general unstructured grids.

The most instructive way to introduce the general method is to look at a
simple example that will motivate the general construction.

8.3 The Mimetic Method 203

Example 8.2. We consider the grid cell [−1, 1] × [−1, 1] in 2D and calculate
the components that make up the inverse inner product T for a diagonal and
a full permeability tensor K and compare with the corresponding two-point
discretization. We start by setting up the permeability and the geometric
properties of the cell

K1 = eye(2); K2 = [1 .5; .5 1];
C = [−1 0; 1 0; 0 −1; 0 1]; N = 2*C; vol = 4;

Using the definition (8.20), we see that the transmissibility matrix correspond-
ing resulting from the standard two-point discretization can be computed as:

T = diag(diag(N*K*C')./sum(C.*C,2))

The result is T=diag([2 2 2 2]) for both permeability tensors, which clearly
demonstrates the lack of consistency for this scheme. To construct the inverse
inner product, we start by computing the nullspace projection

Q = orth(C);
P = eye(size(C,1)) − Q*Q';

We saw above that as a simple means of providing a positive definite matrix
ST that scales similarly to the first term in the definition of T in (8.29), we
could choose ST as a multiple of the diagonal of this matrix:

W = (N * K * N ') ./ vol;
St = diag(diag(W));

Collecting our terms, we see that the inverse inner product will be made up
of the following two terms for the case with the diagonal permeability tensor:

W = 1 -1 0 0 P*St*P = 0.5 0.5 0 0

-1 1 0 0 0.5 0.5 0 0

0 0 1 -1 0 0 0.5 0.5

0 0 -1 1 0 0 0.5 0.5

If we now define the inverse inner product as

T = W + 2*P*St*P

the resulting method will coincide with the diagonal transmissibility matrix
for diagonal permeability and give a full matrix for the tensor permeability,

T1 = 2.0 0 0 0 T2 = 2.0 0 0.5 -0.5

0 2.0 0 0 0 2.0 -0.5 0.5

0 0 2.0 0 0.5 -0.5 2.0 0

0 0 0 2.0 -0.5 0.5 0 2.0

Altogether, we have derived a discrete inner product that generalizes the two-
point method to full tensor permeabilities on 2D Cartesian grids and gives a
consistent discretization also when the grid is not K-orthogonal.

204 8 Consistent Discretizations on Polyhedral Grids

Motivated by the above example, we define a quasi-two-point inner product
for general grids that simplifies to the standard TPFA method on Cartesian
grids with diagonal permeability tensor:

M =
1

|Ωi|
CK−1CT +

|Ωi|
2
P⊥N diag(NKNT)−1P⊥N ,

T =
1

|Ωi|

[
NKNT + 2P⊥C diag(NKNT)P⊥C

]
.

(8.34)

The observant reader will notice that this is a special case for t = 2 of the
general family (8.35) of inner products.

In MRST, this inner product is called ’ip quasitpf’ and is obtained by
constructing the inner product using the following call sequence

S = computeMimeticIP(G, rock, 'InnerProduct', 'ip quasitpf');

For completeness, the mimetic module also supplies a standard, diagonal two-
point inner product that will not generally be consistent. This is invoked by
the following call:

S = computeMimeticIP(G, rock, 'InnerProduct', 'ip tpf');

8.3.4 Raviart–Thomas Type Inner Product

To compute the mixed finite-element inner product on cells that are not sim-
plexes or hexahedrons aligned with the coordinate axes, the standard approach
is to map the cell back to a unit reference cell on which the basis mixed basis
functions are defined and perform the integration there. For a general hexahe-
dral cell in 3D the integral based on such a transformation would conceptually
look something like∫∫∫

Ωi

f(~x) d~x =

∫∫∫
[0,1]3

f(~x(ξ, η, ζ)) |J(ξ, η, ζ)| dξdηdζ

where J = ∂(x, y, z)/∂(ξ, η, ζ) denotes the Jacobian matrix of the coordinate
transformation. The determinant of J will generally be nonlinear and it is
therefore not possible to develop a mimetic inner product that is equal to the
lowest-order, Raviart–Thomas (RT0) inner product on general polygonal or
polyhedral cells, and at the same time simpler to compute.

Instead, we will develop an inner product that is equivalent to RT0 on grids
that are orthogonal and aligned with the principal axes of the permeability
tensor. To motivate the definition of the resulting inner product, we first look
at a simple example.

Example 8.3. Let us look at the RT0 basis functions defined on the reference
element in two spatial dimensions

~ψ1 =

(
1− x

0

)
, ~ψ2 =

(
x
0

)
, ~ψ3 =

(
0

1− y

)
, ~ψ4 =

(
0
y

)

8.3 The Mimetic Method 205

and compute the elements of the corresponding inner product matrix for a
diagonal permeability with unit entries, K = I. This entails careful treatment
of a sticky point: whereas the mixed inner product involves velocities, the
mimetic inner product involves fluxes that are are considered positive when
going out of a cell and negative when going into the cell. To get comparative
results, we will therefore reverse the sign of ~ψ1 and ~ψ3. Using symmetry and
the fact that ~ψi · ~ψk = 0 if i = 1, 2 and k = 3, 4, we only have to compute two
integrals: ∫ 1

0

∫ 1

0

~ψ1 · ~ψ1 dxdy =

∫ 1

0

(x− 1)2 dx = 1
3∫ 1

0

∫ 1

0

~ψ1 · ~ψ2 dxdy =

∫ 1

0

(x− 1)x dx = − 1
6

This means that the RT0 inner product in 2D reads

M =

1
3 −

1
6 0 0

− 1
6

1
3 0 0

0 0 1
3 −

1
6

0 0 − 1
6

1
3

Similarly as in Example 8.2, we can compute the two matrices that will be
used to form the mimetic inner product

C = .5*[−1 0; 1 0; 0 −1; 0 1]; N = 2*C; vol = 1; K = eye(2)
Q = orth(N);
P = eye(size(C,1)) − Q*Q';
Sm = diag(1 ./ diag(N*K*N'))*vol;
M1 = C*(K\C')./vol
M2 = P*Sm*P

The result of this computation is

M1 = 0.25 -0.25 0 0 M2 = 0.50 0.50 0 0

-0.25 0.25 0 0 0.50 0.50 0 0

0 0 0.25 -0.25 0 0 0.50 0.50

0 0 -0.25 0.25 0 0 0.50 0.50

from which it follows that M2 should be scaled by 1
6 if the mimetic inner

product is to coincide with the RTO mixed inner product.

For a general grid, we define a quasi-RT0 inner product that simplifies to
the standard RT0 inner product on orthogonal grids with diagonal permeabil-
ity tensors, as well as on all other cases that can be transformed to such a grid
by an affine transformation of the form (8.30). The quasi-RT0 inner product
reads

M =
1

|Ωi|
CK−1CT +

|Ωi|
6
P⊥N diag(NKNT)−1P⊥N ,

T =
1

|Ωi|

[
NKNT + 6P⊥C diag(NKNT)P⊥C

]
.

(8.35)

206 8 Consistent Discretizations on Polyhedral Grids

and is a special case of the general family (8.35) of inner products for t = 6.
In MRST, this inner product is called ’ip quasirt’ and is obtained by con-

structing the inner product as follows

S = computeMimeticIP(G, rock, 'InnerProduct', 'ip quasitpf');

For completeness, the mimetic module also supplies a standard RTO inner
product, ’ip rt’ that is only valid on Cartesian grids.

8.3.5 Default Inner Product in MRST

For historic reasons, the default discretization in the mimetic module of
MRST corresponds to a mimetic method with half-transmissibilities defined
by the following expression,

T =
1

|Ωi|

[
NKNT +

6

d
tr(K)A (I −QQT)A

]
. (8.36)

where A is the diagonal matrix containing face areas and Q is an orthogonal
basis for the range of AC. The inner product, referred to as ’ip simple’, was
inspired by [16] and introduced in [3] to resemble the Raviart–Thomas inner
product (they are equal for scalar permeability on orthogonal grids, which can
be verified by inspection). Because the inner product is based on velocities,
it involves pre- and post-multiplication of (inverse) face areas and is in this
sense different from the general class of inner products discussed above. How-
ever, it is possible to show that the eigenspace corresponding to the nonzero
eigenvalues of the second matrix term is equal to the nullspace for C.

8.3.6 Local-Flux Mimetic Method

Another large class of consistent discretization methods that have received a
lot of attention in recent years is the multipoint flux-approximation (MPFA)
schemes [6, 25, 4]. Discussing different variants of this method is beyond the
scope of the current presentation, mainly because efficient implementation of
a general class of MPFA schemes requires some additional mappings that are
not yet part of the standard grid structure outlined in Section 3.4. However,
at the time of writing, work is in progress to expand the grid structure to
support the implementation of other MPFA type schemes

Having said this, there is a module mpfa in MRST that gives a simple
implementation of the MPFA-O method. In this implementation, we have
utilized the fact that some variants of the method can be formulated as a
mimetic method. This was first done by [36, 39] and is called the local-flux
mimetic formulation of the MPFA method. In this approach, each face in the
grid is subdivided into a set of subfaces, one subface per node that makes up
the face. The inner product of the local-flux mimetic method gives exact result
for linear flow and is block diagonal with respect to the faces corresponding

8.3 The Mimetic Method 207

to each node of the cell, but it is not symmetric. The block-diagonal property
makes it possible to reduce the system into a cell-centered discretisation for
the cell pressures. This naturally leads to a method for calculating the MPFA
transmissibilities. The crucial point is to have the corner geometry in the
grid structure and handle the problems with corners which do not have three
unique half faces associated.

The local-flux mimetic implementation of the MPFA-O method can be
used with a calling sequence that is similar to the TPFA and the mimetic
methods:

mrstModule add mpfa;
hT = computeMultiPointTrans(G, rock);
state = incompMPFA(state, G, hT, fluid)

However, the implementation is based on a combination of MATLAB and C,
which is used to invert small systems, and may not work out of the box on all
computers.

References

[1] J. E. Aarnes, V. Kippe, and K.-A. Lie. Mixed multiscale fi-
nite elements and streamline methods for reservoir simulation
of large geomodels. Adv. Water Resour., 28(3):257–271, 2005.
doi:10.1016/j.advwatres.2004.10.007.

[2] J. E. Aarnes, T. Gimse, and K.-A. Lie. An introduction to the numer-
ics of flow in porous media using Matlab. In G. Hasle, K.-A. Lie, and
E. Quak, editors, Geometrical Modeling, Numerical Simulation and Op-
timisation: Industrial Mathematics at SINTEF, pages 265–306. Springer
Verlag, Berling Heidelberg New York, 2007.

[3] J. E. Aarnes, S. Krogstad, and K.-A. Lie. Multiscale mixed/mimetic
methods on corner-point grids. Comput. Geosci., 12(3):297–315, 2008.
ISSN 1420-0597. doi:10.1007/s10596-007-9072-8.

[4] I. Aavatsmark. An introduction to multipoint flux approxima-
tions for quadrilateral grids. Comput. Geosci., 6:405–432, 2002.
doi:10.1023/A:1021291114475.

[5] I. Aavatsmark and R. Klausen. Well index in reservoir simulation for
slanted and slightly curved wells in 3d grids. SPE J., 8(01):41–48, 2003.

[6] I. Aavatsmark, T. Barkve, Ø. Bøe, and T. Mannseth. Discretization on
non-orthogonal, curvilinear grids for multi-phase flow. Proc. of the 4th
European Conf. on the Mathematics of Oil Recovery, 1994.

[7] AGMG. Iterative solution with AGgregation-based algebraic MultiGrid,
2012. http://homepages.ulb.ac.be/∼ynotay/AGMG/.

[8] I. Akervoll and P. Bergmo. A study of Johansen formation located off-
shore Mongstad as a candidate for permanent CO2 storage. In European
Conference on CCS Research, Development and Demonstration. 10–11
February 2009, Oslo, Norway, 2009.

[9] J. Alvestad, K. Holing, K. Christoffersen, O. Stava, et al. Interactive
modelling of multiphase inflow performance of horizontal and highly de-
viated wells. In European Petroleum Computer Conference. Society of
Petroleum Engineers, 1994.

http://dx.doi.org/10.1016/j.advwatres.2004.10.007
http://dx.doi.org/10.1007/s10596-007-9072-8
http://dx.doi.org/10.1023/A:1021291114475

210 References

[10] J. Bear. Dynamics of Fluids in Porous Media. Dover, 1988. ISBN 0-486-
45355-3.

[11] L. Beirao da Veiga, K. Lipnikov, and G. Manzini. The Mimetic Finite
Difference Method for Elliptic Problems, volume 11 of MS&A – Model-
ing, Simulation and Applications. Springer, 2014. doi:10.1007/978-3-319-
02663-3.

[12] C. H. Bischof, H. M. Bücker, B. Lang, A. Rasch, and A. Vehreschild.
Combining source transformation and operator overloading techniques
to compute derivatives for MATLAB programs. In Proceedings of the
Second IEEE International Workshop on Source Code Analysis and Ma-
nipulation (SCAM 2002), pages 65–72, Los Alamitos, CA, USA, 2002.
IEEE Computer Society. doi:10.1109/SCAM.2002.1134106.

[13] D. Braess. Finite elements: Theory fast solvers and applications in solid
mechanics. Cambridge University Press, Cambridge, 1997.

[14] S. C. Brenner and L. R. Scott. The mathematical theory of finite element
methods, volume 15 of Texts in Applied Mathematics. Springer–Verlag,
New York, 1994.

[15] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods,
volume 15 of Springer Series in Computational Mathematics. Springer-
Verlag, New York, 1991. ISBN 0-387-97582-9.

[16] F. Brezzi, K. Lipnikov, and V. Simoncini. A family of mimetic finite differ-
ence methods on polygonial and polyhedral meshes. Math. Models Meth-
ods Appl. Sci., 15:1533–1553, 2005. doi:10.1142/S0218202505000832.

[17] Cayuga Research. Admat. URL http://www.cayugaresearch.com/

admat.html. [Online; accessed 15-04-2014].
[18] Z. Chen, G. Huan, and Y. Ma. Computational methods for multiphase

flows in porous media, volume 2 of Computational Science and Engi-
neering. Society of Industrial and Applied Mathematics (SIAM), 2006.
doi:10.1137/1.9780898718942.

[19] M. A. Christie and M. J. Blunt. Tenth SPE comparative solution project:
A comparison of upscaling techniques. SPE Reservoir Eval. Eng., 4:308–
317, 2001. doi:10.2118/72469-PA. Url: http://www.spe.org/csp/.

[20] C. Cordes and W. Kinzelbach. Continous groundwater velocity fields and
path lines in linear, bilinear, and trilinear finite elements. Water Resour.
Res., 28(11):2903–2911, 1992.

[21] H. P. G. Darcy. Les Fontaines Publiques de la Ville de Dijon. Dalmont,
Paris, 1856.

[22] A. Datta-Gupta and M. King. A semianalytic approach to tracer flow
modeling in heterogeneous permeable media. Adv. Water Resour., 18:
9–24, 1995.

[23] A. Datta-Gupta and M. J. King. Streamline Simulation: Theory and
Practice, volume 11 of SPE Textbook Series. Society of Petroleum Engi-
neers, 2007.

[24] C. V. Deutsch and A. G. Journel. GSLIB: Geostatistical software library
and user’s guide. Oxford University Press, New York, 2nd edition, 1998.

http://dx.doi.org/10.1007/978-3-319-02663-3
http://dx.doi.org/10.1007/978-3-319-02663-3
http://dx.doi.org/10.1109/SCAM.2002.1134106
http://dx.doi.org/10.1142/S0218202505000832
http://www.cayugaresearch.com/admat.html
http://www.cayugaresearch.com/admat.html
http://dx.doi.org/10.1137/1.9780898718942
http://dx.doi.org/10.2118/72469-PA

References 211

[25] M. G. Edwards and C. F. Rogers. A flux continuous scheme for the
full tensor pressure equation. Proc. of the 4th European Conf. on the
Mathematics of Oil Recovery, 1994.

[26] Y. Efendiev and T. Y. Hou. Multiscale Finite Element Methods, volume 4
of Surveys and Tutorials in the Applied Mathematical Sciences. Springer
Verlag, New York, 2009.

[27] G. Eigestad, H. Dahle, B. Hellevang, W. Johansen, K.-A. Lie, F. Riis, and
E. Øian. Geological and fluid data for modelling CO2 injection in the
Johansen formation, 2008. URL http://www.sintef.no/Projectweb/

MatMorA/Downloads/Johansen.
[28] G. Eigestad, H. Dahle, B. Hellevang, F. Riis, W. Johansen, and E. Øian.

Geological modeling and simulation of CO2 injection in the Johansen
formation. Comput. Geosci., 13(4):435–450, 2009. doi:10.1007/s10596-
009-9153-y.

[29] R. E. Ewing, R. D. Lazarov, S. L. Lyons, D. V. Papavassiliou,
J. Pasciak, and G. Qin. Numerical well model for non-Darcy flow
through isotropic porous media. Comput. Geosci., 3(3-4):185–204, 1999.
doi:10.1023/A:1011543412675.

[30] M. Fink. Automatic differentiation for Matlab. MATLAB Central, 2007.
URL http://www.mathworks.com/matlabcentral/fileexchange/

15235-automatic-differentiation-for-matlab. [Online; accessed
15-04-2014].

[31] S. A. Forth. An efficient overloaded implementation of forward mode
automatic differentiation in MATLAB. ACM Trans. Math. Software, 32
(2):195–222, 2006.

[32] H. Hægland, H. K. Dahle, K.-A. Lie, and G. Eigestad. Adaptive stream-
line tracing for streamline simulation on irregular grids. In P. Binning,
P. Engesgaard, H. Dahle, G. Pinder, and W. Gray, editors, Proceed-
ings of the XVI International Conference on Computational Methods
in Water Resources, Copenhagen, Denmark, 18–22 June 2006. URL
http://proceedings.cmwr-xvi.org/.

[33] H. Holden and N. Risebro. Front Tracking for Hyperbolic Conservation
Laws, volume 152 of Applied Mathematical Sciences. Springer, New York,
2002.

[34] E. Jimenez, K. Sabir, A. Datta-Gupta, and M. King. Spatial error and
convergence in streamline simulation. SPE J., 10(3):221–232, June 2007.

[35] M. King and A. Datta-Gupta. Streamline simulation: A current perspec-
tive. In Situ, 22(1):91–140, 1998.

[36] R. A. Klausen and A. F. Stephansen. Mimetic MPFA. In Proc. 11th
European Conference on the Mathematics of Oil Recovery, 8-11 Sept.,
Bergen, Norway, number A12. EAGE, 2008.

[37] R. A. Klausen, A. F. Rasmussen, and A. Stephansen. Velocity inter-
polation and streamline tracing on irregular geometries. Computational
Geosciences, 16:261–276, 2012. doi:10.1007/s10596-011-9256-0.

http://www.sintef.no/Projectweb/MatMorA/Downloads/Johansen
http://www.sintef.no/Projectweb/MatMorA/Downloads/Johansen
http://dx.doi.org/10.1007/s10596-009-9153-y
http://dx.doi.org/10.1007/s10596-009-9153-y
http://dx.doi.org/10.1023/A:1011543412675
http://www.mathworks.com/matlabcentral/fileexchange/15235-automatic-differentiation-for-matlab
http://www.mathworks.com/matlabcentral/fileexchange/15235-automatic-differentiation-for-matlab
http://proceedings.cmwr-xvi.org/
http://dx.doi.org/10.1007/s10596-011-9256-0

212 References

[38] K.-A. Lie, S. Krogstad, I. S. Ligaarden, J. R. Natvig, H. Nilsen, and
B. Skaflestad. Open-source MATLAB implementation of consistent
discretisations on complex grids. Comput. Geosci., 16:297–322, 2012.
doi:10.1007/s10596-011-9244-4.

[39] K. Lipnikov, M. Shashkov, and I. Yotov. Local flux mimetic finite differ-
ence methods. Numer. Math., 112(1):115–152, 2009. doi:10.1007/s00211-
008-0203-5.

[40] T. Manzocchi et al. Sensitivity of the impact of geological uncertainty
on production from faulted and unfaulted shallow-marine oil reservoirs:
objectives and methods. Petrol. Geosci., 14(1):3–15, 2008.

[41] S. Matringe and M. Gerritsen. On accurate tracing of streamlines. In
SPE Annual Technical Conference and Exhibition, Houston, Texas, USA,
26-29 September 2004. SPE 89920.

[42] S. Matringe, R. Juanes, and H. Tchelepi. Streamline tracing on general
triangular or quadrilateral grids. SPE J., 12(2):217–233, June 2007.

[43] W. McIlhagga. Automatic differentiation with Mat-
lab objects. MATLAB Central, mar 2010. URL
http://www.mathworks.com/matlabcentral/fileexchange/

26807-automatic-differentiation-with-matlab-objects. [On-
line; accessed 15-04-2014].

[44] J. R. Natvig and K.-A. Lie. Fast computation of multiphase flow in
porous media by implicit discontinuous Galerkin schemes with optimal
ordering of elements. J. Comput. Phys., 227(24):10108–10124, 2008.
doi:10.1016/j.jcp.2008.08.024.

[45] J. R. Natvig, K.-A. Lie, B. Eikemo, and I. Berre. An efficient discontinu-
ous Galerkin method for advective transport in porous media. Adv. Water
Resour., 30(12):2424–2438, 2007. doi:10.1016/j.advwatres.2007.05.015.

[46] R. Neidinger. Introduction to automatic differentiation and MAT-
LAB object-oriented programming. SIAM Review, 52(3):545–563, 2010.
doi:10.1137/080743627.

[47] Y. Notay. An aggregation-based algebraic multigrid method. Electron.
Trans. Numer. Anal., 37:123–140, 2010.

[48] P.-E. Øren, S. Bakke, and O. J. Arntzen. Extending predictive capabili-
ties to network models. SPE J., 3(4):324–336, 1998.

[49] D. W. Peaceman. Interpretation of well-block pressures in numerical
reservoir simulation with nonsquare grid blocks and anisotropic perme-
ability. Soc. Petrol. Eng. J., 23(3):531–543, 1983. doi:10.2118/10528-PA.
SPE 10528-PA.

[50] D. W. Peaceman. Fundamentals of Numerical Reservoir Simulation. El-
sevier Science Inc., New York, NY, USA, 1991. ISBN 0444415785.

[51] D. W. Peaceman et al. Interpretation of well-block pressures in numerical
reservoir simulation. Soc. Petrol. Eng. J., 18(3):183—194, 1978.

[52] D. Pollock. Semi-analytical computation of path lines for finite-difference
models. Ground Water, 26(6):743–750, 1988.

http://dx.doi.org/10.1007/s10596-011-9244-4
http://dx.doi.org/10.1007/s00211-008-0203-5
http://dx.doi.org/10.1007/s00211-008-0203-5
http://www.mathworks.com/matlabcentral/fileexchange/26807-automatic-differentiation-with-matlab-objects
http://www.mathworks.com/matlabcentral/fileexchange/26807-automatic-differentiation-with-matlab-objects
http://dx.doi.org/10.1016/j.jcp.2008.08.024
http://dx.doi.org/10.1016/j.advwatres.2007.05.015
http://dx.doi.org/10.1137/080743627
http://dx.doi.org/10.2118/10528-PA

References 213

[53] D. K. Ponting. Corner point geometry in reservoir simulation. In P. King,
editor, Proceedings of the 1st European Conference on Mathematics of
Oil Recovery, Cambridge, 1989, pages 45–65, Oxford, July 25–27 1989.
Clarendon Press.

[54] M. Prevost, M. Edwards, and M. Blunt. Streamline tracing on curvilinear
structured and unstructured grids. SPE J., 7(2):139–148, June 2002.

[55] P. A. Raviart and J. M. Thomas. A mixed finite element method for
second order elliptic equations. In I. Galligani and E. Magenes, edi-
tors, Mathematical Aspects of Finite Element Methods, pages 292–315.
Springer–Verlag, Berlin – Heidelberg – New York, 1977.

[56] L. F. Shampine, R. Ketzscher, and S. A. Forth. Using AD to solve BVPs
in MATLAB. ACM Trans. Math. Software, 31(1):79–94, 2005.

[57] Technische Universität Darmstadt. Automatic Differentiation for Mat-
lab (ADiMat). URL http://www.adimat.de/. [Online; accessed 15-04-
2014].

[58] Tomlab Optimization Inc. Matlab Automatic Differentiation (MAD).
URL http://matlabad.com/. [Online; accessed 15-04-2014].

[59] A. Verma. ADMAT: Automatic differentiation in MATLAB using ob-
ject oriented methods. In SIAM Interdiscplinary Workshop on Object
Oriented Methods for Interoperability, pages 174–183, 1999.

http://www.adimat.de/
http://matlabad.com/

	Introduction
	Reservoir Simulation
	About This Book
	The First Encounter with MRST
	More about MRST
	About examples and standard datasets

	Part I Geological Models and Grids
	Modelling Reservoir Rocks
	Formation of a Sedimentary Reservoir
	Multiscale Modelling of Permeable Rocks
	Macroscopic Models
	Representative Elementary Volumes
	Microscopic Models: The Pore Scale
	Mesoscopic Models

	Modelling of Rock Properties
	Porosity
	Permeability
	Other parameters

	Rock Modelling in MRST
	Homogeneous Models
	Random and Lognormal Models
	10th SPE Comparative Solution Project: Model 2
	The Johansen Formation
	The SAIGUP Model

	Grids in Subsurface Modeling
	Structured Grids
	Unstructured Grids
	Delaunay Tessellation
	Voronoi Diagrams

	Stratigraphic Grids
	Corner-Point Grids
	Layered 2.5D PEBI Grids

	Grid Structure in MRST

	Grid Coarsening
	Partition Vectors
	Uniform Partitions
	Connected Partitions
	Composite Partitions

	Coarse Grid Representation in MRST
	Subdivision of Coarse Faces

	Coarsening of Realistic Reservoir Models
	The Johansen Aquifer
	The Shallow-Marine SAIGUP Model

	General Advice and Simple Guidelines

	Part II Single-Phase Flow
	Mathematical Models and Basic Discretizations
	Fundamental concept: Darcy's law
	General flow equations for single-phase flow
	Auxiliary conditions and equations
	Boundary and initial conditions
	Models for injection and production wells
	Field lines and time-of-flight
	Tracers and volume partitions

	Basic finite-volume discretizations
	A two-point flux-approximation (TPFA) method
	Abstract formulation: discrete div and grad operators
	Discretizing the time-of-flight and tracer equations

	Incompressible Solvers in MRST
	Basic data structures
	Fluid properties
	Reservoir states
	Fluid sources
	Boundary conditions
	Wells

	Incompressible two-point pressure solver
	Upwind solver for time-of-flight and tracer
	Simulation examples
	Quarter-five spot
	Boundary conditions
	Structured versus unstructured stencils
	Using Peaceman well models

	Single-Phase Solvers Based on Automatic Differentiation
	Implicit discretization
	Automatic differentiation
	Automatic differentiation in MRST
	An implicit single-phase solver
	Model setup and initial state
	Discrete operators and equations
	Well model
	The simulation loop

	Rapid prototyping
	Pressure-dependent viscosity
	Non-Newtonian fluid

	Consistent Discretizations on Polyhedral Grids
	The Mixed Finite-Element Method
	Continuous Formulation
	Discrete Formulation
	Hybrid formulation

	Consistent Methods on Mixed Hybrid Form
	The Mimetic Method
	General Family of Inner Products
	General Parametric Family
	Two-Point Type Methods
	Raviart–Thomas Type Inner Product
	Default Inner Product in MRST
	Local-Flux Mimetic Method

	References

